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ABSTRACT The specific characteristics and operations of microgrid cause protection problems due to
high penetration of distributed energy resources. To resolve these issues, the proposed scheme employs
the Hilbert transform and data mining approach to protect the microgrid. First, the Hilbert transform is
used to preprocess the faulted voltage and current signals to extract the sensitive fault features. Then,
the obtained data set of the extracted features is input to the logistic regression classifier for fault detection.
Later, fault classification is done by training the AdaBoost classifier. In the proposed scheme, the simulation
results for feature extractions are evaluated on a standard International Electrotechnical Commission (IEC)
medium voltage microgrid, compatible with MATLAB/SIMULINK software environment, whereas, Python
is used for training and testing of data mining model. The results are evaluated under grid-connected and
islanded modes for both looped and radial configurations by simulating various fault and no-fault cases. The
results show that the accuracy of the proposed logistic regression and AdaBoost classifier is higher when
compared to decision tree, support vector machine, and random forest methods. The results further validate
the robustness of the proposed method against the measurement noise.

INDEX TERMS AdaBoost classifier, data mining, fault protection, feature extraction, Hilbert transform,
logistic regression.

I. INTRODUCTION
The exponential enhancement in power requirements, sub-
stantial reduction in conventional resources, and growing
appeals for green power have become central issues of the tra-
ditional electricity generation system [1], [2]. These problems
have attracted more attention in power systems, hence raising
a need to provide alternative approaches to overcome these
issues. Distributed Energy Resources (DERs) is an alternative
solution where the sources are integrated at the distribution
utilities, and are located close to the load to provide power
to local customers. The advancement of DERs technologies
introduced the concept of microgrid, which is a signifi-
cant part of the power distribution system, and performed
a pivoted role in addressing the issues of traditional power
systems [3]–[6]. Essentially, microgrid is a low or medium
voltage distributed system, interconnected with a cluster
of low power generation units, loads, and energy storage
devices. It can effectively operate in both preplanned islanded
and grid-connected modes. It provides notable benefits by
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maintaining the accessibility of power by utilizing the
islanded mode of operation during the main grid outages.
Microgrid offers superior power quality by reducing the
carbon emission, and provides low implementation costs
by reducing the transmission lines. In short, it improves
the overall efficiency and economic dispatch in the net-
work. However, due to the penetration of DERs into micro-
grid, it suffers from significant technical issues like stability
problems, frequency and voltage control, protective devices
failure, and operation, but mainly concerning protections
problems [7]–[9].

The inclusion of DERs modifies the existing conventional
networks into active distribution networks and leads to power
system protection problems. These problems are mainly due
to the protection philosophy of the prevailing distribution
systems, that are designed based on the assumption that
conventional protection systems are radial and power flow is
always unidirectional from the source to consumers. There-
fore, the multi-looped and multi-generation active distribu-
tion systems make the distribution systems more complex
[10], [11]. A major concern with the implementation of
microgrid is that bidirectional power flows in either direction,
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depending on fault location. Also, microgrid may change
topology due to grid or islanded, and meshed or radial con-
figurations, resulting in various fault current levels [12], [13].

The contribution of fault current from the main utility is
ten times larger as compared to small distributed genera-
tors (DGs) in the microgrid. Synchronous-based DGs con-
tribute 5 to 6 times while the fault current is limited to twice
of the rated current for Inverter Interfaced DGs (IIDGs).
The variation in fault current mainly depends on the pene-
tration rate, type, and location of DGs [11], [14]. In order
to maintain the correct operation of microgrid, it should be
fast enough to detect the faults for the protection of sensi-
tive loads. However, the traditional over-current relays not
only cause incorrect detection of a fault, but also create
selectivity problems resulting in switching off of healthy
phases. Therefore, the conventional over-current relays are
inadequate for microgrid protection due to their preset con-
ditions, and need to be reconsidered [15], [16]. Hence,
it is challenging to design an efficient microgrid protection
scheme [17].

Previous literature have reported several techniques to
find a solution to this challenging problem. An adaptive
relay technique proposed in [18], implements a fast-recursive
discrete Fourier transform and fuzzy-logic decision-making
module. In [19], the authors introduced an intelligent pro-
tection scheme for microgrid using a combined wavelet
transform and decision tree (DT) by utilizing local cur-
rent measurements for fault detection and classification with
IIDGs. Another fault detection scheme based on deep neural
networks and wavelet transform for microgrid protection was
proposed in [20]. The authors in [21], employed an approach,
focused on identifying and evaluating the faulted line section
by implementing data mining and wavelet packet transform.
A comprehensive communication assisted protection-based
strategy for microgrid was reported in [22], with dual direc-
tional over-current relay. The authors in [23], presented a fault
protection strategy based on an integrated impedance angle,
using the phasor measurement unit. A non-pilot protection
strategy was designed in [24], for symmetrical and asymmet-
rical faults for inverter-dominated microgrid. Another pro-
tection method for inverter-based microgrid was proposed
in [25], using current-only polarity comparison to detect the
fault direction. A combined machine learning and signal
processing technique was introduced in [26], [27], for radial
distribution grid for detection, classification and location of
the fault. A Stockwell transform and machine learning-based
hybrid technique was proposed in [28], for a modeled dis-
tribution feeder to a laboratory scale for the detection, loca-
tion and classification of single-line-to-ground fault. Another
Stockwell transform and machine learning method for power
distribution grid was presented in [29], to locate and identify
the fault section. In [30], the authors developed an intelligent
fault protection scheme for microgrid using convolutional
neural network by extracting the fault features internally.
In [31], a three-stage protection scheme was proposed for
dynamic security status detection in microgrid. The authors

in [32], presented an autocorrelation-based scheme for micro-
grid by using squaring and low-pass filtering method.

The aforementioned protection strategies, employed dif-
ferent protection aspects to solve the protection problems
in microgrid. However, each of the scheme has some lim-
itations. Most of the protection strategies have considered
only inverter-interfaced DGs [19], [24]. Some schemes have
high fault detection time [19], [20]. Adaptive methods suf-
fers from high computational burden caused by the com-
plex fault calculations for relay settings [18]. Therefore,
to overcome these limitations, this manuscript proposes a new
scheme for microgrid protection using the logistic regres-
sion and AdaBoost classifier-based data mining model, for
fault detection as well as classification. Standard deviation of
seven electrical parameters at fault are computed to build the
data mining model to train the logistic regression for fault
detection, and AdaBoost classifier for fault classification.
MATLAB/SIMULINK is used for features extractions,
whereas Python is used for training and testing of data mining
model. The contributions of this research are:

• Ascertain a simpler and efficient data mining-based fault
detection and classification approach for microgrid.

• Collect the data by extracting the standard deviation of
seven different fault features.

• Build the data mining model from the collected data set.
• Train the logistic regression and AdaBoost classifier for
fault detection and classification respectively.

• Investigate the capability ofmicrogrid for grid-connected
and islanded modes of operation with looped and radial
configurations.

The remaining of the paper is composed of four sections as
follows. The proposed protection strategy and methodology
is addressed in section II. Section III deals with a detailed dis-
cussion of the microgrid test system under study. Section IV
is concerned with the findings and results of the proposed
scheme, mainly focusing on fault detection and classification.
Finally, the paper is concluded in section V.

