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ABSTRACT Hardware prefetching can seriously interfere with Flush+Reload cache side channel attack.
This interference is not taken into consideration in previous Flush+Reload attacks. In this paper, an improved
Flush+Reload is provided which minimizes the impact of hardware prefetchers. Specifically, prefetching
is analyzed based on reverse engineering and the result is used to make an evaluation model to evaluate
the impact of hardware prefetching on Flush+Reload attacks. Then the model is applied to fine tune the
placement of probes in Flush+Reload attack to mitigate the prefetching impact. The experiments show that
the approach is effective on the Core i5 processor which is equipped with highly aggressive prefetchers.

INDEX TERMS Hardware prefetching, Flush+Reload, reverse engineering.

I. INTRODUCTION
Side channel attacks leak sensitive cryptographic infor-
mation through physical channels such as power, timing,
etc. and are typically specific to the actual implementation
of the cryptographic algorithm [6]. An important class of
these attacks is based on measurements from cache mem-
ory systems. In the attacks, the cache data between cores
results in an unintentional side-channel through which sen-
sitive information may be leaked to attackers from other
cores. The proposed attacks were based on two major tech-
niques, Flush+Reload [4], [5], [7], [10], [16], [9], [25] and
Prime+Probe [17]–[24], according to the granularity of the
attack. While Prime+Probe works on a cache set granularity,
Flush+Reload works on a single cache line granularity.
One thing that has not been well studied is the impact of

the hardware prefetching on side channel attacks. Hardware
prefetching [8] is a feature of modern processors and enabled
by default. Modern CPUs exploit prefetchers to improve
cache hit rate which greatly complicates Flush+Reload
attack since it is unable to distinguish a line fetched on
demand from one prefetched without subsequently being
used.

The direct output attacker can obtain from Flush+Reload
is the sequence of probes. The placement of the probes should
be located according to the aim of the attack. A good set
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of probes, i.e., an appropriate workspace of Flush+Reload,
is the key to the success of the attack. A well-settled set
of probes means the probe sequence can represent different
execution traces clearly, which is one of the main purposes of
Flush+Reload attack. However, hardware prefetching made
the process complicated. Therefore, we explored a strategy
to optimize the placement of probes to mitigate the impact of
hardware prefetching on Flush+Reload.
Since most technical details of the prefetchers in Intel

processors have not been documented yet, we analyze the
prefetching behavior based on reverse engineering to make
a description of the hardware prefetcher. Since the reverse
analysis of CPU prefetching does not target to a specific
CPU and does not require specific information about the CPU
type, it is adaptive which potentially enables the attack to
be adaptable with little effort to other CPUs. We measure
the reliability of a Flush+Reload side channel attack by
true and false positives as well as true and false negatives.
Cache hits that coincide with the event are considered as true
positive and cache hits that do not coincide with the event as
false positive. Cache misses which coincide with the event
are considered as true negative and cache misses which do
not coincide with the event as false negative. We evaluate
the negative impact of hardware prefetching by the sum of
the mathematical expectations of false positives and false
negatives, which can be inferred from the reverse engineering
results. Based on the evaluation, we use gradient descent to
fine tune the placement of probes in Flush+Reload attack to
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mitigate the impact of the prefetcher on the attack, which
substantially improves the attack efficiency. We tested our
placement strategy on the Intel Core i5 processor which has
a very aggressive prefetching feature [8]. Experiments show
that the strategy can circumvent the effect of cache prefetch-
ing and substantially improve the quality of Flush+Reload
attack.

Our main contributions are:
(1) The impact of prefetching on Flush+Reload attack is

analyzed and a mathematical model to evaluate the impact of
prefetching on the attack is proposed.

(2) A novel strategy aiming to mitigate the effect of cache
prefetching on Flush+Reload attack is proposed. The place-
ment of probes in the Flush+Reload attack is adjusted auto-
matically to let the attack more effective.

(3) The proposed approach is evaluated on real-world sys-
tems using a web application Links. The experiment is carried
out on the Core i5 processor which shows that the approach
is effective.

