
Received January 19, 2021, accepted January 23, 2021, date of publication February 2, 2021, date of current version February 11, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3056619

Common Spatial Pattern Technique With EEG
Signals for Diagnosis of Autism and
Epilepsy Disorders
FAHD A. ALTURKI , MAJID ALJALAL , AKRAM M. ABDURRAQEEB , KHALIL ALSHARABI ,
AND ABDULLRAHMAN A. AL-SHAMMA’A
Department of Electrical Engineering, King Saud University, Riyadh 11421, Saudi Arabia

Corresponding author: Majid Aljalal (algalalmajid@hotmail.com)

This work was supported by the Deanship of Scientific Research at King Saud University through research under Grant RG-1441-519.

ABSTRACT Electroencephalogram (EEG) signals reflect the activities or electrical disturbances in neurons
in the human brain. Therefore, these signals are vital for diagnosing certain brain disorders. This study
mainly focused on the diagnosis of epilepsy and autism spectrum disorders (ASDs) through the analysis
and processing of EEGs. In this study, artifacts were removed from the EEG datasets using Independent
Component Analysis andwere filtered using a fifth-order band-pass Butterworth filter to remove interference
and noise. Next, new methods were used to extract the features of EEGs using common spatial pattern
(CSP). It is known that conventional CSP uses variance. However, here the use of entropy, energy, and band
power with CSP was proposed to extract features of EEGs. Then, in our investigation, four techniques were
employed for classification, namely, linear discriminant analysis, support vector machine, k-nearest neighbor
(KNN), and artificial neural network, with the aim of comparing the proposed methods and recommending
the optimal combination for the diagnosis of epilepsy and ASDs. Finally, the effects of segment length,
frequency band, and reduction number on the results were investigated. Two EEG datasets were employed
to verify the proposed methods: the King Abdulaziz University dataset (for ASD) and the MIT dataset
(for epilepsy). The results indicated that the extracted features based on CSP and band LBP produced
the best performance and that the combination of CSP-LBP-KNN provided the best performance with
average classification accuracy of approximately 98.46% and 98.62% for diagnosing ASDs and epilepsy,
respectively.

INDEX TERMS Artificial neural network, autism spectrum disorder, band power, brain–computer
interface, common spatial pattern, electroencephalogram, energy, entropy, epilepsy, k-nearest neighbor,
linear discriminant analysis, support vector machine.

I. INTRODUCTION
There are different techniques for reading brain activity:
electroencephalography (EEG), magnetoencephalography
(MEG), functional magnetic resonance imaging (fMRI),
and functional near-infrared spectroscopy (fNIRS). Because
neurons mutually communicate via electrical signals, which
eventually reach the brain surface, EEG is used to capture
brain activity through sensors (called electrodes) [1]. Lately,
researchers in the multidisciplinary fields of engineering,
neuroscience, microelectronics, bioengineering, and neuro-
physiology have made considerable efforts to utilize all of the
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information provided by EEG signals for many applications,
such as an external device control, communications, and
medical diagnosis. Currently, EEG-based signal-processing
techniques are vital for diagnosing and monitoring neu-
rological brain disorders because they help reflect the
electrical activities or disorders of neurons in the human
brain. Recently, brain disorders such as autism spectrum
disorders (ASDs), epilepsy, and Alzheimer’s have generally
been considered the most important disorders focused on by
researchers. Currently, diverse research is being conducted in
this area to build and improve efficient diagnostic systems.

According to a reported study [2], globally, approxi-
mately 65 million people have epilepsy. Accordingly, many
researchers have been developing computer systems to
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diagnose this disease by analyzing the brain signals of
affected individuals [3]. For example, Nigam and Graupe [4]
suggested EEG-based computer-aided diagnosis to diagnose
epilepsy using a multistage nonlinear pre-processing filter in
combination with an artificial neural network (ANN); their
proposed technique achieved accuracy of 97.2%. In addition,
Kannathal et al. [5] compared different entropy algorithms
and suggested that entropy values can distinguish between
normal EEG and epileptic EEG; they used an adaptive
neuro-fuzzy inference system (ANFIS) for classification and
achieved accuracy of 92.2%. Moreover, Sadati et al. [6]
used an adaptive neural fuzzy network instead of ANFIS for
epilepsy diagnosis; they used the energy of discrete wavelet
transform (DWT) sub-bands for feature extraction. How-
ever, their proposed method achieved low accuracy (about
85.9%). Ocak [7] also used approximated entropy for feature
extraction, but in combination with DWT, and they achieved
accuracy of over 96%; however, the accuracy was reduced to
as low as 73% without DWT. Instead of only classifying sets
A and E, Nunes et al. [8] considered the entire dataset (A, B,
C, D, E) provided by Bonn University; they investigated
several combinations of feature extraction and classification
methods and achieved the best performance by using wavelet
coefficients as feature extractors and the optimum-path forest
classifier, which resulted in average accuracy of 89.2%.
Subasi and Gursoy [9] studied different analyses to decrease
the EEG data dimension, and they used the following tech-
niques: principal component analysis (PCA), independent
component analysis (ICA), and linear discriminant analysis
(LDA). They also employed the wavelet transform technique
for feature extraction and performed classification using an
expert model; their proposed technique achieved accuracy
of 94.5% [10]. Recently, a study [11] presented an fast Fourier
transform (FFT) as a feature-extraction method and used
the convolutional neural network (CNN) for classification;
the proposed method achieved classification accuracy around
97.5%.Another recently developedmethod that also achieved
classification accuracy of up to 98.78% was proposed by
Li et al. [12] using wavelet-based envelope analysis for
feature extraction and neural network ensemble as a classifier.
Tzimourta et al. [13] presented a multicenter methodology
for automated seizure detection based on DWT. The extracted
feature vector was used to train a Random Forest classifier to
achieve classification accuracy of 95%. In addition to all of
the above, Zhang et al. [14] proposed a patient-independent
diagnostic approach for epileptic seizure. The proposed
approach refines the seizure-specific representation by elim-
inating the inter-subject noise through adversarial training.

Several studies aimed at designing a computer system for
diagnosing ASDs have also been performed. For example,
Sheikhani et al. [15] employed the short-time Fourier
transform technique to extract features from EEG signals
and then used the k-nearest neighbor (KNN) technique
for classification. Their proposed method achieved overall
accuracy of up to 82.4%. In addition, in their latest work [16],
the team enhanced their approach and employed more

data for testing (17 with ASDs and 11 normal subjects),
obtaining classification accuracy of approximately 96.4%.
Ahmadlou et al. [17] investigated the fractal dimension
technique to measure the complexity and dynamic changes
in the brains of patients suffering from ASDs; they achieved
accuracy of 90% with a radial basis function classifier.
Moreover, in another study [18], they diagnosed ASDs
using the visibility graph method. Moreover, for the same
task, they employed the fuzzy synchronization likelihood
(Fuzzy SL) method and improved the probabilistic neural
network (EPNN) classifier [19]. Both of the proposed
methods [18], [19] achieved classification accuracy of
approximately 95.5%. In [20], Bosl et al. conducted a study
based on an EEG dataset that was collected from 79 subjects.
They employed the minimum mean square error method
to extract the features and used three types of classifier to
differentiate normal signals from autistic ones: multiclass
KNN, support vector machine (SVM), and naive Bayesian
classification algorithms. The classification accuracy was
over 80% at the age of 9 months. In particular, for boys,
the classification accuracy was close to 100% at the age of 9
months, and it ranged from 70% to 90% at 12 and 18 months.
For girls, the classification accuracy was highest at the age
of 6 months, and it decreased for those older than that. The
dataset in the work of Alhaddad et al. [21] was collected
from 12 children: 8 boys with ASD and 4 without it. They
employed optimum pre-processing techniques, time- and
frequency-domain techniques [raw data and FFT] for feature
extraction, and the Fisher linear discriminant technique for
classification. Eventually, their proposed method achieved
classification accuracy of up to 90%. In addition, Alsaggaf
and Kamel [22] employed the same dataset and processing
techniques that were employed in [21] to diagnose autism
disorders; however, they did not use filtering techniques,
so they achieved classification accuracy of 80.27%. More-
over, Fan et al. [23] conducted behavioral participation,
enjoyment, frustration, boredom, and difficulty assessments
to train a range of classification models, and employed the
following classification techniques to compare the results:
decision tree classifier, Bayes network, random forest, KNN,
naive Bayes, SVM, and multilayer perceptron. Overall, their
proposed methods achieved different classification accura-
cies that ranged from 75% to 85%. Recently, a study [24]
presented automated identification of the severity of autism
using empirical mode decomposition as a feature-extraction
method and used the ANN for classification. The proposed
method achieved overall classification accuracy of 97.2%.
Another recent method that also achieved classification accu-
racy of 90.57% and 72.77% for SVM and KNN classifiers
was proposed by Abdolzadegan et al. [25]. They used linear
and nonlinear features such as power spectrum, wavelet
transform, FFT, fractal dimension, correlation dimension,
Lyapunov exponent, entropy, detrended fluctuation analysis,
and synchronization likelihood for feature extraction. Else-
where, Kang et al. [26] presented a study on the identification
of autistic children. In that study, power spectrum analysis
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FIGURE 1. Block diagram of the proposed methods based on CSP.

was used for EEG analysis and areas of interest were
selected for face gaze analysis of eye-tracking data. The SVM
classifier was used to achieve the highest accuracy of 85.44%.

It is important to mention that feature extraction is one of
the most important stages for improving classification accu-
racy.Most of the above-mentioned studies employedmethods
related to FFT or the wavelet transform to extract the features.
However, to the best of our knowledge, no study has used the
common spatial pattern (CSP) to extract the features of EEGs
for diagnosing neurological diseases. Accordingly, in this
study, we developed a new diagnostic system for diagnosing
two neurological brain disorders: epilepsy and ASDs. A new
feature-extraction method and several EEG-classification
techniques are investigated to assist neurologists in accurately
diagnosing those neurological brain disorders. After reading
the EEG dataset, its artifacts and noise were removed and
filtered in the pre-processing stage. First, the ICA technique
was applied to remove the artifacts of EEG signals. Then,
the EEG signals were segmented to fixed windows and fed
to a band-pass Butterworth filter to remove the noise. Next,
the CSP technique was used in order to extract the features
of EEG signals. With CSP, we combined several techniques,
such as energy, entropy, and band power (BP), in order to
improve the average classification accuracy. In addition, for
further investigation, we used four types of classifier: LDA,
SVM, KNN, and ANNs. We also investigated the effects of
segment length, frequency band, and reduction number on the
classification accuracy.

The remainder of this paper is organized as follows.
Section 2 describes the used EEG data and the following
EEG signal-processing methods: pre-processing, feature
extraction, and classification techniques. The results and the
discussion are presented in Section 3. Finally, the conclusion
and some future work prospects are presented in Section 4.

II. METHODS
In this section, the proposed methods for processing the
EEG signals, including the data description, pre-processing,

feature extraction, and classification techniques, are
described. These methods are also verified using MATLAB
simulation tools in the next section. Figure 1 shows a block
diagram of the proposed methods. First, the EEG data
were read and then the ICA technique was used to remove
artifacts from the raw EEG dataset. Next, the EEG signals
were segmented into fixed time windows. Subsequently,
the output of the segmentation procedure was introduced into
the band-pass filter. After that, the output of the filtering
process was fed into the CSP algorithm (i.e., CSPwas applied
to the filtered signals). Afterward, the feature vectors were
extracted by introducing the CSP output into the variance,
entropy, energy, and logarithmic BP (LBP). The LDA, SVMs,
KNN algorithm, and ANN techniques were then employed
as classifiers. Finally, all of the possible combinations of the
proposed approaches were implemented and verified. In the
following subsections, each stage is discussed in more detail,
from the data description to the classification process.

A. DATASET DESCRIPTION
Because two types of disorder were investigated (epilepsy
and autism), two types of dataset were employed to verify
our methods: the first for autism and the second for epilepsy.
We obtained the autism dataset from the Brain and Computer
Interface Group at King Abdulaziz University, Jeddah, Saudi
Arabia; this dataset was recorded using subjects in a relaxed
state and divided into two groups. The first group is called
the natural (normal) group and contains 10 healthy volunteers
(all males, aged 9–16) with normal intelligence and without
any mental disorders. The second group is called the autism
group and contains nine patients (six males and three females,
ages 10–16 years) with ASDs. EEG signals were recorded
from the scalps of these subjects while they were in a
relaxed state by using an EEG data-acquisition system
comprising the following components: a g.tec EEG cap with
16 high-accuracy Ag/AgCl electrodes (Fp1, Fp2, Fz, F3,
F4, F7, F8, Cz, C3, C4, T3, T5, Pz, Oz, O1, and O2)
based on 10–20 international acquisition systems, g.tec USB
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FIGURE 2. Power spectral density and electrode map for (a) autistic EEG, (b) epileptic EEG and (c) normal EEG [29].

amplifiers, and BCI2000 software. The dataset was filtered
using a band-pass filter (frequency band: 0.1–60 Hz) and a
notch filter (stop-band frequency: 60 Hz). All of the EEG
signals were digitized when the sampling frequency was
256Hz. For the healthy volunteers, the EEG recordings varied
from 5 to 27 min with total time of 148 min. However, for the
autistic patients, the recordings varied from 12 to 40 min with
a total of 173 min.

The second dataset is the CHB-MIT dataset, which
was collected at the Children’s Hospital in Boston. This
dataset consists of EEG recordings of pediatric subjects with
severe seizures. EEG signals were recorded from 22 people:
17 females and 5 males. The females’ ages ranged from 1.5 to
19 years, while those of the males ranged from 3 to 22 years.
There are 686 recordings grouped into 23 cases. The duration
of each recording is 1, 2, or 4 h. Recordings belonging to case
10 are 2 h long, recordings belonging to cases 4, 6, 7, and
9 are 4 h long, while the rest are 1 h (the total number of
recording hours is 906). Records with at least one seizure are
classified as seizure records and those without seizures are
classified as non-seizure ones. The total number of seizures
in these recordings is 198. All signals were sampled at 256
samples per second with 16-bit resolution. The International
10–20 system of EEG electrode positions and nomenclature
were used for these recordings. Formore details on these data,
please refer to these references [27], [29].

Figure 2 shows EEG power spectral density (with a
logarithmic scale) and electrode maps for autistic, epileptic,
and normal subjects. The electrode map is shown for three
different arbitrary frequencies: 6, 10, and 22 Hz. In general,
the low-frequency spectrum has higher power density than
the high-frequency one. Comparing the three subjects, we see
different power spectral density patterns.

B. PRE-PROCESSING
During the EEG dataset recording, the artifacts, noise, and
interference were recorded as well. These were generated
from the electrodes, the magnetic fields of the elec-
tronic devices, blood pressure, breathing, limb movements,
eye blinking, or other human movements [30]. In the

pre-processing stage, the ICA technique was used to remove
the eye blinking artifacts. Four channels around the eyes
were used as references to remove the eye blinking artifacts.
Then, the EEG data were divided into M segments, each
having a size of (ch × T ), where ch denotes the number of
channels and T (time windows) denotes the number of EEG
samples per channel in a specific time interval T. In this study,
different time windows were applied for investigation. After
the windowing signals, the segmented signals were filtered
using a fifth-order band-pass Butterworth filter to remove the
interference and noise generated owing to the electrodes and
themagnetic fields of the other devices. In this study, different
frequency bands were used for investigation.

C. FEATURE EXTRACTION
Several feature-extraction techniques are available. Here we
used a popular technique, namely, CSP. Originally, CSP was
based on variance. However, we propose the use of CSP based
on entropy, energy, and LBP.

1) COMMON SPATIAL PATTERN
Weused the CSP algorithm as a spatial filter that leads to peak
variances for differentiating between the two classes of EEGs
(normal and epilepsy/autism) [31]. The computed projection
matrix comprises a set of CSP filters. The algorithm starts by
computing the normalized spatial covariance for both classes,
which is achieved using the following equations:

CCI =
ECIECI ′

trace(ECIECI ′)
CCII =

ECIIECII ′

trace(ECIIECII ′)
(1)

whereECI andECII denote the two single segments under two
conditions (class I and class II) of size ch × T , where ch is
the number of channels and T is the number of samples per
channel. E ′ is the transpose of E , and trace(EE ′) is the sum of
the diagonal elements of EE ′. Then, the averaged normalized
covariances CCI and CCII are calculated by averaging all of
the segments of each class. The overall composite spatial
covariance is given by:

CC = CCI + CCII (2)
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and factorized into eigenvalues and eigenvectors, such as

CC = UCλCU ′C (3)

where UC is the matrix of the eigenvectors and λC is the
diagonal matrix of the eigenvalues. All of the eigenvalues are
arranged in descending order. Subsequently, the whitening
transformation P is computed as follows:

p =
√
λ
−1
C U ′C (4)

Then, we have to find

SCI = PCCIP′ and SCII = PCCIIP′ (5)

To test these calculations, the sum of the corresponding
eigenvalues of SCI and SCII should be an identity matrix,
and SCI and SCII should have the same eigenvectors:

SCI = BλCIB′ (6)

SCII = BλCIIB′ (7)

λCI + λCII = I (8)

where B is any orthonormal matrix that satisfies

B′(SCI + SCII )B = I . (9)

The largest eigenvalues with the corresponding eigenvectors
for SCI have the smallest eigenvalues for SCII , and vice versa.
This demonstrates themaximization of the eigenvalues of one
class at a point and the minimization of the eigenvalues of the
other class at the same point. Thus, the covariance between
the two classes is successfullymaximized. A set of CSPfilters
(projection matrix) can be obtained as

WCsp = P′B = [w1w2 . . .wch−1wch] ∈ Rch×ch (10)

The first CSP filter w1 provides the maximum variance of
class I, and the last CSP filter wch provides the maximum
variance of class II. For dimensionality reduction, only the
first and last m filters may be used, such that

WCsp = [w1w2 . . .wmwch−m+1wch−m . . .wch] ∈ R2m×ch,

(11)

and the filtered signal S(t) is given by

s (t) = WCspe (t) = [s1 (t) s2 (t) . . . sd (t)]′ (12)

where d is the reduction number, which is equal to 2 × m.
The reduction number is the number by which the channels
should be reduced. Thus, for each class’s EEG sample matrix,
we may select the small number of signals (m) that are most
important for the differentiation between the two classes.
Finally, the feature vectors f = (f1, f2, f3, . . . , f2m)′ can be
calculated using the following equation:

fi (var) = log

[
var [si (t)]∑2m
i=1 var [si (t)]

]
(13)

Thus, the d features were obtained for each segment as a
result of the common spatial filtering. In addition to the
logarithmic variance, in this study, we propose extracting the

features using energy, entropy, and LBP, which are defined as
follows:
Entropy Features:

fi (Entropy) =
∑N

n=1
|si (t)|2 log |si (t)|2 (14)

Energy Features:

fi (Energy) =
∑N

n=1
|si (t)|2 (15)

LBP Features:

fi (LBP) = log
[
1
N

∑N

n=1
|si (t)|2

]
(16)

As a result, by means of CSP, each segment will be
transformed into a feature vector of length d . Thus, the size
of the feature matrix resulting from the CSP is M × d ,
where M is the number of segments and d is the reduction
number as mentioned above. In this study, we investigated
the effects of M and d on the classification accuracy of both
autism and epilepsy disorders (Tables IV, V, VIII, and IX).
The formed feature matrix was fed into the classification
and cross-validation stage as discussed in the following
subsection.

D. CLASSIFICATION AND CROSS-VALIDATION
Several classification algorithms are available. However,
in this study, we employed themost widely used classification
techniques to classify the obtained features: LDA, SVM,
KNN, and ANN. Our main aim was to compare them and
determine which one best classifies normal, epilepsy, and
autism cases.

The LDA and SVM classification techniques use hyper-
plane separation to classify their entries. LDA is Fischer’s
linear discrimination, which relies on the mean vectors and
the covariancematrices of the feature vectors of the individual
categories (classes). LDA also uses a hyperplane method to
distinguish different categories, reduce the variances within
categories, and exploit the variances between categories [32].
SVM is a supervised learning method that analyzes data and
identifies patterns; it is used for classification and regression
analysis. Considering a set of training examples, the SVM
training algorithm builds a model (e.g., hyper-level separa-
tion) that assigns new examples into individual classes [33].
KNN is one of the simplest machine-learning algorithms,
which classifies an entity according to the majority vote of
its k-nearest neighbors [34]. In this study, k was selected as
3 for all experiments. We also employed the ANN technique
for classification, as it is an information-processing technique
that simulates the processes of human cognition. In the
training process, feature vectors were fed to the ANNs to
adjust their variable parameters, weights, and biases. Thus,
the relationship between the input and output patterns was
defined. In this study, we developed an ANN system with a
single input layer, a single hidden layer, and a single output
layer using MATLAB. The hidden and output layers were
designed with five and two nodes, respectively. However,
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FIGURE 3. Applying CSP in training and testing phases.

the number of nodes was based on the number of features
obtained from the vectors. In addition, we changed the
hidden and output layers’ transfer functions to ‘‘logsig’’
and ‘‘softmax,’’ respectively, the train function to ‘‘trainbr,’’
learning training to 0.01, and other parameters as well. All of
these adjustments were made to obtain better results.

