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ABSTRACT This article presents a deep reinforcement learning-based controller for an unmanned ground
vehicle with a custom-built scoopingmechanism. The robot’s aim is to autonomously perform earth scooping
cycles with three degrees of freedom: lift, tilt and the robot’s velocity. While the majority of previous studies
on automated scooping processes are based on data recorded by expert operators, we present a method
to autonomously control a wheel loader to perform the scooping cycle using deep reinforcement learning
methods without any user-provided demonstrations. The controller’s learning approach is based on the actor-
critic, Deep Deterministic Policy Gradient algorithm which we use to map online sensor data as input to
continuously update the actuator commands. The training of the scooping policy network is done solely in a
simplified simulation environment using a virtual physics engine, which converges to an average of a 65%
fill factor from the full bucket capacity and a 5 [sec] average cycle time. We illustrate the performance of the
trained policy in simulations and in real-world experiments with 3 different inclination angles of the earth.
An additional scooping experiment compared the performance of our controller to remote manual human
control. Overall, the deep reinforcement learning-based controller exhibited good performance in terms of
both achieved visually bucket fill with varying scooped earth weights of 4.1− 7.2[kg], and a 5.1− 7.1[sec]
cycle time. The experimental results confirm the ability of our planner to fill bucket as required, indicating
that our controller can be used for excavation purposes.

INDEX TERMS Robotics in construction, machine learning, agricultural automation.

I. INTRODUCTION
Earthmoving systems are currently used in a variety of
industries, but especially in the construction and agricul-
tural domains. They have numerous advantages including
economic efficiency, safety, and availability. Earthmoving
machinery typically refers to heavy-duty vehicles designed
for construction operations that involve earthworks. While
earthmoving machinery continues to develop, most of the
excavation cycle is still controlled by a human, either
directly or via teleoperation [1]. Designing control methods
for such tasks is a long-standing research goal, which has
attracted considerable interest and generated a number of
survey papers [2], [3]. The general approaches to autonomous
excavation exploit the machine dynamics and try to follow
a defined trajectory [4], [5], use compliance force control
[6], [7] or employ a behavior-based approach for motion
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FIGURE 1. A deep reinforcement learning controller was trained in
simulation to accomplish the scooping cycle using 12-dimensional
sensors inputs into three actuator commands.

control [8], [9]. Since some tasks are more complex than oth-
ers, they often require extensive engineering experience and
tedious manual tuning beyond the control algorithm itself.

One of the key challenges in deploying automated earth
moving machines relates to the analysis of the soil-tool
interaction, due to the unpredictable nature of the soil [6].
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Most approaches require accurate models of the machine
which makes them liable to modeling errors, wear and tear,
and changing conditions [10]. Another drawback is that the
majority of work done to automate scooping processes is
based on data recorded by expert operators, which limits
the efficiency to the level of the operator’s skills [1]. Since
the scooping cycle is a repetitive and dynamic task involv-
ing intricate interactions with the environment, here a new
strategy is put forward to solve the problem of autonomous
bucket scooping automation for wheel loaders using Rein-
forcement Learning (RL) methods. RL is a machine learning
technique that has the potential to enable robots to learn
large repertoires of behavioral skills with minimal human
intervention through trial and error. The main advantage of
RL is that it does not require a predefined control structure
and can explore the environment to find a good policy to
follow, thusmitigating the shortcoming of having to explicitly
derive the interconnection with the environment. Deep Rein-
forcement Learning (DRL) methods have been successfully
applied in many complex robotic tasks from manipulation
[11] to autonomous vehicles [12], and aerial applications
[13]. However, practical real-world applications of RL are rel-
atively rare since they often require unrealistic learning times,
high sample complexity, and can potentially damage the
robot [14], [15].

This article focuses on developing a scooping motion plan-
ner that learns transferable scooping policies solely under
simulation. We show that an earthmoving machine can be
fully controlled using DRL methods trained solely in simula-
tion and then deployed on a real Unmanned Ground Vehi-
cle (UGV). The complete system architecture is depicted
in Fig. 1. To further increase the robustness of the sys-
tem and narrow the reality gap, we defined a compact
design of the observation space and performed detailed
system identification. The controller is trained using the
model-free, actor-critic Deep Deterministic Policy Gradi-
ent (DDPG) algorithm [16], which successfully completes
scooping cycles without any user-provided demonstrations.
We developed a ROS-Gazebo based open-source training
environment (available at [17]) for the agent to learn scooping
motions. To verify the learning algorithm and simulation
viability, we deployed the controller in a real-world scenario.
We also compared the performance of our DRL based con-
troller against manual human control for an earthmoving
cycle.

The primary contribution of this paper is its novel end-
to-end Neural Network (NN) based controller for a robotic
wheel loader that autonomously scoops earth from a pile,
with three degrees of freedom (DoF). The controller is trained
solely via simulation without any prior knowledge using
DRL. To the best of our knowledge, this is the first 3-DoF
DRL scooping controller to learn from simulation without
previous knowledge and be deployed on a real-life excavation
machine. In addition, the development of an open source [17]
training environment provides the research community with

a tool to collect data and observe progress performance for
excavation purposes.

The remainder of this paper is structured as follows.
Section II further discusses related work in this area, fol-
lowed by a background review in Section III. Section IV
describes the system design and Section V introduces the
proposed scooping controller implementation. We demon-
strate our simulation and report the experimental results in
Section VI, followed by conclusions and suggested future
research in Section VII.

II. RELATED WORKS
Most previous research on automating bucket-filling pro-
cesses are based on data recorded by expert operators and
implement a control system that can be generally divided
into three main categories. The first is made up of position
control algorithms for bucket motion trajectories, which are
intended to maximize the volume scooped by the bucket
[4], [5], [18], [19]. These approaches have been successful,
but they rely on expert trajectories and do not generalize to
different machine-pile environments. The second category
is composed of compliance control algorithms, such as soil
estimation based methods [6], [7] and force/torque based
methods [20], [21]. Soil estimation methods predict the soil-
tool interaction force and apply a heuristic-based motion by
modifying the soil parameters in the program. The drawbacks
of soil estimation methods include the fact that they lack
precision, fail to capture the rapidly changing properties in
the environments or are non-real-time capable and thus not
feasible/implementable [20]. Others combine these methods
with a higher-level planner. For instance, a force-control tra-
jectory controller with prioritized tasks [20], a coarse and fine
planner that ensures equal performance over a large number
of digs [22], or adding a disturbance observer to compensate
for the difference between prediction and actual performance
[21], [23]. These compliance control methods do not follow
a desired trajectory but rather apply specific forces to the pile
during the scooping motion. The third category is made up
of control algorithms that employ a behavior-based approach
for motion control, such as a rule-based algorithm that
depends on the current phase and acts dynamically [8], [9].
Thus, most previous solutions to automate the scooping task
(1) do not generalize to different machines or pile environ-
ments (2) rely on prior knowledge of an expert operator and
(3) require accurate models of the machine and therefore are
susceptible to failure in the presence of modeling errors, wear
and tear, and changing conditions [10]. This underscores the
need for a generic automatic scooping solution that can be
adapted to different scenarios.

Few deep Learning methods have been implemented in
earthmoving operations, especially in bucket-filling pro-
cesses, mainly due to the task complexity. The chal-
lenges include various problems such as simulating the
environment, data collection, and soil-tool dynamics.
Dadhich et al. [10], [24] demonstrated the implementation
of a NN approach to control bucket motion during real-life
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FIGURE 2. DDPG algorithm schematic.

loading processes. They used data collected from an expert
operator to train a time-delayed NN to perform a bucket-
filling motion with two degrees of freedom (static wheels).
Halbach et al. [25] implemented a shallow three-DoF NN
controller for automated pile loading with a robotic wheel
loader that used learning from the demonstration of sensor
recordings. Both of these approacheswere successful in terms
of the bucket filling cycle, but nevertheless rely on the prior
knowledge of expert operator data, which limits the efficiency
to the operator’s skills which are not always available.

III. PRELIMINARIES
A. EARTHMOVING CYCLE
A wide range of earth-moving machines are currently used
in industry, the most common of which are wheel loaders
and excavators. Excavators are used to dig into the ground
whereas wheel loaders are used to load and transport exca-
vated material. An earthmoving cycle is comprised of several
steps: 1) navigating towards the pile; 2) scooping up the
earth; 3) navigating to the dump location; and 4) dumping.
This paper focuses on automating the bucket-filling process,
which is the most complex phase. The filling of a bucket
is a complex granular flow problem that can be divided
into three general phases: approach, fill, and exit [3]. Each
phase operates under different conditions in terms of vehicle
feedback, terrain properties, and duration. In the first phase,
approach, the front-loader moves towards the pile of earth,
and the operator chooses the height and penetration angle of
the front loader’s bucket. In the second phase, fill, there is
a simultaneous change in the lift, tilt, and throttle actions to
navigate the bucket tip through the earth pile while avoiding
wheel slip and piston stall. The last phase, exit, involves tilting
the bucket until the breakout, while the machine moves in
reverse from the pile.

B. REINFORCEMENT LEARNING
In RL, the problem is typically characterized as a Markov
Decision Processes (MDP), which defined by the tuple
〈S,A, r,P, γ 〉. S represents the state-space, and A is the
action-space. Transitions between states are performed with

transition probability p (st |st , at) ∈ P , reward r (st , at) and
a discount factor γ ∈ [0, 1]. At each time step, the agent
observes the current state st ∈ S and takes action at ∈ A
according to the policy πθ , which can be stochastic or deter-
ministic. While interacting with the environment, the system
transitions to a new state st+1 ∈ S and the agent receives
a reward rt (st , at , st+1). The sequence of state-action pairs
defines the trajectory τ = (s0, a0, s1, a1 . . . . . . sH , aH ) of
length H . The return Rγt is the total discounted reward for
the initial state over the trajectory Rγt =

∑H
i=t γ

i−tr (si, ai).
The goal in reinforcement learning is to learn a policy which
maximizes the expected return from the initial distribution
J = E

[
Rγ1 |π

]
. The state-value function is defined as the

expectation value of the return over all allowed trajectories
from a specific state s,V π (st) = Eπ

[
Rγt |st

]
. While the

action-value function describes the expected return after tak-
ing an action at in state st ,Qπ (st , at) = Eπ

[
Rγt |st , at

]
.

DDPG is an actor-critic off-policy gradient algorithm that
implements a stochastic behavior policy and estimates a
deterministic target policy [16]. A schematic of the pro-
cedure can be seen in Fig. 2. DDPG primarily uses two
neural networks in its learning phase, one for the actor
(policy network) and one for the critic (value network), with
weights θµ and θQ, respectively. The actor network is used
to approximate the optimal policy whereas the critic utilizes
the value-based approach to estimate the value of state-action
pairs. The actor function µ (st |θµ) deterministically maps
states for specific actions. The critic’s output is the estimated
Q-value of the current state and action provided by the actor
Q
(
st , at |θQ

)
. These networks compute action predictions for

the current state and generate the Temporal-Difference (TD)
error at each time step while using a set of target networks
µ′ (st) ,Q′ (st , at), with weights θµ

′

and θQ
′

respectively. The
critic’s loss function L, and target yt are computed from the
sum of the immediate reward and the outputs of the target
actor and critic networks:

yi = ri + γQ′
[
si+1, µ′

(
si+1|θµ

′
)
|θQ

′
]

(1)

L =
1
N

∑
i

(
yi − Q

(
si, ai|θQ

))2
(2)
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FIGURE 3. Architecture of the Komodo robot with our arm mechanism.

The critic is updated by minimizing the loss and the actor is
updated by applying the chain rule using the sampled policy
gradient:

∇θµJ ≈
1
N

∑
i

×

[
∇aQ

(
s, a|θQ

)
|s=si,a=µ(si|θµ)∇θµµ

(
s|θµ

)
|s=si

]
(3)