II. PROPOSED FEATURES EXTRACTION AND DATA
MINING STRATEGY
In the proposed scheme standard deviation of seven most
effective and sensitive fault features are computed to build
the data mining model. The envelope of autocorrelation
function (ACF) and variance of autocorrelation function
(VACF), containing vital information of the fault transient,
are extracted through Hilbert transform. The transient energy
is obtained by implementing the delta filter. Sequence ana-
lyzer is used to extract the negative sequence components of
the active power of the measured current. Total Harmonic
Distortion (THD) of current and voltage are also extracted.
These features are obtained by simulating various fault and
no-fault events. Fault events are obtained with a wide vari-
ation in fault resistance, changing the fault type and fault
location. However, the no-fault cases are obtained by sudden
load variations and capacitor switching. A summary of the
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FIGURE 1. Schematic of proposed scheme feature extraction.

TABLE 1. Fault events simulating conditions.

TABLE 2. No-fault events simulating conditions.

different fault and no-fault events is shown in Tables 1 and 2.
Once all the features are extracted, they are used to build
the data mining model to train the logistic regression and
AdaBoost classifier respectively. At first, data mining model
is built to train the logistic regression classifier to detect the
fault. After the fault detection, AdaBoost classifier is trained
to classify the fault. The time considered for fault detection
and fault classification are taken to be half cycle and one
cycle respectively. The schematic of the proposed strategy for
feature extraction is shown in Fig. 1.

A. HILBERT TRANSFORM
The proposed scheme uses the Hilbert transform to determine
the envelope of each phase current signal. It is a signal
processing technique utilized in communication systems for
current signal analysis. It is also widely used in protection

schemes to detect the faults in microgrid [33]. It produces
an imaginary signal x̂(t) of an original signal x(t) with a
90◦ phase shift [34], [35]. Hilbert transform is defined as the
convolution of a signal with the Hilbert transform operator.
The time domain Hilbert transform operator can be expressed
as:

H (t) =
1
π t
, −∞ < t < +∞ (1)

because the Hilbert transform operator is not an integrable
function, therefore it is obtained by using the Cauchy integral
as:

x̂(t) = x(t)⊗
1
π t

=
1
π
p

∫
−∞

+∞

x(τ )
t − τ

, (2)

where, p is the integral principal value and ⊗ represents
convolution.

Thismethod is simple and takes less time for fault detection
in microgrid as compared to other signal processing tech-
niques [36].

B. FEATURE EXTRACTION
To build the data mining model for the proposed protection
strategy, the standard deviation of the following electrical
parameters is considered:

1) AUTOCORRELATION FUNCTION (ACF)
The envelope of ACF is considered as one of the sensitive
features and it is computed through the Hilbert transform.
It substantially changes with fault, and provides hidden fault
information in the microgrid. When a fault occurs, the enve-
lope of current signal changes significantly, indicating a clear
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fault existence [32], [37]. The ACF of the current signal can
be computed by (3):

rk =

∑M−k
i=1 (xi − x)(xi+k − x)∑M

i=1(xi − x)2
, (3)

where, rk is ACF between two data points, xi is the value of
original data set, xi+k is the value of shifted data set, and x is
the mean of original data set.

The input current for three-phase-to-ground fault is shown
in Fig. 2, whereas, the distorted envelope of the current signal
is shown in Fig. 3 which demonstrates the behavior of ACF
under the fault situation.

FIGURE 2. Behavior of input current under three-phase-to-ground fault.

FIGURE 3. Behavior of autocorrelation function at fault.

2) VARIANCE OF AUTOCORRELATION FUNCTION (VACF)
After fault is detected by the ACF, the fault existence is ver-
ified by the VACF. When a fault occurs, the VACF increases
and confirms the fault in the microgrid [38], as shown
in Fig. 4.

3) TOTAL HARMONIC DISTORTION (THD) OF VOLTAGE AND
CURRENT
THD is an indicator of signal distortion. It increases the
harmonics and is considered as a sensitive feature against
the fault. It is the ratio of total harmonics to the fundamental
frequency, and can be voltage or current harmonics [39], [40].
Equations (4) and (5) are used to compute the THD of voltage

FIGURE 4. Behavior of variance of autocorrelation function of
three-phase-to-ground fault.

and current respectively.