Moreover, we used the k-fold cross-validation technique
to obtain the classification accuracy. In this technique, the
dataset is arbitrarily separated into k equal parts (k sub-
sets) [35], where one subset is used for validation (test) and
the other subsets are used for training. The cross-validation
is repeated k times (fold). Then, the results of the k times are
averaged to obtain a single classification rate. In this study,
we employed 5-fold cross-validation, which means 20% for
testing and 80% for training. The classification accuracy is
given by

accuracy =
(
Ncorrect
Ntotal

)
× 100% (17)

where Ntotal is the overall number of vectors to be classified
and Ncorrect is the number of correct vectors.

The performance of a classificationmodel can also be eval-
uated by plotting the receiver operating characteristic (ROC)
curve. This curve plots two parameters, true positive rate and
false positive rate, which are defined as:

TPR =
TP

TP+ FN
= sensitivity (18)

FPR =
FP

FP+ TN
= 1− specificity (19)

where TP is true positive, FN is false negative, FP is false
positive, and TN is true negative. The area under the ROC
curve (AUC) is a common metric that can be used to compare
different tests. AUC ranges in value from 0 to 1; if AUC is
close to 1 (area of unit square), this indicates a very good
test. A reference [36] contains more details about ROC-AUC
curves.

Figure 3 shows the application of CSP in the training and
testing phases. Initially, as mentioned above, the data are
divided into two parts: 80% of the data for training and 20%
for testing. Diagnosis of a disorder using signal processing
begins with the training phase, followed by the testing phase.
The training phase begins with filtering the training data
using BPF. Then, the filtered signals are divided into M
equal segments: the size of each segment is ch × T . The
number of segments depends on the length of one segment:
the larger the segment length, the smaller the numberM , and
vice versa. After segmenting the signals, CSP is applied to
all of the segments (both normal and epileptic/autistic) that
we obtained according to Eq. (1) through Eq. (10) to obtain
the projection matrixW ch×ch, a set of CSP filters. After this,
the dimensions of this matrix are reduced by selecting the first
and last mfilters for obtaining thematrixW d×ch, as described
in Eq. (11). Each segment is then filtered (multiplied) by
W d×ch, according to Eq. (12). (The size of each filtered
segment is dxT .) The last but one process is the formation
of one feature vector f from one filtered segment: that is,
the number of feature vectors will be equal to the number
of segments M that we obtained from the segmentation
process. The element number of one feature vector is d :
f = (f1, f2, f3, . . . , fd )′. The elements of the vector are
calculated using variance, entropy, energy, or BP according
to equations (13)–(16), respectively. The last process in the
training phase is the training of a classifier (LDA, SVM,
ANN, or KNN) using the feature vectors obtained from
the previous step, so that the classifier is told that these
feature vectors belong to healthy people while the other
vectors belong to epileptic/autistic people. There processes
are similar between the training and testing phases. The
testing data are filtered using BPF and segmented in a similar
way as in the training phase. The difference is that the CSP is
not applied to the segments, but they are directly filtered using
the W d×ch matrix that was produced in the training phase.
Then, the feature vectors are formed in a manner similar to
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FIGURE 4. 2D plot the feature vectors of the autsim and normal data using (a) CSP+variance, (b) CSP+entropy,
(c) CSP+energy, and (d) CSP+LBP.

that explained in the training phase. The last process in the
testing phase is introducing feature vectors to the classifier,
which has been trained in the training phase, to classify the
feature vectors: which of them belong to healthy people and
which to epileptic/autistic ones. The classification accuracy is
then calculated according to Eqs. 17–19, taking into account
the application of the cross-validation technique described in
the previous paragraph.

III. RESULTS AND DISCUSSION
As mentioned above, we used two types of data: autistic
and epileptic data. Before the feature-extraction process,
the signals were first segmented to a time window of 50 s
and then filtered by a band-pass Butterworth filter having
a frequency band of 0.5–60 Hz. Next, the features were
extracted using the CSP algorithm in combination with
the following statistical methods: variance, entropy, energy,
and BP. Figures 4 and 5 show a 2D plot of the feature
vectors extracted by all of the approaches. The plots of the
extracted features from the autistic dataset are shown in
Fig. 4, while Fig. 5 shows the plots of the features extracted
from the epileptic dataset. As shown in Fig. 4(a) and 5(a),
the CSP-variance method did not provide peak variances
as expected in [37] for discriminating the normal versus
epileptic/autistic features. This made the features proximal to
each other. To separate these features and redistribute them,
we proposed extracting new features using entropy, energy,
and LBP. It is clear from Fig. 4 and 5 that the features
extracted by the CSP-LBP method can be better separated
than those extracted using other approaches.

Band power is a commonly used method in EEG analysis
for estimating the power of EEG signals [38]. In this study,
we perform conventional CSP but replace variance with BP.
The variance is defined by 1

N

∑N
n=1 (si(t)− µi)

2, which is
similar to (16) if the mean value is ignored. We also retain
the use of logarithmic operation as normally used in the CSP-
variance method. This modification redistributes the normal
and epileptic/autistic features for easy classification [39].
As shown in Fig. 4, autistic EEG has energy and LBP
values that are higher than normal, while the variance and
entropy values are lower than normal. The same findings can
be observed in the case of epileptic EEG, as in Figure 5.
As mentioned previously, the BP estimates the average power
of EEG signals.

TABLE 1. Classification accuracy using KNN (normal vs. autistic).

After extracting the features, the KNN technique was used
to classify the features extracted by the CSP + variance,
CSP + entropy, CSP + energy, and CSP + BP methods.
Tables I–III present classification accuracies in terms of mean
and standard deviation (SD). Table 1 gives a comparison of

24340 VOLUME 9, 2021



F. A. Alturki et al.: CSP Technique With EEG Signals for Diagnosis of Autism and Epilepsy Disorders

FIGURE 5. 2D plot the feature vectors of the epilepsy and normal data using (a) CSP+variance, (b)CSP+entropy,
(c) CSP+energy, and (a) CSP+LBP.

TABLE 2. Classification accuracy using KNN for normal vs. epilepsy.

the classification accuracies of the features extracted from
the normal data and those from the autistic data. It can be
seen that the features extracted by CSP + energy and CSP
+ LBP provided better results with average classification
accuracies of 95.42% and 95.48% with SDs of 2.2 and 2.1,
respectively. Table 2 gives a comparison of the classification
accuracies of the features extracted from the normal data and
those from the epileptic data. As seen in Table 2, the features
extracted by CSP+ energy and CSP+ LBP have the highest
average classification accuracies of 97.70% and 97.20% with
SD of 4.10 and 0.03, respectively. For further investigation of
the proposed approaches, we performed classification of the
autistic features versus the epileptic features. The results are
shown in Table 3, which indicates that the best results were
obtained from the CSP + variance and CSP+LBP methods
with average classification accuracy of 99.96% and 99.50%.
We note from these three tables that the features resulting

TABLE 3. Classification accuracy using KNN (autistic vs. epilepsy).

from the CSP+LBP method have the highest classification
accuracy and the smallest SD. A smaller standard deviation
means that the classification accuracies produced by 5-cross
validation do not deviate much from the mean, which makes
the CSP+LBP method more stable than the other methods.