IV. SYSTEM DESIGN
To investigate bucket-scooping processes, we developed
an arm mechanism that we attached to a Komodo robot
(see Fig. 3). The robot is a 40kg weight fully Robot Operating
System (ROS) supported skid-steer robot that includes an
Intel NUC i7 CPU, SICK LMS1 range laser scanner, an Asus
Xtion pro depth camera, and 6-axis IMU. To control the robot
motion, we used the Komodo built-in Roboteq differential
driver for the motor controllers. For the loading mechanism,
earth-moving mechanisms typically consist of a robotic arm
controlled by hydraulic pistons and a bucket. In this work,
we developed an arm mechanism that resembles to an indus-
trial skid-steer loader that consists of three main parts: 1) a
base link, 2) an arm assembly, and 3) a bucket, as shown
in Fig. 3. The mechanism is constructed primarily from
strong lightweight 6061 aluminum parts that can withstand
a bucket load of up to 12[Kg]. The mechanism is controlled
by two parallel systems of linear actuators with a built-in
position feedback potentiometer. The arm’s linear actuators
are responsible for the lift motion, whereas the bucket’s linear
actuators generate its tilting motion. To control tilt and lift
motion, we used a Proportional Integral Derivative controller
(PID), employing feedback from the linear actuator’s poten-
tiometer. The system is operated using the Robot Operation
System (ROS) interface.

The electrical system is depicted in Fig. 4, and the com-
ponents are listed in Table 1. We built the electric cir-
cuit to be powered by the robot’s power source, whereas
the components with other power requirements utilized

FIGURE 4. The electrical scheme of the arm mechanism.

TABLE 1. Arm mechanism components.

voltage converters. We divided the control system into two
levels. The higher level was composed of the PID application
on the tilt and lift motion, communication initializing, and
syncing between the various channels using ROS. The lower-
level controller was composed of two slave nodes that sub-
scribe to the data published by the main controller channels.
The first involves writing Pulse Width Modulation (PWM)
and direction commands to the actuators, whereas the other
reads and publishes the current voltage of the linear actuator’s
feedback potentiometer.
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V. SCOOPING CONTROLLER ARCHITECTURE
In this section, we present our methodology for the DRL
scooping motion controller. We describe the implementation
of our complete learning system in a virtual environment and
its training progression.

A. PROBLEM FORMULATION
We consider the combined bucket-scooping process of
approaching and penetrating the pile, lifting, and then tilt-
ing the bucket until breakout using UGV with a loading
mechanism. Our goal is to find a closed-loop policy using
RL methods that maps sensor observations to robot action.
We thus need a policy function at = f (st), where st is a
parameterized vector of the current observed robot state using
onboard sensor readings and at is the action composed of
the lift, tilt, and throttle commands. Given the dynamics of
the robot, we limit the linear velocity to 0.1m/s for moving
towards and away from the pile, whereas lift and tilt actuators
were not limited and could extract at any of their maximum
velocities.

B. SIMULATION ENVIRONMENT
The training procedure of our model was implemented in a
virtual 3D environment simulated by a Gazebo. We used a
particle-based discrete representation of the pile. This simpli-
fication of the real-world surfaces enabled the use of common
physics simulators, which can maintain a close resemblance
to reality. The number of particles impacts the real-time factor
within the simulation considerably, which in turn represents
the total run-time. In our environment, each pile of parti-
cles contained 72 particles with radii of 3.4 cm and a mass
of 0.3kg. Only spherical particles were used in this study.
The simulation properties were carefully chosen to mimic
the physics of the real robot as well as possible. The robot
scooped gravel with a bulk density of 1.3 ton/m3 (bucket
capacity is approximately 5[L], 7[kg]). Although the simu-
lation was based on a simplified scenario which we found to
be sufficient to achieve our goal, other users could vary the
environmental properties, such as the pile geometry, number
of particles, and the maximum actuator load. In addition,
users could choose to define the state according to other
features (e.g., object orientation or angular velocities) as well
as the authorized actions (e.g., discrete or continuous) for
learning purposes. Also, users could build new models to
independently collect data using the open-source code pro-
vided here [17].

C. STATE REPRESENTATION
The observation is the raw information provided by the robot
sensors and the state is a compact depiction of this observa-
tion that includes the information necessary for the robot to
choose its actions. Following the robotic priors in [26], [27],
we defined the state using fused sensor measurements as
a 12-dimensional vector consisting of the arm link positions
(xt), the normalized mass of the excavated earth (wt ), the

FIGURE 5. Komodo robot with an arm mechanism and a pile of particles,
simulated in the Gazebo physics engine.

relative distance to the pile (d t), the state of the robot’s DoF
(v, θT , θL) and their relative changes (1t). A visual depiction
of these parameters is provided in Fig. 5. Deriving the amount
of the excavated earth within the simulation environment
was done directly using the simulation’s built-in functions.
Measuring it in a real-world experiment could be done indi-
rectly by approximation using the torque applied to the bucket
joint as:

τ = VSγ grcm (4)

where VS is the excavated earth volume, γ is the material
density, g is the gravitational acceleration and rcm is the
approximate relative distance between the bucket CoM to the
joint. The total force acting on the bucket can be decomposed
into three main forces [6]: the shear force, the gravity force,
and the remolding force. By deriving the amount of exca-
vated earth from the applied torque, we included torque-to-
mass extraction of the shearing force as the bucket penetrates
the earth. Therefore, we limit our proposed controller to
scooping earth with low adhesion, which is applicable to
numerous earth-moving scenarios, since the main purpose of
the wheel loader is the transportation of already excavated
material.

FIGURE 6. The DDPG network structure.

D. DDPG ARCHITECTURE
Our implementation of DDPG includes two neural networks
(actor and critic), as shown in Fig. 6. Both networks have
the current state as input; i.e., 12-dimensional sensor data.
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FIGURE 7. Sequence of scooping motions of the Komodo robot with an arm mechanism in simulated and real-life experiments.

The actor network output is composed of 3-dimensional
deterministic actuator commands that drive the tilt, lift, and
the robot’s velocity. The output of the actor network is merged
with the first layer of output from the critic network, which
in turn is used to output the action-value function Qπ (s, a).
The action-value function is used to produce temporal-
difference errors deriving the learning in both the actor and
critic. We used three hidden layers in both the actor and
critic networks. Each layer is fully connected that includes
layer normalization whose dimensions decrease from 100,
80, and 60 respectively. A hyperbolic tangent function was
used as the activation function to constrain the range of the
actions.

E. REWARD SHAPING
To guide the robot to excavate soil during the task, while not
obligating the robot to follow a specific trajectory, we defined
a shaped reward:

Pt =
{
1− tanh2 (‖dend‖) penetrate
1− tanh2 (‖d t‖) ¬penetrate

}
(5)

Up to the penetration into the earth; i.e., ¬penetrate,
the reward increases while the agent minimizes the relative
distance d t , thus encouraging the robot to engage with the
pile. During penetration; i.e., penetrate, the reward increases
while the robot minimizes the distance to the terminal
state, dend . To encourage the robot to scoop more soil during
the process, we added a positive reward consisting of mul-
tiplying the excavated earth indicator, wt , by a constant cw.
Hence, we defined the immediate reward as:

rt =
{
Pt + cwwt ‖dend‖ ≤ ε

Pt ‖dend‖ > ε

}
(6)

where ε is the distance tolerance to the terminal state. The
precondition for penetration into the soil; i.e., penetrate,
is defined as:

penetrate = minpi
∥∥∥dB − dpi∥∥∥ ≤ 1 (7)

The values dB, dpi are the robot’s bucket tip and particle i
positions, respectively.

F. POLICY TRAINING
In each episode during the simulation training session,
the pile was initialized in a specific location and particle
arrangement. Throughout the trial, the robot attempted to
complete the bucket-filling process within 8 seconds using
combination of the three DoF. We considered the outcome of
an episode a success and terminated if, within the maximum
episode time, the tip of the loader bucket reached the termi-
nal located outside the pile. We trained the networks with
algorithmic parameters using conservative values to achieve
stable and reliable convergence. The model was trained from
random initial weight values using a single Nvidia Quadro
P2000D GPU for several trials of 800 episodes which took
approximately three hours each. We employed a simple
exploration strategy as described in [16] that includes noise
inputted to the actor’s action.

FIGURE 8. Normalized learning curve for the DDPG agent over
800 episodes (A). The fill factor is represented by the excavated soil in the
bucket normalized by full bucket capacity (B). Cycle time represents the
operation cycle time from the beginning of the episode until it reaches
the terminal state (C).