THDv =

√
V 2
2 + V

2
3 + V

2
4 + . . . ..V

2
n

V1
, (4)

THDi =

√
I22 + I

2
3 + I

2
4 + . . . ..I

2
n

I1
, (5)

where, THDv and THDi represent the Total Harmonic Distor-
tion for voltage and current respectively.

The THD of the fault current is shown in Fig. 5, and it
can be seen that when a fault occurs the current harmonics
increase.

FIGURE 5. Behavior of Total Harmonic Distortion.

4) TRANSIENT ENERGY
Transient energy is computed in three steps. At first, the three-
phase signal is converted into a modal signal. In the second
step, delta filter is employed to extract the superimposed
modal voltage and superimposed modal current as in (6):

1x(t) = xβF (t)− xαF (t), (6)

where, 1x(t) represents the superimposed modal signal for
voltage or current, and xαF (t) and xβF (t) represent the
pre-fault and post-fault signals respectively.

Once the superimposed modal current and voltage are
obtained, their product is used to calculate the transient power
as per (7):

1P = 1V ×1I , (7)

where,1P,1V , and1I represent the transient power, super-
imposed modal voltage and current respectively.
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Next the integration of the transient power over one cycle
gives the transient energy, as:

1E =
∫ T

0
1Pdt, (8)

where, 1E is the transient energy.

5) ACTIVE POWER
The power dissipated in the system during the fault appears
as I2 losses that indicate the fault in the system. It can be
calculated from (9) as:

P = VI cosφ, (9)

where, P represents the active power and φ is the phase angle
between the voltage and current.

6) NEGATIVE-SEQUENCE ACTIVE POWER
Like other features, negative-sequence active power is also
very sensitive to a fault. Whenever a fault occurs, nega-
tive sequence components change significantly and show
transients in the system. The negative sequence component
behavior under fault situation is shown in Fig. 6.

FIGURE 6. Negative-sequence active power at fault.

C. DATA MINING-BASED CLASSIFIERS
Data mining is the most important tool in machine learn-
ing, and is used to evaluate the dependencies between the
system variables. It is applied to analyze and generate a
more comprehensive configuration of a data set to predict
the performance of a system, by creating a system model
as per the input features data set. This model can be further
used for prediction, classification, and estimation purposes.
There are various data mining methods such as random forest
(RF), decision tree (DT), neural network, and support vector
machines (SVM), that have been adopted to detect and clas-
sify the faults in power system [41], [42].

In this study, two efficient data mining methods, logistic
regression and AdaBoost classifier are employed to compute
the accuracy of the proposed fault detection and classification
strategy. A brief discussion of both classifiers is given below:

TABLE 3. Loads data of the proposed test system.

1) LOGISTICS REGRESSION
Logistic regression is based on regression analysis and is
used to detect the fault in the microgrid for the proposed
scheme. It is employed to investigate the relationship between
numerous independent variables [43], [44]. It predicts the
output of an estimated expected value from a categori-
cal dependent binary variable [45]. It can be computed as
per (10):

y =
exp[s0 + s1x]

1+ exp[s0 + s1x]
, (10)

where, the predicted output is represented by y, s0 is the
intercept term, x is the single input, and s1 is the coefficient
of x.

2) AdaBoost CLASSIFIER
AdaBoost stands for adaptive boosting, and used in the pro-
posed scheme to classify the fault in the microgrid. It is a
strong ensemble, designed for classification problems. Yoav
Freund andRobert Schapire in 1995/1996 introduced the first
boosting method [46], [47]. It joins several poor accuracy
models to compensate the weaknesses of predecessors to
obtain a strong classifier. Several algorithmic and theoret-
ical features make it exceptionally attractive because it is
simpler and easier to train the weak classifiers that failed
to provide the accurate prediction. AdaBoost increases the
weight of misclassified data points by training the data sam-
ple in each iteration and ensures the accurate predictions
[48], [49]. The weight of M weak classifiers is computed by
using (11):

F(x) = sign(
M∑
m=1

θmfm(x)), (11)

where, mth weak classifier is defined by fm, θm is the
corresponding weight, and M is the combination of weak
classifiers.

