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ABSTRACT The core problem in unmanned/intelligent working face of coal mining is the automatic
adjustment of shearer arm where the coal-rock interface detection is the key. The cutting location of shearer
drum affect the proportion of coal and rock powder around the cutting teeth of shearer drum. Therefore,
the method of on-line coal rock interface characterization using Terahertz Time Domain spectroscopy
(THz-TDs) we proposed aims to estimate the ratio of rock by Terahertz response. Firstly, anthracite and
quartz sandstone were uniformly mixed according to 39 different ratios in this study, the samples’ responses
were obtained by terahertz system, and then the obtained time domain data was converted into frequency
domain data by fast Fourier transform. The absorption coefficient spectrum and the refractive index profile
of the 39 samples were calculated by optical parametric model. Secondly, corresponding quantitative model
between mixed coal/rock powder and THz signal was built by using back propagation neural network
(BPNN) and least squares support vector machine (LSSVM). We expected to use the ratio of rock powder
detected by the model to estimate the depth of shearer drum teeth embedded in the rock layer. Finally,
we found that both two mathematical arithmetic is feasible to quantitatively detect different proportion of
coal and rock mixtures. The results show that the depth of shearer drum teeth embedded in the rock layer
could be estimated by the novel method, which means the coal-rock interface could be on-line characterized
by using THz-TDs and the height of the drum could be adjusted in time.

INDEX TERMS Terahertz, quantitative detection, least squares support vector machine, back propagation
neural network.

I. INTRODUCTION
Drum shearer is one of the most commonly equipment used
in coal mining face, having widely applied to thick, medium
and thin coal seam mining [1]. And the drum is the key com-
ponent of shearer cutting and conveying coal [2]. At present,
the adjustment of shearer arm during coal mining mainly
depends on the perception of coal-rock interface by artificial
experience including visual observation and observation of
vibration noise emitted during cutting [3]. However, a large
number of dust particles produced by the shearer during coal
cutting are not only harmful to personnel health, but also has
potential explosion [4]. In addition, once the drum of shearer
cuts through the rock, it will accelerate the aging of the
drum cutting teeth [5], [6]. The automatic/unmanned mining
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technology is a high-efficiency safe mining method, which
can solve the core problem of traditional mining method [7].

Identification of coal-rock interface is a key link of
unmanned mining technology, relating to the accurate cutting
of deep coal mining by shearer. Many researchers have pro-
posed some methods on identification of coal and rock inter-
face to achieve unmanned mining work face. In our previous
work, we explored the physical properties of coals/rocks
in THz band, and achieved fast, efficient and accurate clas-
sification of coal and rock by the means of principal com-
ponent analysis, support vector machine, and THz spectral
data. Finally, a stable coal-rock identification model of THz-
SVM is proposed [8]. Wang et al. proposed a method of
dynamic identification in a coal-rock interface based on
the fusion of adaptive weight optimization and multi-sensor
information. To research significant differences in the sig-
nals such as the cutting current, vibration, acoustic emis-
sion, and infrared thermography under diverse cutting ratios,
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seven coal-rock mixture test specimens with different propor-
tion are analyzed. Finally, both the detection accuracy and
detection speed of the method has been verified [9], [10].
Zhang et al. proposes a diagnosis method based on
bimodal deep learning andHilbert-Huang transform, and they
employs the mechanical vibration and acoustic waves of a
hydraulic support tail beam for an accurate and fast coal-
rock recognition. Finally, the comparison of experimental
results demonstrates the superiority of the proposed method
in terms of recognition accuracy [11], [12]. In [13], Si et al.
take the sound signal, Y-axis and Z-axis vibration signals as
analytic objects and proposes a fusion recognition method
for shearer coal-rock cutting state based on improved radical
basis function neural network and Dempster-Shafer evidence
theory. Experiment show that this method can effectively
identify the cutting state of coal and rock [14].

Even though the above technologies have realized the iden-
tification of coal and rock interface to some extent, there
still exist many problems, such as unreliable signal-to-noise
ratio, real-time data collection, and the control of drum height
due to the harsh underground mining environment. Even a
serious time lag problem and misjudgment problem exist
in the unitary coal-rock identification system established in
our original scheme, which can only detect accurately when
the cut is all rock. In this study, we adopt binary or even
multiple hybrid systems in the process of sampling, and
proposed a method for on-line coal-rock interface charac-
terization using Terahertz Time Domain spectroscopy (THz-
TDs). Terahertz wave is electromagnetic radiation between
microwave and infrared band. Its frequency band is usually
between 0.1∼10THz. The advantages of terahertz radiation
include high coherence, low energy, selective transmittance,
safety and so on [15]–[17]. Our application scenario is coal
mine, where there is a great difference in chemical compo-
sition between coal and rock, and literature [11] proves that
this difference is very significant in terahertz frequency band.
This indicates that THz-TDs is very promising for coal-rock
interface characterization compared with other methods.

The depth of the drum embedded in the rock determines
the ratio of rock powder around the drum to the surrounding
dust, which provides a meaningful basic for characteriz-
ing the coal-rock interface. In order to realize the detec-
tion of respective proportion of coal and rock, we analyzed
the relationship between rock ratio and the THz signal by
principal component analysis (PCA) before that. Two kinds
of THz signals, absorption coefficient and refractive index
within 0.4THz∼2THz frequencies, were extracted as mod-
eling objects. Simultaneously, due to compare the robustness
of the model, BPNN and LSSVMwere used to build different
detection models respectively.

Quantitative model of coal and rock is one of the most
important research contents in this article. Moreover, con-
sidering that the dust around the drum is floating in the air
during actual mining process. The samples collected in the
mine are actually dust and air, both of which are in a state of
gas-solid two-phase flow. Since dynamic samples are difficult

to extract, high density polyethylene (HDPE) was used to
replace air in the sample preparation process for simulat-
ing the static state of gas-solid two-phase flow. HDPE is a
non-polar thermoplastic resin with high crystallinity. HDPE
is chosen to replace the air in the sample mainly because it
has almost zero absorption to the terahertz light wave, and the
other HDPE has the function of sticking when mixed with
the coal/rock [18]. In this article, polyethylene was added to
the sample to change the sparsity of the sample, and the most
sensitive sparsity range to terahertz wave was studied.

Finally, we established a theoretical model based on the
relationship between rock ratio and the depth of rock layer
cut by drum. Once the rock ratio is detected, the model
can estimate the depth of the cut in time, which provides
a theoretical basis for future unmanned mining and further
research.

II. EXPERIMENTED METHODS
A. EXPERIMENTED DEVICE
The harsh mining environment and high humidity in under-
ground coal mines require a complete coal-rock interface
characterization system for sampling and detecting coal-rock
samples. Fig.1 is the Schematic diagram of on-line coal-rock
interface characterization system.

As shown in the Fig.1, when entering the sampling device,
the coal and rock powder first passes through the particle
size control area. According to the available literature [19],
the regression particle size of powder with particle size below
74µm is closer to the target value. Therefore, all samples used
in the subsequent experiments are standard samples, and the
particle size is controlled below 74µm. Part 2 in Fig.1 is dry-
ing area. In order to achieve the best detection effect, the sam-
ples need to be in a dry state or under uniform humidity to
exclude the influence of humidity on THz. The part 3 is the
sparsity control area. Terahertz wave is significantly sensitive
to sparsity degrees of sample. It is very necessary to maintain
the high sensitivity and uniformity of sample sparsity. The
sparsity can be controlled by properly controlling the flow
velocity of the sample. The collected powder passes through
the part 3, representing the successful sampling. Part 4 is
the THz detection system. Samples enters the part 4 in a state
of gas-solid two-phase flow, and the mass ratio of rock is
predicted by the coal-rock quantitative detection model. Part
5 is the coal-rock interface characterization system, which
estimates the height of the rock strata cut by the shearer
through the rock ratio and timely adjusts the height of the
shearer arm, and finally realize the automatic control of the
shearer arm in the underground coal mining face.

In the experimental process of terahertz signal extrac-
tion, the equipment we used is the TAS7500SP transmission
type of terahertz time domain spectrometer made by Advan-
test Company of Japan, and the resolution of the system
is 7.6 GHz. Its working frequency range from 0.1THz to
4THz, the scanning speed is less than 8ms/scan, and the peak
dynamic range is more than 70 DB. The terahertz spectral
system uses femtosecond optical pulse to generate and detect
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FIGURE 1. Schematic diagram of coal-rock interface characterization system.

TABLE 1. Standard value and uncertainty of standard material for physical properties and chemical composition gap of national coal.

FIGURE 2. Schematic diagram of transmission THz-TDs system.

terahertz pulse, which works as shown in Fig. 2. The pulse
emitted by femtosecond laser is divided into two parts of the
light beam when it enters the system, in which the pump light
illuminates the transmitter and generates a terahertz pulse.
Then the terahertz pulse travels for a distance in free space
and focuses on the detector. The transient generated by tera-
hertz induction in the detector can be measured by detecting
pulse. Terahertz pulse is generated by transient current of
photoconductive antenna or optical rectifier of nonlinear opti-
cal crystal. Since THz-TDs can cause the amplitude and phase
of the terahertz radiation, the absorption and dispersion effect
generated when the THz pulse passes through the sample
can be obtained by analyzing the signal in the frequency
domain [20]–[25]. In order to avoid the absorption of the

water vapor in the air to the terahertz wave and improve the
signal-to-noise ratio of the spectrum, the sealed sample area
is filled with nitrogen, the indoor is put into a dehumidifier,
and the whole experiment is carried out in a closed laboratory
at room temperature of about 26 degrees.

B. SAMPLE PREPARATION
In this article, we prepared tablet samples with different mass
ratio to study the differences of coal-rock mixed tablets with
different mass ratio, and to establish a quantitative detec-
tion model of coal-rock, thus achieving part 4 of Fig. 1. A
quantitative detection model is established for estimating the
height of the drum embedded strata through the rock ratio,
and to realize the coal-rock interface characterization and
timely adjust the height of the shearer. In this experiment,
we prepared 39 coal-rock mixture samples with different
mass ratios. The coal and rock are unified. The coal powder
is a standard sample of bituminous coal, and the rock powder
is a standard sample of the quartz sandstone extracted from
Tong ling, Anhui. The main standard value and the uncer-
tainty of the chemical components of the two standard matter
are shown in Table 1, Table 2.

Before preparing the samples, the coal powder and the
rock powder was ground by an agate mortar for reducing the
influence of the spectral scattering and screened out through
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TABLE 2. Identification value and uncertainty of standard materials for rock composition analysis.

TABLE 3. Physical properties of samples.

a 200-mesh steel screen. Then put samples into a 120-degree
oven and dry for 12 hours to remove the moisture adsorbed
during the grinding process. Table 3 shows the physical
properties of samples.

Then, 39 samples of different proportion were weighed
with a high-precision electronic scale, each sample is 200 mg
and mixed evenly. The samples were pressed by a tablet press
at a pressure of 24MPa for 4 minutes. Each pressed sheet is
13mm diameter disc-shaped sheets with smooth surfaces and
no cracks. Finally, we used the vernier caliper to measure the
thickness of the 39 coal-rock samples, and then calculated
the absorption coefficient and the refractive index. Although
the mass of each sample is the same, the thickness of the
pressed sheet is not consistent because of the different den-
sities of coal and rock. Table 4 shows the coal and rock
pressures information.

Where the ratio of rock is the mass ratio of rock powder to
the sample.

At the same time, we also prepared 33 Coal-HDPE samples
and 33 rock- HDPE samples with different sparsity by using
the procedure of preparing coal-rock samples. From pure
HDPE to pure coal/rock, there are 33 samples with differ-
ent sparsity degrees. Each Coal-HDPE or each Rock-HDPE
sample has a mass of 100 mg and is pressed at 20 MPa for
3 minutes. Finally, 33 Coal-HDPE samples and 33 Rock-
HDPE samples were prepared. The pressures information of
the 66 samples is not listed here.

C. DATA HANDLING
Before collecting the time domain data, we turned on the
TAS7500SP system for more than 30 minutes to keep the
system stable. The signal obtained from terahertz light wave
passing through the air as the background (reference sig-
nal), and the data obtained from terahertz light wave passing
through the sample to be tested is used as the sample signal.

Each sample is measured three times at different positions,
and the average value is taken as the time domain spectral
signal of the sample. At this time, the time domain spec-
trum obtained is transformed into frequency domain spec-
trum by Fourier transform (FFT). And then the main optical
parameters such as refractive index n(w), extinction coeffi-
cient k(w) and absorption coefficient α(w) are calculated by
using the optical parameter extraction model proposed by
Duvillaret et al [26], Dorney et al [27], and Vieweg et al [28].
The following is the formula for its calculation:

n (w) =
ϕ (w) c
wd

+ 1 (1)

k (w) =
c
wd

ln
{

4n(w)

ρ(w) [n (w)+ 1]2

}
(2)

α (w) =
2wk(w)

c
(3)

where w is frequency, ϕ(w) is phase difference between
sample signal and reference signal, ρ(w) is amplitude ratio
of sample signal to reference signal, d and c is sample
thickness(m) and speed of light respectively.

III. RESULTS AND DISCUSSIONS
A. TERAHERTZ SPECTRAL CHARACTERISTICS OF
COAL-ROCK
We conducted THz experiments on 39 samples, of which
11 samples shown in Table 5 are selected for time-frequency
domain analysis. After samples preparation, we use THz-TDs
to obtain the time domain signal of coal-rockmixture samples
which shown in Fig. 3(a). Compared with the background
sample, the terahertz amplitude of these samples decreases
caused by the surface reflection and absorption is decreas-
ing with the decrease of rock ratio, and the attenuation
phenomenon is becoming more and more obvious.

Frequency domain analysis is common in spectral analysis.
Time-frequency conversion is usually used to transform the
signal from time domain into frequency domain, and the
correlation calculation is carried out to obtain the information
beneficial to the research purpose. Fig. 3(b) is the spectrum
diagram obtained by fast Fourier transform (FFT) in time
domain spectrum. The bandwidth of air is about 4THz and
that of coal-rock mixture sample is between 1.8∼3THz. The
bandwidth of each sample tends to shorten with the decrease
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TABLE 4. Thickness of coal and rock pressure sheets.

TABLE 5. Ratio of rock of 11-group coal-rock mixture samples.

of rock ratio. All samples have a peak amplitude at 0.5THz,
and the peak amplitude gradually decreases with the decrease
of rock ratio.

Fig. 3(c) and (d) shows that the absorption spectrum and
the refractive index spectrum of coal-rock mixture samples
with different ratio of rock calculated by the formula (1)
and (3). It can be seen that, the absorption coefficients
of each sample showed an upward trend in the frequency
of 0.4-1.6 THz, while the refractive index of each sample
maintains a steady curve in this frequency range. What’s
more, the absorption coefficients increased gradually on
0.4∼1.6Hz with the decrease of rock, and the variation trend
of refractive index of 11 samples is the same as of that
of absorption coefficients with the decrease of rock shown
in Fig. 3(d).

For observing the interaction between the different rock
ratio of coal-rock mixtures samples and their response
under terahertz light waves, the principal component anal-
ysis (PCA) was employed. PCA is a multivariate analysis
method for converting a plurality of variables into a small
number of linear non-related variables by orthogonal trans-
form, and the converted set of variables is referred to as
the principal components (PCs). PCs can reflect most of the
information of the original variable and do not overlap each
other, usually represented as a linear combination of the origi-
nal variables. In addition, PCs fits the statistically significant
variance and random measurement error in the data, which
can propose the random error in the principal component
as much as possible, so as to reduce the dimension of the
complex data and minimize the influence of the measurement
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FIGURE 3. (a) Time domain spectrum, (b) Frequency domain spectrum, (c) Absorption coefficient spectrum, (d) Refractive
spectrum of coal and rock mixtures samples with different ratio of rock.

error [29], [30]. Based on absorption spectra and refrac-
tive spectra in the 0.4∼1.6THz frequency range, we used
PCA algorithm to consider the absorption effect of different
coal-rock mixtures samples.

First, the absorption coefficient and refractive index are
taken as input respectively, PCs as the output. We ana-
lyzed the results of principal component calculation shown
in Fig. 4(a), finding that the PC1 and PC2 describe 97.47%
and 2.07% of information when taking absorption coeffi-
cient as input. When taking the refractive spectrum as input,
the total contribution rate of PC1 and PC2 is 99.93%, with
99.55% of PC1, shown in Fig. 4(b). The results indicated
that PCA has a good dimensionality reduction effect on the
terahertz characteristic spectra of coal-rock samples. What’s
more, the PC1 extracted can represent almost all information
of characteristic spectra of the coal-rock mixture samples,
both the absorption spectrum and the refraction spectrum.

Second, in order to analyze the quantitative relation-
ship between PCs and rock ratio of coal-rock samples,
the PC1 was extracted because of its largest contribution
rate. The scatter diagram of all samples’ PC1 are shown
in Fig. 4(c) and (d). In Fig. 4(c), with the rock ratio increasing,
PC1 scores extracted by absorption spectrum decrease contin-
uously, which is consistent with the regulation of absorption

coefficient reduction in Fig. 3(c). Finally, based on the down-
trend of PC1, we built a linear model between PC1 scores
and rock ratio of coal-rock samples, finding the correla-
tion coefficient (R) of model is 0.8132. At the same time,
we also established a linear model between refractive index
and rock ratio, with a relatively small correlation of 0.6294,
as shown in Fig. 4(d). The result that the PC1 score of
absorption spectrum and refraction spectrum is basically dis-
tributed around the respective fitting lines represent obvious
correlation between THz signal and rock ratio.

B. QUANTITATIVE DETECTION MODEL OF COAL-ROCK
MIXTURE SAMPLES
In order to establish a corresponding quantitative model
between the ratio of rock and THz signal, we tried to divide all
the samples into two parts, of which 28 samples are training
set for calculating a quantitative model, and the remaining
11samples are prediction set for verifying the accuracy of the
trained model. Back Propagation Neural Network (BPNN)
is a kind of multi-layer feedforward neural network trained
according to error reverse propagation algorithm [31]. It is
the most widely used neural network at present [32]. Here, we
first employed BPNN to build a model, the input of model is
the absorption coefficient or refractive index of the sample in

VOLUME 9, 2021 25903



J. Yu et al.: Novel Method of On-Line Coal-Rock Interface Characterization Using THz-TDs

FIGURE 4. Principal component analysis (PCA) model built from different rock ratio of coal-rock mixture samples on the
absorption spectrum and refractive spectrum within 0.4∼1.6THz frequency. (a): PC1 and PC2 scores extracted from
absorption spectrum of 11 different coal-rock mixture samples; (b): PC1 and PC2 scores extracted from refractive spectrum
of 11 different coal-rock mixture samples; (c): PC1 score extracted from absorption spectrum of 39 coal-rock mixtures
samples; (d): PC1 score extracted from refractive spectrum of 39 coal-rock mixtures samples.

a selected range of frequencies and the output of model is the
predicted ratio of rock. In addition, we set up the intermediate
layer of BPNN model as five layers.

We select 11 samples listed in table 5 as the prediction set
of BPNN model because of their equal interval ratio and the
left twenty-eight groups as the training set. Fig.5 (a) and (b)
shows the predicted ratio of rock versus measured rock ratio
of coal-rock samples with THz signal in Fig. 3(c) and (d) over
the range from 0.4THz to 1.6THz as the input, respectively.
The average detection time of BPNNmodel is 0.094 seconds.
As expected, all the points are located near the reference
(Ref.) line, which means the predicted value are close to the
measured ratio of rock.

To evaluate the reliability and precision of the model,
the correlation coefficient (R) and the root-mean square
error (RMSE) are calculated. R represents the degree of linear
correlation between the predicted value and the measured

value, andRMSE is the square root of the ratio of the square to
the predicted number of the deviation between the predicted
value and the measured value, which can measure the devia-
tion between the predicted value and measured value. Hence,
we used R and RMSE to evaluate the stability of established
quantitative regression models. R and RMSE listed in Table 6
can better represent the correlation between detected ratio of
rock and actual ratio of rock. As shown in Table 6, when
the model takes the absorption coefficient of training set
ranged from 0.4THz to 1.6THz as input, the R of training set
exceed 97% and the prediction accuracy rate of this model
exceed 90%. Table 6 also compares the model accuracy
under different THz signal (absorption spectrum and refrac-
tive spectrum). When the model takes the refractive spectrum
of training set ranged from 0.4THz to 1.6THz as input, the R
of training set is 98.7% and the prediction accuracy rate of
this model can reach 92.8%. The comparison indicated the
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TABLE 6. Evaluation of model established by regression algorithm.

FIGURE 5. Prediction result of BPNN model based on (a) absorption
spectrum, (b) refractive spectrum.

result of refractive spectrum ranged from 0.4THz to 1.6THz
displays better performance than absorption spectrum ranged
from 0.4THz to 1.6THz for the BPNN model.

Another regression algorithm, the least square support vec-
tor machine (LSSVM), was employed for comparing with
the BPNN method [33]. LSSVM uses the least square linear

system as the loss function, instead of the traditional support
vector machine using the quadratic programming problem.
It can improve the accuracy of nonlinear signal processing
[34]. In the process of LSSVM model building, the ker-
nel function selects RBF_kernel, the optimized parameter
gam is 138, sig2 is 0.01. The training set and prediction
set of LSSVM model are the same as those of BPNN. The
average detection time of LSSVM model is 0.069 seconds.
Fig. 6 show the predicted value of all samples with different
input in LSSVM model. Comparing the Fig. 6(a) with (b),
the predicted value of training set in (b) is closer to the Ref.
line, which is the same as the information shown in Fig. 5.
To analyze the accuracy of two coal-rock quantitative model,
we listed the output result of rock ratio prediction in Table 6.
As shown in Table 6, whatever the input is the absorp-
tion coefficient of training set or refractive index, the R of
training set exceed 99% and the R of prediction set exceed
92% in LSSVM model. That means the LSSVM method
performs better than BPNN method in coal-rock quanti-
tative detection and the combination of THz spectroscopy
and statistical methods can really improve the precision and
could be used to detect quantitatively ratio of rock. The
results together relative researches about quantitative analysis
revealed that THz-TDs technology is expected to be effec-
tively used for quantitative detection of coal and rock in coal
mining face.

C. ANALYSIS ON THE SAMPLE SPARSITY
Ideally, the samples collected by sampling device in the mine
are coal, rock, or a mixture of the two, so we discussed
the problem of the rock powder ratio detection in the ideal
state and proved feasibility of this method in section III. B.
In practice, the samples collected by the sampling device have
the presence of air, which has almost no influence on the
above results because of little absorption of the dry air by
terahertz waves. However, due to the addition of air, the actual
sample states becomes coal-air, rock-air and coal-rock-air.
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FIGURE 6. Prediction result of LSSVM model based on (a) absorption spectrum and (b) refractive spectrum.

FIGURE 7. Equivalent coal-rock-air sample and equivalent
coal-Rock-HDPE sample.

At this point, it is necessary to discuss the influence of sample
sparsity on THz signal. The sparsity is the volume ratio of
medium to sample. Therefore, two extremes of coal-rock
sample, coal-air and rock-air, were analyzed.

Due to the complexity of the device experiment of gas-
solid two-phase flow, the addition of polyethylene was used
to simulate a certain static state of gas-solid two-phase flow.
Meanwhile, the sparsity of samples could be changed by
changing the contents of polyethylene so as to achieve the
purpose of this study. The key to online characterization of
coal and rock is to replace the sample of gas-solid two-phase
flow state with pressure sheet, as shown in Fig.7.

Lambert Beer’s law describes the direct relationship
between the absorption of substance to light, the thickness of
the absorbing medium and the concentration of the absorbing
material [35]:

A = εdc (4)

where,A is the absorbance, ε is the absorption coefficient. d is
the sample thickness, and c is the speed of light. According to
formula (4), when the thickness is consistent, the absorbance
of specific sample is only positively correlated with the sam-
ple concentration. Therefore, we assume that the absorption
coefficients of coal and rock are a and b, respectively. Since
the absorption of HDPE to terahertz wave is almost zero,
the absorbance of the mixture of Coal-Rock-HDPE is A. For
all sampling points:{

a1x1 + b1x2 = A1
a2x1 + b2x2 = A2

(5)

FIGURE 8. THz absorption coefficient of Coal-HDPE sample.

The equation (5) is expressed in matrix form, and it can be
obtained as follows:[

a1 b1
a2 b2

]
·

[
x1
x2

]
=

[
A1
A2

]
(6)

The simplification formula (6) can be obtained:

MX = A (7)

Through formula (7), we can also calculate the amount of
each component in a sample.

The ε calculated by Formula (7) is only the absorption
coefficient of pulverized coal to THz wave, while the α cal-
culated by formula (3) is the absorption coefficient and scat-
tering of pulverized coal to THz wave. Taking Coal-HDPE as
examples. We compare ε with α shown in Fig.8. Obviously,
α has obvious fluctuation, which may be caused by the scat-
tering of THz wave by pulverized coal. However, α and ε rise
by the same amount in the range of 0.4∼2THz, and almost at
the same level. Therefore, in this experiment, we can ignore
the THz scattering of the sample.

The presence of air in the sample inevitably affect the
sample sparsity, which may affect the accuracy of coal-rock
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interface characterization. Therefore, we study the effect of
sparsity on THz signal. Firstly, 33 samples with different
mass ratios of coal-HDPE and 33 samples with different
mass ratios of rock-HDPE were converted into different vol-
ume ratios, namely sparsity. Coal-HDPE and Rock-HDPE
are taken as research objects respectively. The terahertz sig-
nal of pure HDPE was taken as the reference signal, and
the remaining 32 terahertz signal of Coal-HDPE or Rock-
HDPE samples with different sparsity was taken as the sam-
ple signal. We obtain time domain signal of Coal-HDPE
and Rock-HDPE, respectively. Fig.9 shows time-domain
spectrum of Coal-HDPE and Rock-HDPE. We expected to
extract and fuse multiple features from the time-domain
and frequency-domain to analyze the sensitivity of differ-
ent sparsity to THz signals. Second, the time delay and
peak values in the time domain are extracted as two THz
features. The signal in the time domain cannot repre-
sent all information of samples, so we converted the time
domain into frequency domain by fast Fourier transform.
We also extracted the absorption coefficients and refractive
index of samples at 1THz frequency, calculated by formula
(2) and formula (3). The selection of 1THz mainly because
the signal of the sample on 1THz is more stable and has a
smaller slope than that near the peak. Finally, we standardized
these four characteristics to remove the unit limitation of
the data.

According to different sparsity boundaries, 32 samples of
Coal-HDPEwere divided into two categories, such as sparsity
below 10% and over 10%, sparsity below 20% and over 20%,
sparsity below 30% and over 30%, sparsity below 40% and
over 40%, etc. And 32 Rock-HDPE samples were classi-
fied in the same way. The detail of classification is shown
in Table 7. Support Vector Machine (SVM) is a classification
algorithm established on the basis of statistics. The method is
suitable for solving the problem of small sample and nonlin-
ear pattern classification based on the principle of structural
risk minimization. In the experiment, the kernel function of
support vector machine is the radial basis function. In addi-
tion, the network optimizationmethod is used to optimize two
parameters, penalty factor c and kernel function g.

We took the four normalized characteristics in the terahertz
time-frequency domain as input parameters for modeling.
Due to the limited number of samples, 32 samples were
divided into 24 calibration sets and 8 prediction sets for each
modeling. For Coal-HDPE and Rock-HDPE, 9 classification
modeling was performed respectively. The results are shown
in Table 7. The classification accuracy are represented by R.

In Table 7, we found that SVM can classify and predict
the sparsity of Coal-HDPE and Rock-HDPE regardless of
the sparsity boundary, and the prediction accuracy is more
than 87.5%. When the sparsity of the Coal-HDPE sample is
higher than 20%, the accuracy of SVM for the classifica-
tion of the sparsity reaches 100%. When the sample spar-
sity of Rock-HDPE is higher than 10%, the classification
accuracy of the sparsity reaches 100%. Thus it can be seen
that, SVM can realize the classification of sample sparsity.

FIGURE 9. (a) Time-domain spectrum of Coal-HDPE with different
sparsity, (b) Time-domain spectrum of Rock-HDPE with
different sparsity.

Combining the classification accuracy of Coal-HDPE and
Rock-HDPE, we found that the classification accuracy is
higher when the sample sparsity is higher than 20%. That is
to say, when the sparsity of the sample is higher than 20%,
the results of detecting coal and rock by THz-TDs are more
reliable. Sparsity analysis provides the basis for the design of
the coal mining machine sampling equipment in the coal face
in the future.

D. COAL-ROCK INTERFACE CHARACTERIZATION
After the coal-rock proportion is quantified and the sample
sparsity is discussed, we need to go back to ultimate goal
that characterization of coal-rock interface. Fig. 10 shows
the cutting state of the shearer drum embedded in the rock.
We expected to estimate the height of the shearer drum
embedded in the rock by the ratio of the rock occupying the
total sample. Theoretically, when the drum is embedded in
the rock layer, the ratio of rock powder generated by cutting
in one circle to all the dust is the ratio of rock volume cut to
total volume cut, including coal seam and rock layer. Since
the thickness of the coal seam cut by the drum is the same as
that of rock stratum, we use the surface area ratio within one
circle instead of the volume ratio. The geometric relation is
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TABLE 7. The result of classification accuracy.

FIGURE 10. Coal-rock interface detection.

FIGURE 11. Cutting mode of drum cutting for one cycle.

expressed as:

P =
Srρr

Srρr + