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ABSTRACT Active magnetic bearing (AMB) system has been recently employed widely as an ideal equip-
ment for high-speed rotating machines. The inherent challenges to control the system include instability,
nonlinearity and constricted range of operation. Therefore, advanced control technology is essential to
optimize AMB system performance. This paper presents an application of model predictive control (MPC)
based on linear parameter-varying (LPV) models to control an AMB system subject to input and state
constraints. For this purpose, an LPV model representation is derived from the nonlinear dynamic model
of the AMB system. In order to provide stability guarantees and since the obtained LPV model has a
large number of scheduling parameters, the parameter set mapping (PSM) technique is used to reduce
their number. Based on the reduced model, a terminal cost and an ellipsoidal terminal set are determined
offline and included into the MPC optimization problem which are the essential ingredients for guaranteeing
the closed-loop asymptotic stability. Moreover, for recursive feasibility of the MPC optimization problem,
a slack variable is included into its cost function. The goal of the proposed feedback control system is
twofold. First is to demonstrate high performance by achieving stable levitation of the rotor shaft as well
as high capability of reference tracking without violating input and state constraints, which increases the
overall safety of the system under disturbances effects. Second is to provide a computationally tractable
LPVMPC algorithm, which is a substantial requirement in practice for operating the AMB system with
high performance over its full range. Therefore, we propose an LPVMPC scheme with frozen scheduling
parameter over the prediction horizon of the MPC. Furthermore, we demonstrate in simulation that such
frozen LPVMPC can achieve comparable performance to a more sophisticated LPVMPC scheme developed
recently and a standard NL MPC (NMPC) approach. Moreover, to verify the performance of the proposed
frozen LPVMPC, a comparison with a classical controller, which is commonly applied to the system in
practice, is provided.

INDEX TERMS Model predictive control, linear parameter-varying models, magnetic bearing systems,
parameter set mapping, asymptotic stability.

I. INTRODUCTION
Active magnetic bearing (AMB) systems are used in verity
of industrial high-speed rotating machines including linear
induction motors, compressors, flywheel storage systems,
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wind turbines, etc. [1]–[3]. Moreover, AMB is used in med-
ical applications, e.g., as a suspended rotor in ventricular
assist devices for heart failure replacement in humans [4]. The
electromagnetic forces generated in the AMB system pro-
vide contact-less suspension of its rotatory component, which
allows for very high rotational speeds without mechanical
frictions.
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The AMB is a multiple-input multiple-output (MIMO)
highly nonlinear (NL) system. Its main control challenges
are its inherent instability and the high coupling between the
several controlled variables. The system is usually subject to
vibrations, which complicates the controlling problem.More-
over, for safety of operation, it is necessary to incorporate
the control system with constraints to cope with the limits
of the inputs and states of the system. As an example, for safe
operation, it is important to restrict movements of the rotor in
the small air-gap, which separates it from the bearing, to spe-
cific limits even under disturbances, this can be achieved
via state constraints. In order to tackle the difficulties of the
AMB control system, PID [5],H∞ [6] and Q-parametrization
[7], [8] were proposed as linear controllers. NL controllers
including feedback linearization [9], sliding mode con-
trol [10], and fuzzy control [11] also were considered.
Moreover, several control techniques are proposed for the
NL systems which can be applied onto the AMB system,
e.g., [12], [13]. However, all these approaches cannot achieve
safety in the sense of handling the system constraints.
Model predictive control (MPC) [14] is multivariable con-

trol strategy of many industrial applications [15], [16]. The
MPC paradigm offers a unique ability to handle input/state
constraints and to deal efficiently with time delay, instability,
nonminimum phase, model mismatch disturbances and mea-
surement noise. Moreover, it can optimize performance by
iteratively solving online a constrained optimization problem
based on predictions of the future behavior of the system
over a so-called the prediction horizon N . For linear time-
invariant (LTI) systems, the optimization problem can be
solved efficiently online as a quadratic programming (QP)
[17], whereas, for NL systems, it should be solved as a NL
programming, which is very difficult to be implemented in
practice. A promising approach to cope with that is to use
linear parameter-varying (LPV) modeling framework [18]
for describing NLmodels using linear representations depen-
dent on a so-called scheduling parameter p, which is used
for embedding nonlinearties of the system [19]. When the
scheduling parameter is frozen, the LPVmodel can be seen as
an LTI model according to the value of the frozen scheduling
parameter. Therefore, MPC based on LPV models can be
solved as a QP problem [20], which allows the MPC based
on QP solvers for NL systems.

In the literature, MPC has been considered to control the
AMB system, see, [21]–[24]; however, most of designed
approaches were based on LTI models of the system. There-
fore, optimal performance and stability can only be guar-
anteed locally as linear MPC (LMPC) strategy cannot deal
efficiently with the nonlinearity of the system.

In this work we consider an experimental setup of an
AMB system [25], see Fig. 1, and our goal is to design
an efficient controller for the system which can deal with
the challenges discussed above. Moreover, it can handle the
input and state constraints and provide high performance
with stability guarantees of the closed-loop system which are
essential for safe operation. To achieve this goal, we propose

MPC based on LPV models (LPVMPC). To implement the
LPVMPC, first, a NL model of the system is obtained. Then,
it is converted into an LPV representation. The large num-
ber of the scheduling parameters of the derived LPV model
renders the computations for establishing stability guarantees
of the proposed closed-loop system intractable. To overcome
such a difficulty, the parameter set mapping (PSM) based on
principle component analysis (PCA) of [26] is used to reduce
the number of the scheduling parameters.

For practical implementation of the MPC based LPV,
we propose a frozen LPVMPC scheme, where, at every sam-
pling time of the MPC problem, the scheduling parameter is
frozen at its current value and over the prediction horizon.
The main reason of this is that the future values of p, i.e., its
values over the prediction horizon are unknown beforehand.
However, such scheme, allows a single QP problem to be
solved at every sample to obtain the optimal MPC control
law. The computational burden is similar to that of the con-
ventional LMPC; however, with a better performance for a
wider range of operation. Such achievable control perfor-
mance of the frozen LPVMPV is almost similar to that of
NL MPC (NMPC) and iterative LPVMPC approaches. The
latter has been developed recently in [27], where, at each
sampling time the optimization problem is solved iteratively
as a sequence of QP problems till convergence, which allows
the scheduling parameter to be updated over the prediction
horizon. This can enhance its achievable performance at the
expense of extra computations for several QP problems per
sample. Moreover, we include the MPC with a terminal
cost and a terminal constraint set as an ellipsoidal invariant
set, which are necessary ingredients to achieve asymptotic
closed-loop stability [28], in addition to that, a slack variable
is also included into the MPC to avoid infeasibility of the
optimization problem.

To assess the performance of the frozen LPVMPC, we con-
sider three control problems, regulation, reference track-
ing and disturbance rejection. We compare in simulation
such frozen LPVMPC strategy with three different MPC
approaches: the standard LMPC and two others more sophis-
ticated techniques: the NMPC and the iterative LPVMPC.
However, we show that the application of the frozen
LPVMPC onto the AMB system can achieve comparable
performance to both the NMPC and the iterative LPVMPC
with simpler and practical implementation. Finally, in order
to verify the performance of the frozen LPVMPC scheme in
comparison with existent techniques in practice, a classical
lead-lag controller developed by the manufacturer of the
experimental setup AMB system [25] is considered.

The paper is organized as follows: Section II presents the
NL model of the AMB system, which, is converted into an
LPV form, then, the PSM method is applied to reduce the
number of the scheduling parameters of the derived LPV
model. The computations of the terminal ingredients for
the MPC stability guarantees, its optimization problem as
well as the design procedure for the different control prob-
lems considered in this work are discussed in Section III.
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The simulation results are provided and illustrated in
Section IV. Finally, the conclusion is presented in Section V.

II. MODELING OF THE AMB SYSTEM
A. THE NONLINEAR MODEL
The NL model of the AMB system, considered here, is based
on the Magnetic Moments MBC500 experimental setup [25].
Its schematic diagram is shown in Fig. 1, the plant consists
of a rotor which can be levitated using eight electromagnets,
four at each end of the rotor. Hall-effect sensors are placed
outside the electromagnets tomeasure the rotor displacement.
The AMB system is a four degree of freedom (DOF) system
with two DOF at each end of the rotor. The four DOF are
translation in the horizontal direction (x1 and x2) and transla-
tion in vertical direction (y1 and y2), as shown in Fig. 1.

FIGURE 1. MBC500 system configuration [25].

Based on the geometry analysis of the rotor, the following
expressions can be given

x1 = x0 − lb sin(ψ), x2 = x0 + lb sin(ψ),

X1 = x0 − lh sin(ψ), X2 = x0 + lh sin(ψ), (1)

y1 = y0 − lb sin(θ ), y2 = y0 + lb sin(θ ),

Y1 = y0 − lh sin(θ ), Y2 = y0 + lh sin(θ ), (2)

where the definitions of xi, yi, i = 0, 1, 2, Xj, Yj, j = 1, 2,
ψ and θ are given in Table 1; while the constant parameters
lb and lh are defined in Table 2. Based on Newton’s laws,
the equations ofmotion governing theAMB system dynamics

TABLE 1. AMB system variables.

TABLE 2. AMB system parameters.

are formulated as

mẍ0 = Fx1 + Fx2 , (3)

mÿ0 = Fy1 + Fy2 − mg, (4)

Jxψ̈ − prJzθ̇ = (Fx2 − Fx1 )lb cos(ψ), (5)

Jx θ̈ + prJzψ̇ = (Fy2 − Fy1 )lb cos(θ), (6)

where the definitions of the variables x0, y0,Fx1 ,Fx2 ,Fy1 ,Fy2 ,
ψ and θ are given in Table 1; the definitions and values of the
constant parametersm, g, Jx , Jz, lb are given in Table 2. Here,
stationary rotor has been considered therefore, the rotation
speed of the rotor pr = 0. The generated electromagnetic
force by each pair of electromagnets can be expressed as

Fx1 = ks

(
(ix1 + ibias1 )

2

(x1 − D0)2
−

(ix1 − ibias1 )
2

(x1 + D0)2

)
,

Fx2 = ks

(
(ix2 + ibias1 )

2

(x2 − D0)2
−

(ix2 − ibias1 )
2

(x2 + D0)2

)
,

Fy1 = ks

(
(iy1 + ibias2 )

2

(y1 − D0)2
−

(iy1 − ibias1 )
2

(y1 + D0)2

)
,

Fy2 = ks

(
(iy2 + ibias2 )

2

(y2 − D0)2
−

(iy2 − ibias1 )
2

(y2 + D0)2

)
, (7)

see Table 1 for the definitions of ix1 , ix2 , iy1 , iy2 , the bias
currents are ibias1 = 0.5 Amp and ibias2 = 1 Amp, and the
constant parameter D0 is given in Table 2. The values of ψ
and θ for this system are very small, within ±0.001 rad [25],
therefore, we can assume that sin(ψ) ≈ ψ, sin(θ ) ≈ θ and
cos(ψ) ≈ 1, cos(θ) ≈ 1. To get the NL model of the system,
we combine the equations (1)-(7). The resultant NL model
has the inputs ix1 , ix2 , iy1 , iy2 , outputsX1,X2,Y1,Y2 and states
x0, ẋ0, y0, ẏ0, ψ, ψ̇, θ, θ̇ . Finally, the NL model of the AMB
system (MBC500) can be expressed as

ẋ = f (x, u),

y = Cx + Du, (8)
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where

f (x, u) =



ẋ0
(Fx1 + Fx2 )/m

ẏ0
(Fy1 + Fy2 − mg)/m

ψ̇

(Fx2 − Fx1 )lb/Jx
θ̇

(Fy2 − Fy1 )lb/Jx


, (9)

and

C =


1 0 0 0 −lh 0 0 0
1 0 0 0 lh 0 0 0
0 0 1 0 0 0 −lh 0
0 0 1 0 0 0 lh 0

 , D = [0] .
(10)

B. THE LPV MODELING
A continuous-time state-space LPV representation is given
by

ẋ = A(p)x + B(p)u+ E(p),

y = C(p)x + D(p)u,
(11)

where x ∈ Rn, u ∈ Rm and y ∈ Rp, are the state, input
and output vectors, respectively. The vector E ∈ Rn is an
additive term, which includes factors that cannot be repre-
sented affinely on x or u. The system matrices A ∈ Rn×n,
B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m and E depend on the
scheduling parameter p ∈ Rq such that

p ∈ P, P ⊆ Rq,

where P is a compact set referred to as the parameter range
and it is defined as

P := {p ∈ Rq
| pmin ≤ p ≤ pmax},

with pmin and pmax represent componentwise the lower and
upper bounds of p, respectively. Note that for representing
NL models in the LPV representation (11); the scheduling
parameter p often depends on the input, state or the output of
the system, therefore, the LPV representation is referred in
this case to as quasi-LPV form.

Next we describe the NLmodel (8) in the form of (11). This
can be carried out by reformulating the NL equations (3)-(6)
as follows

ẍ0 = p1x0 + p2ψ + p9ix1 + p10ix2 ,

ÿ0 = p3y0 + p4θ + p11iy1 + p12iy2 + p17,

ψ̈ = p5x0 + p6ψ + p13ix1 + p14ix2 ,

θ̈ = p7y0 + p8θ + p15iy1 + p16iy2 + p18,

where p1, . . . , p18 are the scheduling parameters. Such choice
of the scheduling parameters yields the state-space matrices
depend affinaly on them.Moreover, p1, . . . , p18 are functions
of the system states x0, y0, ψ, θ and the inputs ix1 , ix2 , iy1 , iy2
as

p = f (v), (12)

TABLE 3. Ranges of the scheduling parameters.

where v ∈ Rs, s = 8, which is referred to as the schedul-
ing signal and f : Rs

→ Rq is a continuous mapping,
q = 18; the functions f are given in Appendix A. The ranges
of the scheduling parameters are determined based on their
physical limits, we considered them as shown in Table 3,
according to the system constraints that guarantee safe and
stable operation of the AMB system. The state-spacematrices
of the LPV model for the AMB system are given as follows

A(p) =



0 1 0 0 0 0 0 0
p1 0 0 0 p2 0 0 0
0 0 0 1 0 0 0 0
0 0 p3 0 0 0 p4 0
0 0 0 0 0 1 0 0
p5 0 0 0 p6 0 0 0
0 0 0 0 0 0 0 1
0 0 p7 0 0 0 p8 0


, (13)

B(p) =



0 0 0 0
p9 p10 0 0
0 0 0 0
0 0 p11 p12
0 0 0 0
p13 p14 0 0
0 0 0 0
0 0 p15 p16


, E(p) =



0
0
0
p17
0
0
0
p18


.

(14)

The considered LPV system (11) is called the affine
LPV representation as the state-space matrices (13) and (14)
depend on the scheduling parameters in an affine manner.
Note that, most of LPV based control approaches in the
literature [29] consider affine LPV representations.

Including stability and feasibility conditions for the MPC
is necessary to guarantee the convergence of the system
state and the recursive feasibility of its optimization prob-
lem, i.e., if the optimization problem is initially feasible it
remains feasible afterwards. The ingredients of these guaran-
tees according to the framework of [28] are to add a terminal
cost, commonly a quadratic cost, to the optimization problem
of theMPC and to include a terminal constraint as an invariant
set. The computations of the terminal cost and the terminal
set are often performed offline; their complexity increases
significantly with the order of the system and the number of
the scheduling parameters in the LPV case.
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There exist algorithms in the literature for computing these
ingredients; however, due to the involved computational com-
plexity, the application of most of these algorithms can be
carried out for very simple 2nd- to 4th-order systems in
simulation with one or two scheduling parameters in the LPV
case [30], [31]. In contrast, with the system considered in this
work, which is of 8th order and 18 scheduling parameters
with affine dependence, computing the terminal cost and the
terminal constraint set is intractable with available tools in
the literature, e.g., [32], [33]. For example, to compute the
terminal cost as a quadratic function of the states and the
terminal constraint as an ellipsoid invariant set for the affine
dependence case, one should solve a linear matrix inequal-
ity (LMI) optimization problem subject to 2q = 218 LMIs
constraints, which is very complex. Therefore, to be able
to provide stability guarantees of the proposed LPVMPC,
we should reduce the number of the scheduling parameters
without significantly affect the accuracy of the model. We use
here the PSM approach of [26], which has proven its effi-
ciency in several LPV practical applications [34].

C. PARAMETER SET MAPPING
PSM [26] is a systematic procedure to find tighter regions in
the space of the scheduling parameters. Moreover, approx-
imations of LPV models can be obtained which neglect
insignificant directions in the mapped parameter space with-
out ad-hoc model simplifications and parameter freezing and
also without loosing much information about the plant. Using
PSM allows a trade-off between the number of parameters
and model accuracy in a straightforward way. This method is
used in this paper to reduce the number of scheduling parame-
ters of the obtained LPVmodel (11) to yield the computations
of the terminal cost and the terminal set tractable.

In the following, we review the PSM approach. We aim at
determining a mapping h : Rs

→ Rq̂, such that q̂ < q, and

ξ = h(v), (15)

that leads to an LPV model

ẋ = Â(ξ )x + B̂(ξ )u+ Ê(ξ ),

y = Ĉ(ξ )x + D̂(ξ )u, (16)

which can reasonably approximate the original model (11).
First, typical trajectories of the scheduling signals are

generated, which cover the expected range of operation of
the controlled plant. These trajectories are sampled at time
instants t = kT , k = 0, 1, . . . ,Nd−1, Nd � q. Next, the cor-
responding scheduling parameters are computed using (12) to
construct the data matrix

P = [p(0) p(T ) . . . p((Nd − 1)T )] ∈ Rq×Nd , (17)

where its ith row Pi represents the trajectory of parameter
pi. To put the same weight on each pi, all rows of P are
normalized using an operationNi such that each row has zero
mean with unity standard deviation

Pni = Ni(Pi) = (Pi − mi)/ci, (18)

Pi = N−1i (Pni ) = ciPni + mi, (19)

where mi, ci are the mean and standard deviation of each
row Pi, respectively. This results in a normalized data matrix
Pn = N (P). Next, PCA [35] is applied to the normalized
data by applying the a singular value decomposition on Pn

as follows

Pn =
[
Us Un

] [6s 0 0
0 6n 0

] [
V T
s
V T
n

]
, (20)

where Us ∈ Rq×q̂, Un ∈ Rq×(q−q̂), 6s = diag (σ1 . . . σq̂),
6n = diag (σq̂+1 . . . σq), Vs ∈ RNd×q̂ and Vn ∈ RNd×(Nd−q̂).
The matrices Us, 6s, Vs correspond to the q̂ significant sin-
gular values, such that

P̂n = Us6sV T
s ≈ Pn, (21)

is a reasonable approximation of the given data. To evaluate
the accuracy of the approximated model, as suggested in [26],
we use the ratio

vm% =

∑q̂
i=1 σ

2
i∑q

i=1 σ
2
i

× 100, (22)

where σi denote the singular values in (20). The number q̂ of
scheduling parameters, can be used to balance the accuracy
of the model against its complexity. The matrix Us composes
a basis for the significant column space of the data matrix Pn,
and is used to determine a reduced mapping h (15) as follows

4 = UT
s P

n
∈ Rq̂×Nd ⇒ ξ = h(v) = UT

s N (f (v)). (23)

Finally, the approximatemappings Â(·), B̂(·), Ĉ(·), D̂(·) and
Ê(·) in (16) are related to (11) by[

Â(ξ ) B̂(ξ ) Ê(ξ )
Ĉ(ξ ) D̂(ξ ) −

]
=

[
A(p̂) B(p̂) E(p̂)
C(p̂) D(p̂) −

]
,(24)

p̂ = N−1(Usξ )
= N−1(UsUT

s N (f (v))), (25)

where N−1 denotes the re-scaling operation. At any given
time, the reduced parameter vector ξ can be computed
using (23), while the approximate LPVmodel can be obtained
using (24) and (25).

We apply the PSM technique to the LPVmodel (11). Fig. 2
illustrates the plot of vm% versus q̂, where q̂ = 3 is chosen
which reveals that 98% of the information is maintained.
For better evaluation of the approximate models, we, first,
compute the approximated data matrix P̂ using (23) and (25)
as follows

P̂ = N−1(Us4) = N−1(UsUT
s P

n), (26)

then, we compute the best fit rate (BFR)% between the actual
and approximated data,

BFRi% = max

(
0, 1−

‖Pi − P̂i‖
‖Pi − mi‖

)
× 100, (27)

where i = 1, . . . , q, P̂i is the ith row of the data matrix P̂,
which, represents the trajectories of the projected parameters
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FIGURE 2. Fraction of total variation vm% versus q̂.

TABLE 4. BFR % between the actual and approximated scheduling
parameters.

p̂i on the reduced parameter space. Table 4 shows the values
of the BFR % between the trajectories of pi and p̂i, which
indicate satisfactory approximation of the data.

Since MPC is adopted here, a discrete-time representa-
tion of the LPV model should be obtained. The rectangular
(Euler’s forward) method is used to discretise the state-space
LPV model (11) of the system. Choosing an appropriate
sampling time for this control system problem is challenging
as it should accommodate the large bandwidth of the AMB
system, which is 200 Hz; on the other hand, it should be
large enough to be able to solve the optimization problem
of the MPC. It turns out that choosing a sampling time of
Ts = 6.25 × 10−4 s can compromise such conflict. Finally,
we can write the discrete-time LPV model as:

x(k + 1) = Ad (p(k))x(k)+ Bd (p(k))u(k)+ Ed (p(k)),

y(k) = Cdx(k)+ Ddu(k), (28)

where

Ad (p(k)) = In + TsA(p), (29)

Bd (p(k)) = TsB(p), Ed (p(k)) = TsE(p), (30)

Cd = C, Dd = D, (31)

where In ∈ Rn×n is the identity matrix, A(p), B(p), E(p) are
computed from (13) and (14), and C , D are given in (10).

III. CONTROL DESIGN
A. PROCEDURE
Before we illustrate the control design adopted here, we sum-
marize the control design objectives and procedure of this
work. Given the NLmodel (8) of the AMB system, the objec-
tive is to design a controller that can
• deal with the nonlinearity of the system,

• handle the input and state constraints,
• provide stability and feasibility guarantees.

Based on such NL model (8), the LPV representation (11)
is derived, then, the PSM method of [26] is used to reduce
the number of the scheduling parameters of the obtained
LPV model to be able to perform the computations required
for establishing stability guarantees. Thereafter, the MPC
with stability and feasibility guarantees can be implemented
online.

B. MODEL PREDICTIVE CONTROL
Here, we, first, demonstrate the MPC optimization problem
used in this work. Then, we present the offline computations
regarding the terminal cost and terminal constraint set which
are used as stability guarantees for all the MPC schemes
considered in this work.

In the considered MPC schemes, at every sampling instant
k ≥ 0, the following optimization problem is solved:

min
U (k), Sx (k)

J (k), (32)

subject to

|uj(k + i|k)| ≤ uj,max, j = 1, . . . ,m,

|xl(k + i|k)| ≤ xl,max + Sxl (k), l = 1, . . . , n,

and

(?)T8(x(k + N |k)− xs) ≤ α,

where J (k) is the cost function and U (k) is a vector contains
the whole control inputs over the prediction horizonN , which
are among the decision variables of the optimization problem
and can be written as:

U (k) =


u(k|k)

u(k + 1|k)
...

u(k + N − 1|k)

 ,
and Sx(k) ∈ Rn is a slack variable used for softening the
system state constraints, uj(k + i|k) and xl(k + i|k) are the
control input j and state l, respectively, at the step i of the
prediction horizon N at sampling time k . The upper limits of
the control input j and state l are uj,max and xl,max, respec-
tively, xs ∈ Rn is the steady-state vector, we will explain later
how to compute xs. The matrix8 ∈ Rn×n and the scalar α are
computed offline to build the terminal cost and the terminal
set, respectively.

Using the slack variables relaxes the constraints when it
is necessary to avoid infeasibility of the optimization prob-
lem. However, it should be used carefully so that it leads
to realistic constraints relaxation agreed with the physical
constraints. Note that, for physical systems, the input con-
straints depend on the actuator limits, therefore, they are
not subject to any further relaxation and hence no slack
variables are assigned for the input constraints. On the other
hand, we allow a slight softening for the state constraints to
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avoid infeasibility problem. That is justifiable as we consider
during the normal operation more tightened state constraints
for increasing safety. Then, when it is necessary, they can
be shortly relaxed to an acceptable physical limit. Therefore,
we incorporate the slack variable Sx(k) in the optimization
problem (32) for that purpose without harming the AMB
system operation.

The cost function J (k) is given as

J (k) = JN (k)+ Jsv(k)+ J∞(k), (33)

where JN (k) is a quadratic stage cost function which is
computed over the prediction horizon N , Jsv(k) is used to
minimize the slack variable Sx(k) and J∞(k) is the terminal
cost.

The cost function JN (k) has two forms based on the con-
sidered control problem: regulation or reference tracking. For
the regulation problem, it is given as

JN (k) =
N−1∑
i=0

?TQx(k + i|k)+ ?TRu(k + i|k), (34)

where Q ∈ Rn×n and R ∈ Rm×m are positive semi-definite
and positive definite symmetric matrices, respectively.
Choosing the appropriate values for Q and R is important for
tuning control objectives, as, Q is used to set the speed of the
state performance and R is used to penalize the control effort.
For the reference tracking problems JN (k) is given by

JN (k) =
N−1∑
i=0

(?)TQy(r(k + i|k)− y(k + i|k))

+(?)TR(u(k + i|k)− us), (35)

where r(·) is the reference trajectory, Qy ∈ Rp×p is a positive
semi-definite symmetric matrix which is used to set the out-
put performance and us ∈ Rm is the steady-state input vector
corresponding to xs, its computation will be presented later.
The cost function Jsv(k) is computed as

Jsv(k) = Sx(k)TQsxSx(k), (36)

whereQsx ∈ Rn×n is positive semi-definite symmetric matrix
which is used as weighting matrix for penalizing Sx(k).