III. TEST SYSTEM UNDER STUDY
The microgrid test system, developed in the MAT-
LAB/SIMULINK environment is shown in Fig. 7. Themicro-
grid distribution network is interconnected at the PCC to a
25kV, 15MVA, and 60Hz grid with a switch, that changes the
modes between grid-connected and islanded. The sampling
frequency considered is 3.6kHz. It comprises of two 3MVA
(DER1, and DER3) and one 2MVA (DGR2) IIDGs, and
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FIGURE 7. Test system of microgrid.

TABLE 4. Parameter values of logistic regression classifier.

TABLE 5. Confusion matrix for fault and no-fault cases.

TABLE 6. Comparison of the proposed scheme with DT and SVM.

TABLE 7. Parameter values of AdaBoost classifier.

one 7MVA synchronous-based DG (DER4). To switch the
microgrid between looped and radial configurations, Circuit
Breaker CB loop1 and Circuit Breaker CB loop2 are used.
It is composed of five distributed sections (DL1, DL2, DL3,
DL4, DL5), each with a line length of 20km. There are six
loads connected to each bus with the values shown in Table 3.
The microgrid and the main grid are interconnected through
a 120/25kV Dyn transformer, whereas all DG sources are
connected through a 0.630/25kV transformer.

IV. RESULTS AND DISCUSSIONS
For performance validation and verification, various indices
were used. Accuracy, precision, and recall are three statistical
metrics, exploited to evaluate the performance of proposed
fault detection and classification strategy. These performance
measurement metrics are defined as follows:

1) Accuracy computes the reliability between the pre-
dicted events versus the actual events for both fault
and no-fault events simultaneously. It can be defined
as follows:

Total (F̂ + ˆ̄F)

Total (F + F)
, (12)

where, F̂ and ˆ̄F represent predicted fault and no-fault
events, whereas, F and F show the actual fault and
no-fault events.

2) Precision is one of the crucial statistical metrics
employed to precisely give the relationship between
predicted fault events and actual fault events to assess
the reliability of fault protection relay. It is given as
follows:

Total F̂
Total F

, (13)

where, F̂ represents the predicted fault events and F
denotes the actual fault events.

3) Recall reveals the total number of events which are
no-fault but predicted as fault events and considered as
misdetection, given in (14):

Total ˆ̄F

Total F
, (14)

where, ˆ̄F represents the predicted no-fault events and
F represents the actual no-fault events.
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TABLE 8. Confusion matrix for fault classification.

FIGURE 8. Flow chart of proposed fault detection and classification
strategy.

A. DATA MINING MODEL FOR FAULT DETECTION
The complete fault detection and classification strategy of
the proposed protection scheme is given in Fig. 8. While
building the data mining model for the proposed scheme,
the obtained data set is divided into two parts. The first part
comprises of 70% of the data set and is used to build the
data mining model. Once the model is trained, the remaining
30% unseen data set is used to carry out the testing to assess
the performance. The training data belongs to a particular
class i.e., 1 for fault and 0 for no-fault events. The training is
performed with a logistic regression classifier to differentiate
between the fault and no-fault events. The parameter values
of logistic regression for fault detection are shown in Table 4.
The confusion matrix for fault and no-fault cases is shown
in Table 5. The proposed study contains a feature set, with
a total number of 944 cases, with both fault and no-fault
events. The total number of fault cases are 800, which are

TABLE 9. Comparison of the proposed scheme with DT, SVM, and RF.

derived from the looped and radial configuration networks
for grid-connected and islanded modes. The no-fault cases
are 144, obtained by the capacitor switching and load vari-
ations. Table 6 illustrates the performance of the proposed
scheme with DT and SVM. It is observed that the proposed
scheme has an accuracy of 99.29% (with 99.16% precision,
and 100% recall) for fault detection, as compared to DT
which has an accuracy of 97.87% (with 97.91% precision and
97.33% recall), whereas SVM has accuracy of 98.59% (with
98.33% precision and 100% recall). Similarly, Fig. 9 shows
the graphical representation of accuracy comparison of the
proposed scheme with DT and SVM.

B. DATA MINING MODEL FOR FAULT CLASSIFICATION
After fault detection, AdaBoost classifier is used to clas-
sify the fault. The model generated for fault classification
uses four classes, single-line-to-ground faults (SLG), line-
to-line faults (LL), line-to-line-to-ground faults (LLG), and
three-phase-to-ground faults (LLLG). The data miningmodel
for fault classification is created in the same manner as the
logistic regression by assigning four different values to each
fault type i.e., 1 for SLG, 2 for LL, 3 for LLG, and 4 for LLLG
faults. Table 7 indicates the parameter values of AdaBoost
classifier. Table 8 shows the confusion matrix of the pro-
posed scheme for fault classification. The results analysis
show that the accuracy for SLG fault is 100%, however; for
LL, LLG, and LLLG faults is 98.33%. Table 9 shows the
performance of the proposed scheme with DT, SVM, and
RF. It can be seen that the accuracy of AdaBoost classifier is
98.75% in comparison of 94.16% for DT, 96.66% for SVM,
and 97.91% for RF. Similarly, Fig. 10, shows the graphical
representation of AdaBoost classifier accuracy with other
methods. Further analysis shows that during the fault clas-
sification, problem arises when LLG fault is classified as LL.
Similarly, LL and LLLG faults are classified as LLG faults,
which can be considered as misdetection by the proposed
scheme.

A comparison of the proposed scheme with other existing
techniques is given in Table 10.
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FIGURE 9. Graphical representation of proposed scheme compared with DT and SVM.

TABLE 10. Comparison of the proposed scheme with existing techniques.

FIGURE 10. Graphical representation of proposed scheme accuracy with DT, SVM, and RF.

C. IMPACT OF NOISE
The robustness of the proposed scheme was also evaluated
under the measurement noise. The three-phase voltage mea-
surement was distorted to conduct the simulations by adding
the white Gaussian noise with 30dB and 40dB signal-to-noise
ratio (SNR) [20]. Logistic regression was trained and tested
with the distorted data, with the same features. Table 11 sum-
marizes the performance of the scheme under noise. It can

TABLE 11. Effect of noise on fault detection.

be seen that the presence of 40dB noise did not have a sig-
nificant impact on the performance of the proposed scheme,
but deviated from 99.29% to 97% with 30dB. However, the
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performance of SVM and DT had a significant impact with
the accuracies between 97− 95% under measurement noise.

V. CONCLUSION
This scheme is designed to evaluate fault detection and clas-
sification strategy for the protection of microgrid by imple-
menting the Hilbert transform and data mining tools. Seven
sensitive fault features are extracted by varying the fault
resistance, fault type, fault location, capacitor switching and
load variations for both fault and no-fault events. Later, they
are used to build the data mining model to train the logistic
regression and AdaBoost classifier to detect and classify the
fault in the microgrid. The system is tested on a standard IEC
medium voltage microgrid for grid-connected and islanded
modes of operation for both looped and radial configurations.
The results demonstrated that logistic regression classifier
has good performance with an accuracy of 99.29% as com-
pared to SVM and DT with accuracy rates of 98.59% and
97.87% respectively. The results also show that the accuracy
of AdaBoost classifier for fault classification is 98.75% as
compared to 94.16%, 96.66%, and 97.91% for DT, SVM and
RF respectively. Based on these results it can be concluded
that the proposed scheme provides high accuracy and reliable
measures for microgrid protection.
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