VI. SIMULATIONS AND EXPERIMENTAL RESULTS
A. SIMULATION EVALUATION
We assessed the learned scooping cycles in the simulation
using both the average episode reward, and standard earth-
moving parameters; namely, the fill factor and operation cycle
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FIGURE 9. Evaluation of learned scooping cycles in the simulations.
Bucket tip trajectory (A), robot velocity (B), lift angle (C) and tilt angle (D).

time, as shown in Fig. 8. The scooping policy converged at the
end of the training phase with an average loading cycle time
of 5[sec] and a fill factor of 65% from full bucket capacity
with an overfill (approximately 23 particles). The learned
scooping policy can be classified into 3 phases, as indicated
in Fig. 9. In the first phase, the robot moves toward the pile
of particles while choosing the height and penetration angle
to approximately zero tilt and minimum lift angles. In the
next phase, the robot changes the lift, tilt, and velocity actions
simultaneously to navigate the bucket tip through the earth
pile. Lift and tilt angles are increased and velocity decreases
while the robot excavates deeper. In the last phase, the robot
drives backward away from the pile, while lifting the arm
to its maximum height to maintain the soil inside the bucket
without loss of the material.

B. REAL ENVIRONMENT EVALUATION
To investigate the performance and adaptability of our scoop-
ing controller in real-life machinery, we conducted several
experiments with three different mean inclination angles
of the pile. We explored the learned policies trained in
simulation in the real world without tuning the network
weights. To derive the amount of excavated soil in the bucket,
we attached a load sensor to the bucket joint that measured
the load on the linear actuator. Under the assumption that
acceleration and velocity are negligible during excavation,
the scooping dynamics in joint space can be reduced to a
simple static equilibrium:

τ = G+ JT f (8)

where f is a vector representing the contact forces, G is a
vector containing the gravity terms, τ is a vector used to
denote the torque at each joint and J is the Jacobian matrix
of the arm. The masses of the links of the arm mechanism
are known, as well as the Jacobian matrix, so J and G are
obtained through direct computation using the joint posi-
tions. f is obtained through the load cell measurements since

we can derive a simple quasi-static analysis that describes
the moment’s equilibrium at the bucket joint. Although we
approximated the accumulated mass using the load cell,
as described in Section III, most of the inconsistency between
the simulation and real-life occurred during the fill phase,
as can be seen in Fig. 10, because the robot basically trans-
lated this to additional scooped earth, resulting in an earlier
exit phase.

FIGURE 10. Example of comparisons between the normalized extracted
mass inputs in the simulated (100 episodes) and real-life experiments.
The data points are normalized by the maximum measured values of
each set.

In our experiments, we defined two environment setups to
be constant: (1) the position of the pile and (2) the starting
position of the robot (1[m] in front of the pile). We set these
conditions to keep the problem’s complexity manageable and
because these setups are common to various types of local-
ization methods and feature detection methods. The bucket
scooping trajectories shown in this section were obtained
using direct kinematics of the arm mechanism feedback and
odometry from the wheel encoders. Computation of the total
excavated earth in the experiments was carried out based on
the applied torque, where the bucket exits the pile of gravel.

To compare the planner’s performance to human operators,
the first step in the evaluation consisted of collecting data
from manually driven scooping cycles using manual control.
The first author collected the data while attempting to man-
ually imitate the three phase scoop strategy. Although the
goal was to achieve continuous actions, the motions were less
skilled than that of an expert operator. In total, 20 trials were
conducted, which were less smooth during the first attempts
than in the later ones. We evaluated the learned scooping
policy over 5 consecutive scooping cycles, where the earth’s
inclination angle set to 32 degrees. Fig. 11 and Fig. 12 show
the results, where each phase is labelled. In most of the
approach phases, the robot prepared to interact with the soil
by adjusting the bucket to a horizontal angle and decreasing
the lift angle. Each contact with the pile triggered the fill
phase, where the robot penetrates the pile with a ‘‘slicing
motion’’.

During that motion, the applied torque increased due to
higher pile resistance. The controller continued the filling
phase until a combination of depth and torque thresholds
were reached, leading to a low variation exit phase initial-
ization. Although we initialized each trial with the same
setup, the controller executed different trajectories during the
approach phase, due to changes in the soil-tool interaction,
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FIGURE 11. Comparisons of 5 consecutive scooping attempts from the
pile with an average of 32 degrees of inclination angle. Bucket trajectory
(A) applied torque at the bucket joint (B).

FIGURE 12. Velocity, lift and tilt motion recorded in 5 consecutive
scooping cycles.

which thus illustrates the sensitivity of the resistive model to
contacts.