For further investigation, three additional techniques were
used for classification. Specifically, in addition to the KNN
technique, the LDA, SVM, and ANN techniques were also
employed. Figure 6 shows a comparison of these classifi-
cation methods, which classify the normal versus autistic
features extracted using all of the proposed approaches.
From this figure, two important observations can be made:
first, the KNN classifier provides the highest classifica-
tion accuracy with all of the proposed feature-extraction
approaches. Second, the CSP+LBPmethod provides the best
results regardless of the type of classifier used. However,
the CSP+LBP method works better with the KNN classifier.
Figures 7 and 8 also show a comparison of the classification
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FIGURE 6. Average classification accuracy (normal vs. autistic) using LDA,
SVM, KNN, and ANN.

FIGURE 7. Average classification accuracy (normal vs. epileptic) using
LDA, SVM, KNN, and ANN.

FIGURE 8. Average classification accuracy (autistic vs. epilepsy) using
LDA, SVM, KNN, and ANN.

methods for the normal versus autistic features and autistic
versus epileptic features, respectively. The same two previous
observations can be confirmed in these figures.

For further verification of classifier performance,
Figures 9–11 show ROC curves along with AUC for the four
classifiers: LDA, SVM, KNN, and ANN. Figure 9 shows
ROC-AUC related to the classification of autism CSP-LBP
features versus normal CSP-LBP features. We note that the
performance of the KNN classifier is the best, as the area
under the curve (the blue color) is larger than the other areas.
From the figure, we also note that SVM and LDA classifiers
provide good performance. Figure 10 shows ROC-AUC
for epileptic/normal CSP-LBP, while Figure 11 shows
ROC-AUC for autistic/epileptic CSP-LBP. The same findings

FIGURE 9. ROC-AUC based on CSP+LBP features (autism vs. epilepsy).

FIGURE 10. ROC-AUC based on CSP+LBP features (epileptic vs. normal).

FIGURE 11. ROC-AUC based on CSP+LBP features (autistic vs. epileptic).

from Figure 9 can also be found in Figures 10 and 11, in that
KNN performs the best, followed by SVM, then LDA, and
finally ANN.

A. EFFECT OF SEGMENT LENGTH
Thus far, all of the signals, from either the autistic or
the epileptic dataset, were segmented into time windows
of 50 s, as mentioned above. Now, we investigate the effect
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TABLE 4. Effect of segment length on classification accuracy (normal vs. autistic).

TABLE 5. Effect of segment length on classification accuracy (normal vs. epileptic).

TABLE 6. Effect of frequency band on classification accuracy (normal vs. autistic).

of the segment length on the results. Because the highest
classification accuracy was obtained by the CSP + LBP
feature-extraction method, CSP + LBP was used in this

investigation. Table 4 gives the effect of the segment length in
the autistic dataset. The first two columns in Table 4 list the
segment length and the corresponding number of segments,
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TABLE 7. Effect of frequency band on classification accuracy (normal vs. epileptic).

TABLE 8. Effect of reduction number on classification accuracy (normal vs. autistic).

and the other four columns list the classification accuracies
according to the LDA, SVM, KNN, and ANN techniques.
It can be observed from Table 4 that, as the window length
increases from 10 to 100, the number of segments decreases;
moreover, the classification accuracy begins to increase to
a certain value and then starts to decrease. Thus, it is
important to choose the optimal length and a suitable number
of segments, which give the highest classification accuracy.
In this case, the optimal segment length is 50 s and the
corresponding number of segments is 393. Table 5 depicts
the effect of the segment length in the epileptic dataset. The
results here are slightly different. It can be seen that, as the
segment length increases from 10 to 100, the classification
accuracy starts to increase to a certain value, then begins to
decrease, and then starts increasing again. The highest value
of accuracy reached was 98.89%, but the number of segments
decreased to 50. Thus, in this case, the optimal segment

length was 30 s and the corresponding number of segments
was 292, which is acceptable. At a segment length of 30 s,
the highest classification accuracy of 97.95% was obtained
by a combination of CSP + LBP + KNN.

B. EFFECT OF THE FREQUENCY BAND
In general, the frequency range of EEG signals extends
from 0 to 100 Hz, which is divided into sub-bands: delta
(<4 Hz), theta (4–8 Hz), ýalpha (8–13 Hz), beta (13–30 Hz),
and gamma (>30 Hz). Raw EEG signals may contain noise
from different sources, such as electric or electromagnetic
fields. In autistic and epileptic signals, important data may
not be concentrated in constant-frequency bands. Therefore,
before feature extraction, the use of a frequency filter is
vital for removing the unwanted frequency components and
passing the desired components. Accordingly, all of the
results were obtained after filtering the EEG signals using
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TABLE 9. Effect of reduction number on classification accuracy (normal vs. epileptic).

TABLE 10. Summary of best methods for autism and epilepsy diagnosis.

TABLE 11. Comparison of the classification results for ASD diagnosis.

a 60-Hz band-pass filter. Here, we used a segment length
of 50 s to investigate the effect of the filter’s frequency band

on the results. Table 6 gives the classification accuracies
of the autistic data versus the normal data at different
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TABLE 12. Comparison of the classification results for epilepsy diagnosis.

frequency bands. It can be seen from Table 6 that changing
the frequency band leads to a change in the classification
accuracy. According to the results presented in Table 6, the
highest accuracy was obtained when the EEG signals were
filtered using a 4–30-Hz band-pass filter. Table 7 gives the
classification accuracies of the epileptic and normal data at
different frequency bands. According to the results provided
in Table 7, the highest accuracy was obtained when the EEG
signals were filtered using a 1–40-Hz band-pass filter. It is
important to mention here that, although different frequency
bands were used, the combination of CSP + LBP + KNN
still provided the highest accuracy, as seen in both tables.

C. EFFECT OF THE REDUCTION NUMBER
As mentioned in subsection 2C, the reduction number d is the
number by which the channels can be reduced. Table 8 gives
the average classification accuracies of the autistic versus
normal data, which were filtered at 4–30 Hz, where a segment
length of 50 s and different dimension values were used.
It can be seen that the results were significantly affected,
as the classification accuracy decreased with the decrease in
the value of the reduction number. Table 9 shows the results
of a similar investigation, but for the epileptic versus the
normal data, which were filtered at 1–40 Hz, where a segment
length of 30 s was used. It can be seen from Table 9 that,
with an increase in the value of the reduction number from
2 to 22, the accuracy begins to increase to a certain value
and then begins to decrease. The results in Tables 8 and 9
reveal that the optimal value of d is 16. It can be noted from
both tables that the combination of CSP + LBP + KNN
still provides the best results, especially at d = 16, with
classification accuracy of 98.46% and 98.62% for normal
versus autistic features and normal versus epileptic features,
respectively. Therefore, and according to dimensionality
reduction investigation, it was found that recorded channels
(Fp1, Fp2, Fz, F3, F4, F7, F8, Cz, C3, C4, T3, T5, Pz, Oz,

FIGURE 12. ROC-AUC of methods included in Table 10: (a) autism
classification and (b) epilepsy classification.