II. BACKGROUND
A. CACHE SIDE CHANNEL ATTACKS
It was first mentioned by Hu [1] that cache memory can be
considered as a potential vulnerability in the context of covert
channels to extract sensitive information. Cache side channel
attacks exploit timing differences caused by the lower latency
of CPU Caches compared to physical memory. The possibil-
ity of exploiting these timing differences was first discovered
by Kocher [2] and Kelsey et al. [3]. Practical attacks have
focused on side channels on cryptographic algorithms and
covert channels. Access-driven cache attacks can be roughly
categorized into either ‘‘Prime+Probe’’ or ‘‘Flush+Reload’’
case. Our work is constructed upon Flush+Reload case.
Flush+Reload attack exploits the availability of shared

memory and especially shared libraries between the attacker
and the victim process. Gruss et al. [9] have shown that
a variant of Flush+Reload without the clflush instruc-
tion is possible without a significant loss in accuracy.
Applications of Flush+Reload have been shown to be
reliable and powerful, mainly to attack cryptographic
algorithms [12]–[15]. Flush+Reload is also being used to
compromise user privacy. For example, Cai and Chen [26]
have shown that keystrokes can be reliably recovered from
accelerometer data on smartphones. Chen et al. [27] showed
that observing a web application’s behavior reveals informa-
tion about the user’s input.

Flush+Reload technique proceeds in three phases,
as shown in Figure 1. At Flush phase, the attacker flushes the
selected memory addresses from the entire cache hierarchy
using the clflush instruction. Owing to the inclusiveness
property of the LLC in Intel processors, the clflush instruction
will evict those cache lines from all cache levels. Then, in Idle
phase, the attacker waits for the victim’s operations. Finally,
atReload phase, the attacker reloads previously flushedmem-
ory addresses and measures the access time of each of them.
For each memory address, if it is used by the victim during

FIGURE 1. Phases of Flush+Reload Technique.

Idle phase, it will be reloaded to the cache, i.e., a cache hit
occurs, which results in a lower reload time. If not, then this
memory address resides in the memory, resulting in higher
reload time due to a cache miss. In this way, the attacker can
figure out which memory addresses are used by the victim,
i.e., which Flush+Reload probes are triggered. By putting
those three phases in loop, the attacker can obtain a probe
sequence which is related to the execution trace of the victim
and extract sensitive information from it.

B. HARDWARE PREFETCHING
The high cost of memory accesses is one of the fundamental
bottlenecks that limits processor performance. Cache misses
result in accesses to lower-level caches or main memory,
which is time-consuming. Data prefetching is a technique that
predicts the usage and fetches data from the main memory
or the lower-level cache to the higher-level cache prior to
the actual access. Here we consider only hardware-based
prefetching techniques.

Hardware prefetcher is introduced for the sake of perfor-
mance. However, it also brings an impact on security on
both good and bad side. On the good side, it complicates the
traditional cache side channel attacks, since it makes them
unable to distinguish a cache line fetched on demand from
one prefetched without subsequently being used. On the bad
side, it can be used to build new covert channels to extract
sensitive information. Shin et al. [30] point out that CPU
cache stride prefetching can be used as a reliable channel and
be exploited against ECDH algorithm in OpenSSL. In this
paper, we focus on its impact on traditional cache side channel
attacks, specifically on Flush+Reload.

In Sandy Bridge and successive processors, each core
is equipped with four types of hardware prefetchers:
Streaming prefetcher, Spatial prefetcher, Data Cache Unit
(DCU) prefetcher, and Instruction pointer (IP)-based stride
prefetcher [28]. Unfortunately, details about the behavior of
those prefetchers are not publicly known, except for a brief
explanation of each prefetching mechanism in Intel docu-
ments [28], [29]. Those prefetchers can be quite aggressive.
For example, according to the documents, the streaming
prefetcher could prefetch up to 20 cache lines ahead.

III. DESIGN AND IMPLEMENTATION
A revised Flush+Reload attack that overcomes the nega-
tive impacts caused by hardware prefetching is proposed
here. Figure 2 demonstrates a high-level workflow of our
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FIGURE 2. Workflow of Prefetcher Aware Flush+Reload Attack.

attack. We first conduct reverse engineering towards the
prefetcher, and then use the obtained statistical description of
the prefetcher to build up an evaluation model of the prefetch-
ing impact on Flush+Reload attack, which is regarded as the
loss in the attack scenario. Using the obtained loss function,
we then fine tune the placement of probes tominimize the loss
value. We then take the new probe set into a Flush+Reload
attack that circumvents the interference of the prefetcher.
The whole process is done automatically, which potentially
enables the attack to be migrated to other CPUs with little
effort.