We also conducted another experiment to test the con-
troller’s adaptability to different environments, but with typi-
cal features such as different inclination angles of the terrain.
A detailed comparison of the bucket tip trajectories (3 trials
for each inclination angle) over a scooping cycle can be seen
in Fig. 13 with three different pile inclination angles.

Steeper pile inclination angles of the earth caused higher
resistance force from the pile, leading to an earlier exit phase
initialization, as can be seen in Fig 13. Overcoming different
inclination angles supports the claim that our DRL-based
controller can perform successfully in arbitrarily designed
piles. The results of both experiments suggest that the tran-
sition between different phases of the scooping process does

FIGURE 13. Bucket tip trajectories over 3 different mean earth inclination
angles (A). Applied torque at the bucket joint (B).

FIGURE 14. Comparisons between the scooping process in the
simulations and real-life experiments.

TABLE 2. Comparison of scooping experiments.

not depend on a single feature of the state, but rather on a
combination of input features.

The controller continued the filling phase until reaching
the torque and depth thresholds, leading to an exit phase
initialization, which appeared to be similar across all the
attempts, as can be seen in Fig. 13. Comparing the DRL con-
troller performance to the manually driven scooping attempts
revealed differences between various processes of the scoop-
ing cycle, as can be seen in Fig. 14. Due to the fact that we are
not expert operators, it was extremely challenging to main-
tain a successful smooth, fast continuous actions. The DRL
controller achieved smoother action transitions and faster
scooping cycles (average manual operation time was 10[sec],
compared to 6 [sec] for the DRL-based controller).
However, our manual attempts resulted in slightly better
bucket weights, where the manual control resulted in an
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average of 6.1[kg] and the DRL controller resulted in an
average of 5.5[kg] (9% difference), as shown in Table 2.

Comparing the experimental results of our DRL controller
to the simulation polices also pointed to differences between
the phases of the scooping cycle. These included a difference
between the penetration angle, that reached a maximum of
7.5± 1.0 [deg], higher loading cycles in the experiment, and
a different trajectory within the second phase of the cycle,
as illustrated in Fig. 14. These can be explained by the dis-
crepancies between the simulation environment and the real-
life experiments, such as particles vs. earth, action execution
time, and mass approximation.

VII. CONCLUSION
In this article, a machine learning-based deep reinforce-
ment learning scooping motion controller was applied for
UGV with a custom-built scooping mechanism to perform
scooping cycles with three DoF (lift, tilt, velocity) by fus-
ing 12-dimensional sensor data as inputs to output actuator
commands. The controller was trained using the actor-critic,
off-policy Deep Deterministic Policy Gradient (DDPG) algo-
rithm without any user-provided demonstrations. The learn-
ing of the policy network is accomplished in a simplified
simulation scenario, where the soil was represented as parti-
cles. The scooping policy converged at the end of the training
phase with an average loading cycle time of 5 seconds and
an average fill factor of 65% from full bucket capacity with
an overfill. To investigate the performance and adaptability
of our scooping controller, we tested our controller in several
experiments with three different mean inclination angles of
the earth. Overall, the DRL-based control exhibited good
performance in terms of both achieved visual bucket fill
with varying scooped earth weights of 4.1 − 7.2[kg], and
5.1 − 7.1[sec] cycle time. Comparisons between the man-
ual and our DRL controller indicated that human control
led to the highest average bucket load. Although the DRL
controller may not yet be on a par with human control for
the highest volume, the DRL controller here did achieve
smoother trajectories and lower cycle times than the man-
ual control. This evaluation underscores the importance of
the expert knowledge required for excavation. By contrast,
most previous solutions to the automation of the scooping
task (1) do not generalize to different machines and pile
environments (2) rely on prior knowledge of an expert oper-
ator and (3) require accurate models of the machine [10].
We presented a method that outperforms the above using the
power of RL.

Our learned controller acts based on measured sensors
and implements the transitioning between phases with fixed
predetermined criteria, which were developed solely through
the training in the simulation. Future work should consider
testing the proposed controller on a full-size skid-steer loader,
as well as tackling the full problem of earthmoving including
navigating to the pile, attempting a scooping cycle, navigating
to another site and dumping.
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