O1, and O2) contain important information on whether to
classify autism or epilepsy. After the previous comparison of
the feature extraction and classification methods as well as
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FIGURE 13. The complete method that provides the best performance.

the effects of segment length, frequency band, and reduction
number, we summarize the completed methods that give the
best results for the diagnosis of either autism or epilepsy.
Table 10 shows the recommended method for diagnosing
both autism and epilepsy with classification accuracies of
98.46% and 98.62%, respectively, with KNN classifier.
Figure 12 shows ROC-AUC corresponding to these results.

Finally, the benefit of this work can be measured by
comparing the results of the proposed method with the results
of previous studies. Tables 11 and 12 show comparisons
of our results with the results of previous works related to
ASDs and epilepsy, respectively. From these tables, it can
be seen that our work provides good classification accuracy
compared with the previous studies.

IV. CONCLUSION AND FUTURE STUDY
In recent years, EEG signal-analysis techniques have been
improved because EEG signals reflect neurological brain
activities, and they have also become an important tool
for diagnosing neurological brain disorders. In this study,
we focused on the diagnosis of epilepsy and ASDs through
the analysis and processing of EEG signals. In addition,
we used new techniques for feature extraction using CSP,
which has not been used in previous studies. In addition
to variance, we used entropy, energy, and BP to construct
the feature vector. Then, for investigation, we used four
techniques for classification: LDA, SVM, KNN, and ANN.
The aim of this investigation was to compare the pro-
posed approaches and recommend the best combination
for diagnosing epilepsy and autism. We also investigated
the effects of segment length, filter frequency band, and
reduction number on the classification accuracy. The different
datasets used in this work were provided by Bonn University,
Germany; MIT, USA; and King Abdulaziz University,
Jeddah, Saudi Arabia, to evaluate our proposed methods.

Overall, the results showed that the features extracted
using CSP and LBP resulted in the highest classification
accuracy. This conclusion was confirmed by our previously
reported study [40], where the CSP + LBP method was
used to extract the features from motor imagery signals.
In addition, the results in this study showed that the
combination of CSP+ LBP+KNN achieved the best results

with average classification accuracy of approximately 99%
for the diagnosis of both autism and epilepsy. Figure 13 shows
a schematic of the complete method that achieved the best
performance in comparison with the other proposed methods.
The proposedmethod provides very promising results that are
comparable to those published in previous studies.

Finally, diagnosing of neurological brain disorders are per-
formedmanually by neurologists or skilled clinicians through
visual inspection of EEG signals. Therefore, the proposed
system can assist medical doctors and clinicians in order to
diagnose neurological brain disorder automatically.

With the proposed system, diagnosis time is saved
and the diagnosis of neurological brain disorders becomes
more accurate. In future work, the proposed method will
be tested and evaluated with a larger database and with
other neurological brain disorders such as Alzheimer’s. The
proposed approach will be developed to diagnose more than
two neurological brain disorders at the same time (two
classes or more). Deep learning approaches will be used for
classification in order to improve the classification accuracy
and provide a perfect classification. One of the challenges of
the proposed method is hardware implementation in order to
be used for real-world diagnostics. Hardware implementation
(using an FPGA, for example) remains the next work to
consider.

REFERENCES
[1] E. Niedermeyer and F. L. D. Silva, Electroencephalography: Basic

Principles, Clinical Applications, and Related Fields. Philadelphia, PA,
USA: Lippincott Williams Wilkins, 2004.

[2] D. J. Thurman et al., ‘‘Standards for epidemiologic studies and surveillance
of epilepsy,’’ Epilepsia, vol. 52, pp. 2–26, Sep. 2011, doi: 10.1111/j.1528-
1167.2011.03121.x.

[3] S. Noachtar and J. Rémi, ‘‘The role of EEG in epilepsy: A critical
review,’’ Epilepsy Behav., vol. 15, no. 1, pp. 22–33, May 2009, doi: 10.
1016/j.yebeh.2009.02.035.

[4] V. P. Nigam and D. Graupe, ‘‘A neural-network-based detection of
epilepsy,’’ Neurolog. Res., vol. 26, no. 1, pp. 55–60, Jan. 2004, doi: 10.
1179/016164104773026534.

[5] N. Kannathal, M. L. Choo, U. R. Acharya, and P. K. Sadasivan, ‘‘Entropies
for detection of epilepsy in EEG,’’ Comput. Methods Programs Biomed.,
vol. 80, no. 3, pp. 187–194, Dec. 2005, doi: 10.1016/j.cmpb.2005.06.012.

[6] N. Sadati, H. R. Mohseni, and A. Maghsoudi, ‘‘Epileptic seizure detection
using neural fuzzy networks,’’ in Proc. IEEE Int. Conf. Fuzzy Syst.,
Jul. 2006, pp. 596–600.

[7] H. Ocak, ‘‘Automatic detection of epileptic seizures in EEG using discrete
wavelet transform and approximate entropy,’’ Expert Syst. Appl., vol. 36,
no. 2, pp. 2027–2036, Mar. 2009, doi: 10.1016/j.eswa.2007.12.065.

VOLUME 9, 2021 24347

http://dx.doi.org/10.1111/j.1528-1167.2011.03121.x
http://dx.doi.org/10.1111/j.1528-1167.2011.03121.x
http://dx.doi.org/10.1016/j.yebeh.2009.02.035
http://dx.doi.org/10.1016/j.yebeh.2009.02.035
http://dx.doi.org/10.1179/016164104773026534
http://dx.doi.org/10.1179/016164104773026534
http://dx.doi.org/10.1016/j.cmpb.2005.06.012
http://dx.doi.org/10.1016/j.eswa.2007.12.065


F. A. Alturki et al.: CSP Technique With EEG Signals for Diagnosis of Autism and Epilepsy Disorders

[8] T. M. Nunes, A. L. V. Coelho, C. A. M. Lima, J. P. Papa, and
V. H. C. D. Albuquerque, ‘‘EEG signal classification for epilepsy diagnosis
via optimum path forest—A systematic assessment,’’ Neurocomputing,
vol. 136, pp. 103–123, Jul. 2014, doi: 10.1016/j.neucom.2014.01.020.

[9] A. Subasi and M. I. Gursoy, ‘‘EEG signal classification using PCA, ICA,
LDA and support vector machines,’’ Expert Syst. Appl., vol. 37, no. 12,
pp. 8659–8666, Dec. 2010, doi: 10.1016/j.eswa.2010.06.065.

[10] A. Subasi, ‘‘EEG signal classification using wavelet feature extraction
and a mixture of expert model,’’ Expert Syst. Appl., vol. 32, no. 4,
pp. 1084–1093, May 2007, doi: 10.1016/j.eswa.2006.02.005.

[11] M. Zhou, C. Tian, R. Cao, B. Wang, Y. Niu, T. Hu, H. Guo, and J. Xiang,
‘‘Epileptic seizure detection based on EEG signals and CNN,’’ Frontiers
Neuroinform., vol. 12, p. 95, Dec. 2018, doi: 10.3389/fninf.2018.00095.

[12] M. Li, W. Chen, and T. Zhang, ‘‘Classification of epilepsy EEG signals
using DWT-based envelope analysis and neural network ensemble,’’
Biomed. Signal Process. Control, vol. 31, pp. 357–365, Jan. 2017, doi: 10.
1016/j.bspc.2016.09.008.