The terminal cost J∞(k) is computed as

J∞(k) = (?)T8(x(k + N |k)− xs), (37)

where the matrix 8 is computed offline by solving the fol-
lowing feasibility LMI problems [27]

Y ?T ?T ?T

A(p̂)Y + B(p̂)X Y 0 0
Y 0 Q−1 0
X 0 0 R−1

 ≥ 0, (38)

Y > 0, (39)

where Y = Y T ∈ Rn×n, X ∈ Rm×n are free decision
variables, such that 8 = Y−1. The system matrices A(p̂)
and B(p̂) are computed at every p̂ obtained by (25) at each
vertix computed using the min/max values of every row of

the reduced data matrix 4 (23). Note that, in this paper,
we choose the number of the reduced scheduling parameters
(rows of 4) as q̂ = 3, by considering the min/max values
of each row, we have 8 vertices, at which, p̂ is calculated.
That’s why, we use the PSM method, as if we consider the
actual number of scheduling parameter, which is q = 18,
we would get 262144 vertices, which is a very complex
problem. Therefore, with q̂ = 3, the LMI problem (38) is
solved as a feasibility problem subject to 8 LMI constraints
in addition to the constraint on the matrix Y (39).

To compute the scalar α of the ellipsoidal terminal set

(?)T8(x(k + N |k)− xs) ≤ α, (40)

given in (32), the following optimization problem [36] is
solved:

max
α̃
α̃, (41)

subject to

α̃2
[
Af
]
i8
−1 [Af ]Ti ≤ [bf ]2i , i = 1, . . . , 2(n+ m),

where α̃ =
√
α, Af ∈ R2(n+m)×n and bf ∈ R2(n+m) are given

as

Af =


−In
F
In
−F

 , bf =


xmax − xs
umax

xmax − xs
umax

 , (42)

where F = X8, which is computed by (38) and it is usually
referred to as the terminal controller [28]. Note that, α should
be computed for every steady-state as bf depends on xs.
The computation of xs and us depends on the desired

reference value r ∈ Rp, which should satisfy the following
conditions:

us = (Cd (In − Ad )−1Bd )−1r,

xs = (In − Ad )−1Bdus, (43)

where Cd is given in (31), which is a constant matrix, how-
ever, Ad , Bd are dependent on xs and us as well, see (29)
and (30). Therefore, computing xs and us for a given reference
value is a matter of solving a nonlinear set of algebraic
equations, which can be solved using any of the Newton
methods for solving nonlinear equations [37]. The initial con-
ditions can be changed to ensure that the solution satisfies the
constraints |xs| ≤ xmax and |us| ≤ umax. Otherwise, nonlinear
optimization tools subject to constraints can be utilized. Note
that, when a piecewise constant reference is considered, a pair
of (xs, us) should be obtained for each reference value.
By solving the optimization problem (32) and following

the receding horizon principle, only the first element ofU (k),
i.e., the vector u(k|k), is applied onto the system. Note that,
the same symbol JN (k) is used for both regulation (34) and
reference tracking (35) problems, however, they will be dis-
tinguishable from the text.

In this work, we investigate the application of the following
MPC schemes:
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• LMPC,
• frozen LPVMPC,
• iterative LPVMPC,
• NMPC.

The application of these schemes onto the NLAMB system is
carried out for three control problems: regulation, reference
tracking and disturbance rejection. Note that, the main differ-
ence between all the consideredMPC schemes, while solving
the optimization problem (32), is the term JN (k) in the cost
function J (k) (33), which is computed during the prediction
horizon N . The other terms Jsv(k) and J∞(k) in addition to
the terminal cost are used identically in both the LPVMPC
techniques and the NMPC. This is an important feature of the
LPV approach, which can provide stability guarantees for NL
models [29]. Moreover, we computed the required terminal
ingredients for the LMPC based on a linearized LTI model of
the NL system at the origin.

C. THE LMPC SCHEME
This is the standard and simplest MPC approach in terms of
the computational complexity. In this scheme, we consider a
discrete-time representation of a linearizedmodel of (8) about
the origin to be used over the prediction horizon in the MPC
problem, thus, the cost function JN (k) in (33) is quadratic,
see (34) and (35). Choosing the initial value of the states
has a major effect on the feasibility of the MPC problem in
this scheme, as its domain of attraction is expected to be the
smallest among the other considered MPC techniques.

D. THE FROZEN LPVMPC SCHEME
In this scheme, the MPC problem is solved based on the LPV
model (28). At each sampling instant k , according to the cur-
rent value of the scheduling parameter, an LTI model (frozen
LPV model) is computed from (28), which is used over the
prediction horizon. Therefore, we refer this scheme to as
frozen LPVMPC, and the cost function JN (k) is quadratic as
given in (34) and (35). This procedure is repeated at every
sampling instant. This scheme is similar to the LMPC one
in terms of the computational complexity of the optimization
problem. However, it can lead to much better performance
and larger domain of attraction due to updating the model
for prediction using the available value of the scheduling
parameter at the time sample k .

E. THE ITERATIVE LPVMPC SCHEME
The MPC problem of this scheme is solved using the LPV
model (28) with a different procedure other than that of the
frozen LPVMPC. Following the approach of [27], we sum-
marize the procedure in Algorithm 1. To simplify the repre-
sentation, we use the following notations in Algorithm 1:

X (k) =


x(k|k)

x(k + 1|k)
...

x(k + N − 1|k)

 , M =


M0
M1
...

MN−1

 ,

whereMi represents any of the parameter dependent matrices
Ad , Bd , Ed , defined in (29) and (30), at step i of N . Note
that p(k) depends on x(k) and u(k); as a stopping criterion,
we use ‖Xj(k) − Xj−1(k)‖ < ε, where ε is a positive scalar,
which can be chosen small enough according to the required
accuracy. The frozen LPVMPC can be implemented using
Algorithm 1 by skipping Steps 7-14.

Algorithm 1 Iterative LPVMPC
Require: initial state xini, xs, us, N , Q or Qy and R
1) k ← 0
2) x(k)← xini
3) repeat
4) Compute p(k) using (12)
5) Compute Ad , Bd , Ed by (29) and (30)
6) Solve (32) to compute U (k)
7) U0(k)← U (k)
8) j← 0
9) repeat

10) Compute Ad , Bd , Ed , Xj(k) using Uj(k),(28)-(30)
11) Solve (32) to compute Uj+1(k)
12) j← j+ 1
13) until ‖Xj(k)− Xj−1(k)‖ < ε

14) U (k)← Uj(k)
15) u(k)← 1st element of U (k)
16) Apply u(k) on the system and obtain x(k + 1)
17) k ← k + 1

The main advantage of the iterative LPVMPC scheme is
that it allows updating the scheduling parameter over the
prediction horizon, which is more accurate than the case of
the frozen scheme, thus, different LTI models can be used
over N to improve the prediction in the MPC. This can lead
to better performance than that of the frozen LPVMPC at the
expense of extra computations and without guarantees that
Steps 7-14 in Algorithm 1 will converge.