To simplify explanations, and without loss of generality,
we assume that the attacker targets a single memory page.
For the cases that target multiple memory pages, the attacker
can do the same for each page. In the case of cache miss,
CPUs always fetch a whole cache line. Therefore, we cannot
distinguish between offsets of different accesses within a
cache line. In addition, we can deduce the same information
by probing only one memory address within each cache-line
sized memory area. We design and implement our attack on
Intel Core 2 Duo-P8700, Core i3-4000M, Core i5-6200U and
Core i7-3520M and use Core i5-6200U for demonstration.
All those processors have a cache line size of 64 bytes, which
means it would require 64 cache lines to cover a 4KBmemory
page. Thus, on a memory page, there are only 64 positions
that a probe can choose from.All results are from experiments
on an Intel Core i5-6200U CPU.

A. REVERSE ENGINEERING THE PREFETCHER
Since most technical details of the prefetchers in Intel pro-
cessors have not been disclosed yet, we tried to make
a model that can describe the behavior of hardware

prefetching, which enables the attacker to figure out whether
their attack model is reasonable, i.e., whether their attack
model will be heavily affected by hardware prefetching, even
if they don’t know how much and which prefetchers there
are.

We analyzed the CPU memory prefetching based on
reverse engineering and use the results later in the next section
to build up the evaluation model of the prefetching impact.
The behavior of prefetcher is complex and vary based on the
access pattern and the availability of memory bandwidth [28].
To provide a basic characterization, we conduct prefetcher
reverse-engineering with respect to accesses to a single cache
lineA, by observing the cache state of the other cache line B
after accessing cache line A. For each cache line A, we con-
sider only the cache line B whose index is bigger than A.
Accesses to cache lineA are (1-w%) sequential and w% non-
sequential. In the experiments below, w is a fixed value 20.
For instance, when the index of A is 50, we only consider
the case that the index of B is between 51 and 63. Then
for each B in the range, access A, and observe the cache
state of B. Prefetcher reverse engineering aims to figure out
the probability that cache line B is used by the CPU after
accessing cache line A.

The reverse-engineering result on Core i5-6200U proces-
sor is shown in Figure 3. The index of a line indicates its
location in a memory page, i.e., index ∈ [0,63]. Darker dot
means higher probability that the cache line B is cached.
Each cache line is tested 100 times. The index of line A and
B is denoted as IA and IB. The probability that cache line
B occupies the CPU cache after accessing cache line A is
denoted as P(IA, IB), which is a statistical description of the
prefetcher.

In the Core i5-6200U processor, there are four types of
prefetchers that we can deal with:

(1) L2 hardware prefetcher: Fetches additional lines of
code or data into the L2 cache.

(2) L2 adjacent cache line prefetcher: Fetches the cache
line that comprises a cache line pair (128 bytes).

(3) DCU prefetcher: Fetches the next cache line into L1-D
cache.

(4) DCU IP prefetcher: Uses sequential load history
(based on Instruction Pointer of previous loads) to determine
whether to prefetch additional lines.

In Figure 3(a), all the four prefetchers are enabled.
In Figure 3(f), all the four prefetchers are disabled.
Figure 3(b) (c) (d) and (e) show the results of only enabling
(1) to (4) respectively. Specifically, Figure 3(b) shows the
result of enabling L2 hardware prefetcher only. Figure 3(c)
shows the result of enabling L2 adjacent cache line prefetcher
only, and so on.

In general, those four prefetchers are enabled as default and
we do not have authority to enable or disable single one of
them so only the result of Figure 3(a) is got. To get those
individual settings results, root privilege is needed. In order
to see the comparison, root account is login to get these
individual results as blank control group.
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FIGURE 3. Probability Distribution P(IA, IB) tested on Core i5-6200U.

The probability distribution function P got from
Figure 3(a) is the final output of the reverse-engineering
process.

B. EVALUATION MODEL
In this section, we are going to use the statistical descrip-
tion of the prefetcher obtained in section III-A to quan-
tify the impact of hardware prefetching on Flush+Reload
attack. Probes in Flush+Reload attack are placed on mem-
ory address which are accessed depending on secret infor-
mation or specific events. We measure the reliability of a
Flush+Reload attack by true and false positives as well as
true and false negatives, which are defined as follows:

• True positive (true +): Cache hit that coincides with the
event.

• False positive (false +): Cache hit that does not coincide
with the event.

• True negative (true −): Cache miss which coincides
with the event.

• False negative (false −): Cache miss which does not
coincide with the event.

We evaluate the hardware prefetching impact by the sum of
the mathematical expectations of false positives and false
negatives. Thus, the loss function is defined as formula (1):

Loss = E (false +)+ E (false −) (1)

For a Flush+Reload attack which has N probes within one
memory page, denote their corresponding cache line index as
[θ1, θ2, . . . , θN ] (from low to high in address order). Then the
mathematical expectation of false positives can be calculated
by formula (2):

E(false +) =
∑

1≤i<j≤N

P
(
θi, θj

)
(2)

Since hardware prefetching does not generate additional
false negatives, the mathematical expectation of false posi-
tives is the only indicator to evaluate the impact of hardware
prefetching on Flush+Reload. It can be used to determine the
rationality of the probe placement, and be used as a reference
on probe selection.

C. DEFEATING HARDWARE PREFETCHING
With the knowledge of hardware prefetching, we can make
a more refined selection of Flush+Reload probes. By using
static analysis, we can know the range of the code that highly
corresponding to a specific event. However, there must be
an extra range of code that also corresponds to the event to
some degree because of the hardware prefetching. Therefore,
we can take advantage of hardware prefetching in turn to
widen the placement range of a probe. As shown in Figure 4,
the box filled with grey is defined as the range of the code
that is highly related to a specific event, which is usually
shown as a function, a functionally independent piece of code,
or a critical branch. The blue frame defines the scope of a
probe placed. It is generally believed that a probe can only be
placed in the box filled with grey [25]. The code outside the
box filled with grey is always not considered, because it will
bring extra false negatives. In many cases, the probe is placed
directly on the first instruction of the critical code segment.
However, based on the knowledge of hardware prefetching,
we can make a more refined choice on a larger code scope,
as shown in Figure 4. Our basic idea is to avoid a large
number of false positives by introducing a small number of
false negatives.
Widening the scope of a probe placed will bring extra false

negatives, which should be counted as the fault of hardware
prefetching. The initial position of all the Flush+Reload
probes is set as the last instruction of their corresponding
grey-color box, denoted as [θ01 , θ

0
2 , . . . , θ

0
N ] (from low to high

in address order). Their new position at time t is denoted as
[θ t1, θ

t
2, . . . , θ

t
N ]. Then the mathematical expectation of false

negatives can be calculated by formula (3):

E(false −) =
N∑
i=1

P
(
θ0i , θ

t
i

)
(3)
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FIGURE 4. Placement Scope of Flush+Reload Probes.

Thus, the Loss at time t can be calculated by
formula (4):

Loss =
∑

1≤i<j≤N

P
(
θ ti , θ

t
j

)
+

N∑
i=1

P
(
θ0i , θ

t
i

)
(4)

By using the loss function, we can apply gradient descent
algorithm to fine tune the probe placement, and thereby min-
imize the loss, i.e., the impact of prefetching.

Since the probe placement that minimizes the loss is deter-
mined uniquely by the loss function, the process of fine tuning
the probe placement is done automatically according to the
result of reverse-engineering.

IV. EVALUATION
Here, we take side-channel leaks in web applications as
an example to test our strategy of defeating hardware
prefetching.

A. SIDE-CHANNEL LEAKS IN WEB APPLICATIONS
Unlike a desktop application which is usually a single exe-
cutable program, a web application is usually composed of
two parts: browser-side and server-side. Here we build an
attack against the command-line web browser Links. From
the result of the Flush+Reload attack, we can know which
web page the victim is visiting. The specific attack scenario
is described as follows.

Suppose that the attacker knows the possible web pages
(a candidate set) that the victim would visit. Then the attacker
tries to use Flush+Reload against Links to figure out which
web page in the set the victim was visiting.

As shown in Figure 5, the process of the attack is composed
of three stages.

At the training stage. The attacker simply runs the
Flush+Reload attack against its own Links browser (same as
the victim) when they run the program on every web page
in the set for multiple times. The number of times that each
web page is sampled is denoted as T . If there are N different
web pages, there will be N ∗T training samples. Each sample
is a sequence of probes in Flush+Reload attack which is
represented by a string of single-character probe names, such
as ‘A’, ‘B’, ‘D’ as shown in Figure 5, and is labeled with
its corresponding web page. The probe sequence somehow
reflects the browser’s execution trace when some web page is

FIGURE 5. Stages in the Process of Flush+Reload Attack.

visited. All probe sequences with their labels form a complete
training set.

Next, the actual attack happens. The attacker runs
Flush+Reload attack against the victim. When the victim
visits one of the web pages using Links, the attacker records
the probe sequence.

Finally, at the verification stage, the attacker finds the
probe sequence in the training set that is closest to the one
obtained from the attack stage. Levenshtein distance [11]
is used to measure the closeness, which is defined as the
smallest number of basic edit unit needed to bring one string
to the other. The attacker computes the Levenshtein distance
between the obtained probe sequence and sample Sij, where
i = 1, 2, . . . ,N , j = 1, 2, . . . ,T . The label of the one with
the smallest value is assumed to be the web page the victim
visited using Links.
In the test, T samples of each web page are taken at the

training stage. Then, for every web page in the set of sizeN ,
the vulnerable process is run on the web page K times.
The probe sequences from each of the K ∗ N runs are put
independently at the verification stage, and we check how
many of them is correct. The number of correct verifications
is denoted as S. Then the quality of the Flush+Reload attack
can be evaluated by formula (5):

Success Rate =
S

K ∗ N
(5)

B. COMPARISON TO TRADITIONAL FLUSH+RELOAD
We tested our strategy of defeating hardware prefetching
on the Intel Core i5-6200U with 4GB memory and 3MB,
12-way, 64-byte lines LLC. All tests are based on
OS Fedora 27.

We tested on a page set that contains 100Wikipedia pages.
Each Wikipedia page is sampled 100 times, 70 of which
form the training set and 30 of which form the test set.
In the experiment, we use 4 probes on the Links browser. The
positions of the probes are chosen by using traditional and
revised strategies respectively.

As discussed in section III-A, In the Core i5-6200U proces-
sor, there are four types of prefetchers that we can deal with:
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FIGURE 6. Success Rate Comparation between Traditional and Revised
Flush+Reload Attack.

L2 hardware prefetcher, L2 adjacent cache line prefetcher,
DCU prefetcher and DCU IP prefetcher. We tested both the
traditional and the revised Flush+Reload strategy with all
the four types of prefetchers enabled. In addition, we tested
the traditional Flush+Reload strategy in the condition of
enabling the four types of prefetchers separately and dis-
abling all of them.

Figure 6 shows the success rate of the traditional
Flush+Reload attack and our prefetcher-aware Flush+Reload
attack. The result shows that the revised Flush+Reload attack
strategy has a higher quality. In addition, as experiment
shows, L2 hardware prefetcher has the least impact on the
attack.

V. DISCUSSION
A. TIMELINESS
The reverse-engineering results can only represent the char-
acteristics of prefetching behavior at that moment, since it
corresponds to the hardware status of thatmoment. Therefore,
it could be weird if we use the probes that decided by the
reverse-engineering results during the whole attack process,
since Flush+Reload usually works for a long time. However,
the behavior patterns of prefetching only fluctuate within a
certain range, even if the reverse-engineering results are no
longer time effective, adjusting the placement of probes based
on the reverse-engineering results can also play a positive
role.

To solve the problem of timeliness, we can design a
multi-threaded spy program to regularly reverse engineer
the prefetcher and update the probe placement, which may
perform better.

B. LIMITATION
Our defeating strategy usually perform well on relatively
large application. However, it doesn’t do well in small pro-
grams, because there is only a small scope to adjust the
position of the probes.

In addition, our strategy has advantages only when the
attacker needs to place multiple probes within a memory
page.

VI. CONCLUSION
A framework and methodology to figure out the impact of
hardware prefetching on Flush+Reload side channel attack is
proposed in this paper. An evaluationmodel and a novel probe

placement strategy that can defeat hardware prefetching are
introduced. The proposed strategy is tested on Core i5 pro-
cessor. Hardware prefetchers on modern machines compli-
cate Flush+Reload attack as the prefetched cache lines are
wrongly reported as being accessed by the victim. The pro-
posed strategy decreases the number of false positives but
increases the number of false negatives. Yet our strategy
has a higher success rate in a web application attack sce-
nario, which is a simple but practical attack scenario. Over-
all, this paper takes a step to successfully defeat hardware
prefetching.
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