[13] K. D. Tzimourta, A. T. Tzallas, N. Giannakeas, L. G. Astrakas,
D. G. Tsalikakis, P. Angelidis, and M. G. Tsipouras, ‘‘A robust method-
ology for classification of epileptic seizures in EEG signals,’’ Health
Technol., vol. 9, no. 2, pp. 135–142, Mar. 2019, doi: 10.1007/s12553-018-
0265-z.

[14] X. Zhang, L. Yao, M. Dong, Z. Liu, Y. Zhang, and Y. Li, ‘‘Adver-
sarial representation learning for robust patient-independent epileptic
seizure detection,’’ IEEE J. Biomed. Health Inform., vol. 24, no. 10,
pp. 2852–2859, Oct. 2020, doi: 10.1109/JBHI.2020.2971610.

[15] A. Sheikhani, H. Behnam, M. R. Mohammadi, M. Noroozian, and
P. Golabi, ‘‘Connectivity analysis of quantitative electroencephalogram
background activity in autism disorders with short time Fourier transform
and coherence values,’’ in Proc. Congr. Image Signal Process., May 2008,
pp. 207–212.

[16] A. Sheikhani, H. Behnam, M. R. Mohammadi, M. Noroozian, and
M. Mohammadi, ‘‘Detection of abnormalities for diagnosing of children
with autism disorders using of quantitative electroencephalography
analysis,’’ J. Med. Syst., vol. 36, no. 2, pp. 957–963, Apr. 2012, doi: 10.
1007/s10916-010-9560-6.

[17] M. Ahmadlou, H. Adeli, and A. Adeli, ‘‘Fractality and a wavelet-chaos-
neural network methodology for EEG-based diagnosis of autistic spectrum
disorder,’’ J. Clin. Neurophysiol., vol. 27, no. 5, pp. 328–333, Oct. 2010,
doi: 10.1097/WNP.0b013e3181f40dc8.

[18] M. Ahmadlou, H. Adeli, and A. Adeli, ‘‘Improved visibility graph
fractality with application for the diagnosis of autism spectrum disorder,’’
Phys. A, Stat. Mech. Appl., vol. 391, no. 20, pp. 4720–4726, Oct. 2012, doi:
10.1016/j.physa.2012.04.025.

[19] M. Ahmadlou, H. Adeli, and A. Adeli, ‘‘Fuzzy synchronization likelihood-
wavelet methodology for diagnosis of autism spectrum disorder,’’ J.
Neurosci. Methods, vol. 211, no. 2, pp. 203–209, Nov. 2012, doi: 10.1016/j.
jneumeth.2012.08.020.

[20] W. Bosl, A. Tierney, H. Tager-Flusberg, and C. Nelson, ‘‘EEG complexity
as a biomarker for autism spectrum disorder risk,’’ BMCMed., vol. 9, no. 1,
p. 18, Dec. 2011, doi: 10.1186/1741-7015-9-18.

[21] M. J. Alhaddad, M. I. Kamel, and H. M. Malibary, ‘‘Diagnosis autism by
Fisher linear discriminant analysis FLDA via EEG,’’ Int. J. Bio-Sci. Bio-
Technol., vol. 4, no. 2, pp. 45–54, 2012.

[22] E. A. Alsaggaf andM. I. Kamel, ‘‘Using EEGs to diagnose autism disorder
by classification algorithm,’’ Life Sci. J., vol. 11, no. 6, pp. 305–308, 2014.

[23] J. Fan, J. W. Wade, D. Bian, A. P. Key, Z. E. Warren, L. C. Mion, and
N. Sarkar, ‘‘A step towards EEG-based brain computer interface for autism
intervention,’’ in Proc. 37th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc.
(EMBC), Aug. 2015, pp. 3767–3770, doi: 10.1109/EMBC.2015.7319213.

[24] H. Hadoush, M. Alafeef, and E. Abdulhay, ‘‘Automated identification for
autism severity level: EEG analysis using empirical mode decomposition
and second order difference plot,’’ Behavioural Brain Res., vol. 362,
pp. 240–248, Apr. 2019, doi: 10.1016/j.bbr.2019.01.018.

[25] D. Abdolzadegan, M. H. Moattar, and M. Ghoshuni, ‘‘A robust method
for early diagnosis of autism spectrum disorder from EEG signals based
on feature selection and DBSCAN method,’’ Biocybernetics Biomed.
Eng., vol. 40, no. 1, pp. 482–493, Jan. 2020, doi: 10.1016/j.bbe.2020.
01.008.

[26] J. Kang, X. Han, J. Song, Z. Niu, and X. Li, ‘‘The identification of
childrenwith autism spectrum disorder by SVMapproach on EEG and eye-
tracking data,’’ Comput. Biol. Med., vol. 120, May 2020, Art. no. 103722,
doi: 10.1016/j.compbiomed.2020.103722.

[27] A. L. Goldberger, J.M. Hausdorff, H. E. Stanley, L. A. N. Amaral, L. Glass,
P. C. Ivanov, R. G. Mark, J. E. Mietus, G. B. Moody, and C.-K. Peng,
‘‘PhysioBank, PhysioToolkit, and PhysioNet: Components of a new
research resource for complex physiologic signals,’’ Circulation, vol. 101,
no. 23, pp. E215–E220, Jun. 2000. [Online]. Available: https://archive.
physionet.org/pn6/chbmit/, doi: 10.1161/01.cir.101.23.e215.

[28] A. Shoeb, ‘‘Application of machine learning to epileptic, seizure onset
detection and treatment,’’ Ph.D. dissertation, MIT, Cambridge, MA, USA,
2009.

[29] S. Ibrahim, R. Djemal, and A. Alsuwailem, ‘‘Electroencephalography
(EEG) signal processing for epilepsy and autism spectrum disorder diagno-
sis,’’ Biocybernetics Biomed. Eng., vol. 38, no. 1, pp. 16–26, 2018, doi: 10.
1016/j.bbe.2017.08.006.

[30] J. Müller-Gerking, G. Pfurtscheller, and H. Flyvbjerg, ‘‘Designing optimal
spatial filters for single-trial EEG classification in a movement task,’’ Clin.
Neurophysiol., vol. 110, no. 5, pp. 787–798, 1999, doi: 10.1016/s1388-
2457(98)00038-8.

[31] B. Blankertz, R. Tomioka, S. Lemm, M. Kawanabe, and K.-R. Müller,
‘‘Optimizing spatial filters for robust EEG single-trial analysis,’’ IEEE
Signal Process. Mag., vol. 25, no. 1, pp. 41–56, 2008, doi: 10.1109/
MSP.2008.4408441.

[32] R. O. Duda, Pattern Classification. Hoboken, NJ, USA: Wiley, 2012.
[33] C. J. C. Burges, ‘‘A tutorial on support vector machines for pattern

recognition,’’ Data Mining Knowl. Discovery, vol. 2, no. 2, pp. 121–167,
1998, doi: 10.1023/A:1009715923555.

[34] K. Q. Weinberger and L. K. Saul, ‘‘Distance metric learning for large
margin nearest neighbor classification,’’ J. Mach. Learn. Res., vol. 10,
pp. 207–244, Feb. 2009.