F. THE NMPC SCHEME
To solve the MPC problem here a NL discrete-time model of
the AMB system is required. For simplicity, we discretize the
NL model (8) using the Euler’s forward method as follows

x(k + 1) = Tsf (x, u)+ x(k), (44)

where f (x, u) is given as in (9) and Ts = 6.25 × 10−4 s;
(44) is used over the prediction horizon N to construct the
cost function JN (k) in (33), which leads to a NL cost func-
tion. Therefore, to compute the optimal control input U (k),
the optimization problem (32) should be solved using NL
optimization solvers. The optimization problem is solved at
every sampling instant k . Due to the efficient description
of the NL behavior of the AMB system over the prediction
horizon, the NMPC scheme can achieve the best performance
in comparison with the other schemes discussed above. How-
ever, the main issue, is the computational complexity associ-
ated with solving the NL optimization problem within such
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high sampling rate of the system, which might be intractable
in practice.

We summarize the stability result of the frozen LPVMPC
scheme as follows
Theorem 1: (Asymptotically stabilizing MPC for the

frozen LPV systems)
Assume there exists a terminal cost given by (37) such
that (38), and (39) are satisfied, and a terminal set given
by (40) such that (41) is satisfied. Consequently, the MPC
controller derived by solving the optimization problem (32)
can asymptotically stabilize the LPV system.
The proof of Theorem 1 follows the same lines of the work
in [27].
Remark 1. Since the LPVMPC is designed based on the
reduced LPV model, the theoretical stability guarantees of
Theorem 1, are established for the reduced LPVmodel. How-
ever, in practice, due to the high accuracy of the reduced
model, such guarantees can be achieved for the full model
as well.

IV. SIMULATION RESULTS
In this section, the implementation of the considered MPC
schemes is applied to the NL model (8) of the AMB system.
To assess the operation and performance of the AMB system,
we consider the following control problems:
• regulation to the origin,
• tracking a given desired reference trajectory,
• disturbance rejection,

and then we compare the proposed frozen LPVMPC with a
classical lead-lag controller developed by the manufacturer
of the AMB experimental setup (MBC500) [25].

Table 5 shows the considered state/input constraints, dur-
ing normal operation, which cover almost the full operating
range of the AMB system without exceeding the nominal
air-gap (D0 = 4 × 10−4 m) between the rotor and the
bearing. Moreover, when the MPC optimization problem
turns infeasible, we allow state constraints softening, via the
slack variable, up to 1.2xmax, which is still consistent with the
boundary of the air-gap. It is important to satisfy the following
physical condition:

δ × δ̇ < 0, δ ∈ {x0, y0, ψ, θ}, (45)

on the boundaries of the state constraints initially for the suc-
cessful operation of the AMB system. The simulation results
considered here have been performed using QP solver [38]
with YALMIP toolbox [39]. For implementing the NMPC
scheme, we use the NLMPC toolbox of MATLAB R2019b.

TABLE 5. Constraints of the AMB system.

A. REGULATION
The control objective here is to regulate fast the state from
an initial value to the origin (xs = 0, us = 0) without
violating the system constraints.We examine the feasibility of
the proposed MPC schemes for different values of the initial
state.

We consider initial states on the boundary of the state
constraints, see Table 5, satisfying (45). By gridding the
boundary, a set of initial state values has been constructed and
used to test the MPC algorithms. As a representative result,
we choose the initial state value xini = [−2×10−4, 0.1,−2×
10−4, 0.1,−1×10−3, 1,−1×10−3, 1]. Next, we have oper-
ated the AMB system with all MPC schemes starting from
xini. For such initial condition, all MPC approaches, except
the LMPC, were successful, whereas the optimization prob-
lem of the LMPCwas infeasible. Fig. 3 shows the evolution of
the system state starting from xini under the frozen LPVMPC,
iterative LPVMPC and NMPC, the figure indicates that these
schemes can regulate the states of the AMB system within a

FIGURE 3. Regulation: state trajectories (NMPC , iterative LPVMPC ,
frozen LPVMPC ) and the solid gray lines represent the corresponding
bounds.
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short time (2 − 6) · 10−3 s without violating the constraints,
however, there is some softness occurred in the constraints of
the states ẋ0 and ẏ0, due to the activation of the slack variable
Sx(k), which avoids the infeasibility of theMPC optimization
problem, as shown in Fig. 4. The states behavior is almost the
same with the three controllers. The control inputs are shown
in Fig. 5, which shows that the input constraints are satisfied.
The iterative LPVMPC scheme is, slightly, better

than the frozen LPVMPC scheme and its behavior is close
to the NMPC scheme, see Fig. 3(e),(f). However, in general
the frozen LPVMPC scheme has achieved almost similar
performance as that of the NMPC and the iterative LPVMPC
schemes with less computational complexity. In case of
the iterative LPVMPC, we have used ε = 10−8, which
can achieve good accuracy for the stopping criterion, see
Algorithm 1. It turns out that the number of iterations j, used
in each sampling time for convergence was between 2 − 37
iterations, which demonstrates its computational complexity
in comparison with the frozen LPVMPC. Finally, we have
observed that the LMPC scheme was not able to provide
feasibility for any of the initial states considered on the
boundary, whereas, all the other schemes were feasible for
all considered initial state values. This can be attributed to
the local behavior (close to the origin) of the LMPC scheme.

FIGURE 4. Regulation: zoomed in to trajectories of the states ẋ0, ẏ0
(NMPC , iterative LPVMPC , frozen LPVMPC ) and the solid gray lines
represent the corresponding bounds.

We summarize the results of this control problem in the
following points:

• The initial state xini is considered on the boundary of the
state constraints.

• The LMPC optimization problem was not feasible for
such initial state.

• The optimization problems of all the frozen LPVMPC,
the iterative LPVMPC and the NMPC were feasible for
considered initial states.

• The slack variable Sx(k) has been activated shortly in all
LPVMPC schemes to avoid infeasibility of the optimiza-
tion problem.

• The LPVMPC and NMPC schemes successfully have
regulated the states of the AMB system to the origin in
a short time.