[35] P. Refaeilzadeh, L. Tang, and H. Liu, ‘‘Cross-validation,’’ in Encyclopedia
of Database Systems, M. T. Özsu and L. Liu, Eds. Springer, 2009.

[36] T. Fawcett, ‘‘An introduction to ROC analysis,’’ Pattern Recognit. Lett.,
vol. 27, no. 8, pp. 861–874, Jun. 2006, doi: 10.1016/j.patrec.2005.10.010.

[37] H. Ramoser, J. Muller-Gerking, and G. Pfurtscheller, ‘‘Optimal spatial
filtering of single trial EEG during imagined hand movement,’’ IEEE
Trans. Rehabil. Eng., vol. 8, no. 4, pp. 441–446, Dec. 2000, doi: 10.
1109/86.895946.

[38] S. G. Mason, A. Bashashati, M. Fatourechi, K. F. Navarro, and G. E. Birch,
‘‘A comprehensive survey of brain interface technology designs,’’ Ann.
Biomed. Eng., vol. 35, no. 2, pp. 137–169, Jan. 2007, doi: 10.1007/s10439-
006-9170-0.

[39] Y. U. Khan, N. Rafiuddin, and O. Farooq, ‘‘Automated seizure detection
in scalp EEG using multiple wavelet scales,’’ in Proc. IEEE Int. Conf.
Signal Process., Comput. Control, Waknaghat Solan, India, Mar. 2012,
pp. 1–5.

[40] M. Aljalal, R. Djemal, and S. Ibrahim, ‘‘Robot navigation using a
brain computer interface based on motor imagery,’’ J. Med. Biol. Eng.,
vol. 39, no. 4, pp. 508–522, Aug. 2019, doi: 10.1007/s40846-018-
0431-9.

FAHD A. ALTURKI received the B.S. degree in
electrical engineering from King Saud University,
Riyadh, Saudi Arabia, in 1986, the M.S. degree
in control systems from Imperial College London,
London, U.K., in 1988, and the Ph.D. degree
in control engineering from The University of
Sheffield, Sheffield, U.K., in 1993. From 2008 to
2012, he was the Dean of the College of Engineer-
ing and has been the General Supervisor of King
Saud University colleges, Almuzahimiah Branch,

since April 2013. He is currently a Professor of electrical engineering
with King Saud University. His main research interests include intelligent
systems, signal processing, and nonlinear control.

24348 VOLUME 9, 2021

http://dx.doi.org/10.1016/j.neucom.2014.01.020
http://dx.doi.org/10.1016/j.eswa.2010.06.065
http://dx.doi.org/10.1016/j.eswa.2006.02.005
http://dx.doi.org/10.3389/fninf.2018.00095
http://dx.doi.org/10.1016/j.bspc.2016.09.008
http://dx.doi.org/10.1016/j.bspc.2016.09.008
http://dx.doi.org/10.1007/s12553-018-0265-z
http://dx.doi.org/10.1007/s12553-018-0265-z
http://dx.doi.org/10.1109/JBHI.2020.2971610
http://dx.doi.org/10.1007/s10916-010-9560-6
http://dx.doi.org/10.1007/s10916-010-9560-6
http://dx.doi.org/10.1097/WNP.0b013e3181f40dc8
http://dx.doi.org/10.1016/j.physa.2012.04.025
http://dx.doi.org/10.1016/j.jneumeth.2012.08.020
http://dx.doi.org/10.1016/j.jneumeth.2012.08.020
http://dx.doi.org/10.1186/1741-7015-9-18
http://dx.doi.org/10.1109/EMBC.2015.7319213
http://dx.doi.org/10.1016/j.bbr.2019.01.018
http://dx.doi.org/10.1016/j.bbe.2020.01.008
http://dx.doi.org/10.1016/j.bbe.2020.01.008
http://dx.doi.org/10.1016/j.compbiomed.2020.103722
http://dx.doi.org/10.1161/01.cir.101.23.e215
http://dx.doi.org/10.1016/j.bbe.2017.08.006
http://dx.doi.org/10.1016/j.bbe.2017.08.006
http://dx.doi.org/10.1016/s1388-2457(98)00038-8
http://dx.doi.org/10.1016/s1388-2457(98)00038-8
http://dx.doi.org/10.1109/MSP.2008.4408441
http://dx.doi.org/10.1109/MSP.2008.4408441
http://dx.doi.org/10.1023/A:1009715923555
http://dx.doi.org/10.1016/j.patrec.2005.10.010
http://dx.doi.org/10.1109/86.895946
http://dx.doi.org/10.1109/86.895946
http://dx.doi.org/10.1007/s10439-006-9170-0
http://dx.doi.org/10.1007/s10439-006-9170-0
http://dx.doi.org/10.1007/s40846-018-0431-9
http://dx.doi.org/10.1007/s40846-018-0431-9


F. A. Alturki et al.: CSP Technique With EEG Signals for Diagnosis of Autism and Epilepsy Disorders

MAJID ALJALAL received the B.S. degree in
communication engineering from Taiz University,
Taiz, Yemen, in 2010, and the M.S. degree
in electrical engineering from King Saud Uni-
versity, Riyadh, Saudi Arabia, in 2017, where
he is currently pursuing the Ph.D. degree with
the Department of Electrical Engineering. His
research interests include artificial intelligence,
brain–computer interfaces, control systems, and
EEG signal processing.

AKRAM M. ABDURRAQEEB received the B.S.
degree in communication and computer engineer-
ing from Taiz University, Taiz, Yemen, in 2008,
and the M.S. degree in automatic control from the
Department of Electrical Engineering, King Saud
University, Riyadh, Saudi Arabia, in 2017. He is
currently pursuing the Ph.D. degree in automatic
control with the Department of Electrical Engi-
neering. His research interests include application
of robust control for micro/nano-positioning sys-

tems, artificial intelligence, robotics, and EEG signal processing.

KHALIL ALSHARABI was born in Taiz, Yemen,
in 1983. He received the B.S. degree in com-
munication and computer engineering from Taiz
University, Yemen, in 2008, and theM.S. degree in
electrical engineering and in control systems engi-
neering from King Saud University, Saudi Arabia,
in 2017, where he is currently pursuing the Ph.D.
degreewith theDepartment of Electrical Engineer-
ing. His research interests include brain–computer
interfaces, EEG signal processing, control systems
engineering, and artificial intelligence.

ABDULLRAHMAN A. AL-SHAMMA’A was
born in Sana’a, Yemen, in 1984. He received the
bachelor’s degree in electrical engineering and
in electrical power and machines from Sana’a
University, Sana’a, in 2008, and the M.Sc. and
Ph.D. degrees from King Saud University, Riyadh,
Saudi Arabia, in 2013 and 2019, respectively,
both in electrical engineering. In 2019, he joined
King Saud University, where he is currently an
Adjunct Assistant Professor with the Department

of Electrical Engineering. He has published many research articles in
peer-reviewed journals, in addition to many international conference papers.
In the field of multilevel converters, he received two patents for simple
and efficient power converters, including applications to grid-connected
photovoltaic plants. His research interests include the design, control, and
optimization of renewable energy systems, as well as multilevel power
electronics converters for micro-grids and electric drive applications.

VOLUME 9, 2021 24349