• The frozen LPVMPC has achieved almost similar
performance as that of the NMPC and the iterative
LPVMPC yet with less computation complexity.

• All input constraints are satisfied.

FIGURE 5. Regulation: control input trajectories (NMPC , iterative
LPVMPC , frozen LPVMPC ) and the solid gray lines represent the
corresponding bounds.

B. REFERENCE TRACKING
In this control problem, the control objective is to provide
fast tracking of a reference trajectory without overshoot or
steady state errors, while keeping all states and inputs of
the system within their bounds. We have considered two
staircase trajectories, where each one consists of two levels,
this is considered as a challenging trajectory for an AMB
system [21]. These levels are ±1× 10−4 m and the duration
of each level is 0.05 s, see Fig. 6. Therefore, the rotor shaft
should move symmetrically around the center of the nominal
air-gap, which is a challenging maneuvering as any overshoot
is prohibited for the system safety.

Here, we have two steady-state values based on the
considered staircase reference trajectories xs1 = [1 ×
10−4, 0,−1× 10−4, 0, 0, 0, 0, 0], xs2 = [−1× 10−4, 0, 1×
10−4, 0, 0, 0, 0, 0] and us1 = [−0.13,−0.13, 0.21, 0.21],
us2 = [0.13, 0.13,−0.21,−0.21]. Moreover, we have con-
sidered a new initial state xini = [−1.2× 10−4, 0.06,−1.2×
10−4, 0.06,−6×10−4, 0.6,−6×10−4, 0.6], however, again
the optimization problem of the LMPC schemewas infeasible
due to its local nature (linearized around the origin). The
trajectories of the outputs of the system under the frozen
LPVMPC, iterative LPVMPC andNMPC are shown in Fig. 6.
It shows that these controllers can efficiently yield the outputs
of the AMB system on the desired staircase trajectory within
(6− 9) · 10−3 s and with almost no overshoots or steady state
errors, moreover, they can deal perfectly with the coupling
effects between the outputs. The corresponding control inputs
are shown in Fig. 7, which satisfy their constraints. The input
limits of the iterative and frozen LPVMPC were active for
sometimes; however, without affecting the performance of
the outputs or the stability of the system.

In this control problem, ε = 10−8 was considered again
for the stopping criterion in Algorithm 1. Therefore, the iter-
ative LPVMPC used number of iterations j ranged from
4 to 54, which indicates its computational time compared
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FIGURE 6. Reference tracking: output trajectories (NMPC , iterative
LPVMPC , frozen LPVMPC ) and the dashed black lines represent the
corresponding reference.

to the frozen LPVMPC. Note that, the sampling time may
not handle such computation burden. It is demonstrated
that the most simpler and computationally efficient frozen
LPVMPC scheme can achieve similar performance as that of
the NMPC and the iterative LPVMPC schemes, which are
more sophisticated.

The main results of the reference tracking problem are
summarized as follows
• The optimization problem associated with the LMPC
scheme again was not initially feasible.

• The LPVMPC and NMPC schemes showed perfect ref-
erence tracking with almost no overshoots or steady
state errors and without violating the input or state
constraints.

• The computational burden of the frozen LPVMPC is
significantly lower than that of the iterative LPVMPC
and the NMPC.

C. DISTURBANCE REJECTION
Now, we consider a disturbance fdist applied on the AMB
system during the reference tracking operation. An addition
disturbance is applied as ẋ = f (x, u)+fdist . The control objec-
tive here is to reject the effect of such disturbance within a
short timewithout oscillations.We applied a step disturbance,
as in [40], at t = 0.02375 s for a duration of 1.25 × 10−3 s,
as shown in Fig. 8.

In this control problem, we consider xini = 0 and it is
desired to track the constant reference r = 1 × 10−4 m,
as shown in Fig. 8, therefore, we have one steady-state
value xs = [1 × 10−4, 0, 1 × 10−4, 0, 0, 0, 0, 0] and
us = [−0.13,−0.13,−0.21,−0.21]. With such scenario,
the LMPC optimization problem was feasible. Fig. 8 shows
the trajectories of the outputs of the system under all con-
sidered MPC schemes. In all cases the effect of the applied
disturbance has been suppressed reasonably well within

FIGURE 7. Reference tracking: control input trajectories (NMPC ,
iterative LPVMPC , frozen LPVMPC ) and the solid gray lines represent
the corresponding bounds.

FIGURE 8. Disturbance rejection: output trajectories (NMPC , iterative
LPVMPC , frozen LPVMPC , LMPC ) and the dashed black lines
represent the corresponding reference.

6 × 10−3 s. The state trajectories and the control inputs
are shown in Figs. 9,10, respectively. Clearly, all the MPC
schemes have satisfied the input and state constraints. From
Fig. 8, it is demonstrated that the performancewith the LMPC
scheme was reasonable; however, some of the corresponding
states of the system suffer from high overshoots and oscilla-
tions as shown in Fig. 9(g),(h), moreover, some of the control
input trajectories have oscillations as shown in Fig. 10(c),(d),
compared with the other MPC schemes. Note that, the com-
putation burden of the frozen LPVMPC is almost the same as
that of the LMPC; however, the former one can achieve better
performance for a wider range of operation.

The following points highlight the main results of this
control problem:

• The optimization problem of all the MPC schemes
were feasible and they were successfully able to reject
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FIGURE 9. Disturbance rejection: state trajectories (NMPC , iterative
LPVMPC , frozen LPVMPC , LMPC ).

perfectly the applied disturbance without violating the
input or the state constraints.

• At some instants, the performance of the system with
the LMPC scheme suffered from high overshoots and
oscillations.

D. COMPARISON WITH CLASSICAL CONTROL
In the following, we compare the performance of the pro-
posed frozen LPVMPC scheme with a lead-lag controller,
which was designed previously by the manufacturer of the
AMB experimental setup (MBC500) [25]. We compare them
in reference tracking. The lead-lag controller is given as

Hc(s) = 1.45
(1+ 0.9× 10−3s)

(1+ 3.3× 10−4s)(1+ 2.2× 10−5s)
, (46)

which is applied onto all the outputs of the AMB sys-
tem, separately. To enhance the performance of the classi-
cal controller, we have tuned its parameters according to
the guidance provided in [25], which leads to the following

FIGURE 10. Disturbance rejection: control input trajectories (NMPC ,
iterative LPVMPC , frozen LPVMPC , LMPC ) and the solid gray lines
represent the corresponding bounds.

modifications:

CX1 (s) = 18Ĥc(s), CX2 (s) = 18Ĥc(s),

CY1 (s) = 30Ĥc(s), CY2 (s) = 30Ĥc(s), (47)

where

Ĥc(s) =
(1+ 2× 10−3s)

(1+ 2.2× 10−4s)(1+ 1.1× 10−5s)
, (48)

and CX1 , CX2 , CY1 , CY2 are the lead-lag controllers applied
onto the AMB system outputs X1, X2, Y1, Y2, respectively.
Here, we considered xini = 0 corresponding to the nominal

system, which has been used to tune the classical controller.
It is worthy to mention that such classical controller cannot
stabilize the system with other initial conditions. It is desired
to track the staircase trajectories shown in Fig. 11. As shown

FIGURE 11. Reference tracking: output trajectories (frozen LPVMPC ,
lead-lag ) and the dashed black lines represent the corresponding
reference.
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from the output trajectories in Fig. 11, the lead-lag controller
provides almost similar performance as the frozen LPVMPC
scheme, however, the input constraints at t = (0− 3) · 10−3 s
and during the transition between the two levels of the stair-
case reference at t = 0.05 s are violated as shown from the
control inputs trajectories in Fig. 12. In practice, the violation
of the input constraints is prohibited as it yields the AMB
system in unsafe mode of operation. Moreover, the control
input of the lead-lag controller suffers from some oscillations,
as shown in Fig. 12(c),(d). On the other hand, the frozen
LPVMPC satisfies the input constraints with perfect tracking
as shown in Fig. 12.

FIGURE 12. Reference tracking: control input trajectories (frozen LPVMPC
, lead-lag ) and the solid gray lines represent the corresponding

bounds.

We summarize the main results of this comparison as
follows
• The lead-lag controller cannot stabilize the system with
any initial state other than the origin.

• The frozen LPVMPC scheme is slightly faster than the
the lead-lag controller in tracking when the initial state
is at the origin.

• The lead-lag controller violates the input constraints
several times during the simulation, whereas, the frozen
LPVMPC satisfies the input constraints.

V. CONCLUSION
The problem of controlling AMB systems based on MPC has
been addressed in this paper. For tractable computation with
the fast sampling rate of the system in practice, it is essential
to implement a computationally cheapMPC algorithm,which
at the same time can achieve high performance for a wide
range of operation.

Four MPC schemes have been applied to the AMB system.
The first scheme, is the conventional LMPC, which is based
on a linearizedmodel at the origin. The second one is based on
an LPVmodel of the system where frozen scheduling param-
eters over the prediction horizon have been considered. The
third scheme is also based on an LPVmodel; with an iterative

procedure to consider the variability of the scheduling param-
eters over the prediction horizon. Finally, the NMPC tech-
nique based onNL optimization has been considered. In order
to assess the performance of these MPC schemes, three dif-
ferent control problems have been studied, regulation, refer-
ence tracking and disturbance rejection. In addition to that,
a comparison between the frozen LPVMPC and an existent
controller from practice is provided.

Stability guarantees of the considered MPC schemes are
achieved via including a terminal cost and an invariant ter-
minal set to the MPC optimization problem, which are com-
puted offline by solving LMI problems. For tractability of
these problems, the PSM technique has been used efficiently
to reduce the number of the scheduling parameters without
significant reduction of the accuracy of the model. To avoid
infeasibility of the MPC optimization problem we include
a slack variable to soften the incorporated state constraints
during the execution of the MPC optimization problem.

The main message of this work is that the frozen LPVMPC
strategy can achieve comparable performance tomore sophis-
ticated and computationally complex approaches, such as,
the NMPC and the iterative LPVMPC schemes considered
here. This will allow advanced control techniques such as
MPC to be applicable for highly complex fast systems such
as the AMB system.

As a next step of this work, the experimental verification of
the frozen LPVMPC scheme will be carried out. Moreover,
as a practical problem related to AMB systems, we will
investigate the operation of the closed-loop system using
MPC against imbalance sinusoidal disturbances, which is a
challenging problem in practice.

APPENDIX A SCHEDULING PARAMETERS
The scheduling parameters p1, . . . , p18 are computed as:

p1 = a
(

1
denx1

+
1

denx2

)
,

p2 = alb

(
1

denx2
−

1
denx1

)
,

p3 =
b2y1 + c2
deny1

+
b2y2 + c2
deny2

,

p4 = lb

(
b2y2 + c2
deny2

−
b2y1 + c2
deny1

)
,

p5 = a1

(
1

denx2
−

1
denx1

)
,

p6 = a1lb

(
1

denx1
+

1
denx2

)
,

p7 =
b3y2 + c3
deny2

−
b3y1 + c3
deny1

,

p8 = lb

(
b3y2 + c3
deny1

+
b3y2 + c3
deny2

)
,

p9 =
bx1ix1 + cx

2
1 + d

denx1
,

VOLUME 9, 2021 23645



A. Morsi et al.: Model Predictive Control Based on Linear Parameter-Varying Models of Active Magnetic Bearing Systems

p10 =
bx2ix2 + cx

2
2 + d

denx2
,

p11 =
d2y1iy1 + e2y

2
1 + f2y1 + g2

deny1
,

p12 =
d2y2iy2 + e2y

2
2 + f2y2 + g2

deny2
,

p13 =
−b1x1ix1 − c1x

2
1 − d1

denx1
,

p14 =
b1x2ix2 + c1x

2
2 + d1

denx2
,

p15 =
−d3y1iy1 − e3y

2
1 + f3y1 − g3

deny1
,

p16 =
d3y2iy2 + e3y

2
2 + f3y2 + g3

deny2
,

p17 =
a2

deny1
+

a2
deny2

− g,

p18 =
a3

deny2
−

a3
deny1

,

where

a = 4.3× 10−10 a2 = 1.3× 10−13

b = 1.7× 10−9 b2 = 7.8× 10−7

c = 2.1× 10−6 c2 = 1.1× 10−9

d = 3.4× 10−13 d2 = 1.7× 10−9

a1 = 7.8× 10−9 a3 = 2.3× 10−12

b1 = 3.1× 10−8 b3 = 1.4× 10−5

c1 = 3.9× 10−5 c3 = 1.9× 10−8

d1 = 6.2× 10−12 d3 = 3.1× 10−8

a5 = 5× 103 b5 = 25× 109

e2 = 3.2× 10−6 e3 = 5.8× 10−5

f2 = 8.4× 10−10 f3 = 1.5× 10−8

g2 = 5.1× 10−13 g3 = 9.3× 10−12

and ixi , iyi are the system inputs, xi, yi are computed using (1),
(2), respectively, denxi = (xi − 0.0004)2(xi + 0.0004)2,
denyi = (yi − 0.0004)2(yi + 0.0004)2, i = 1, 2.
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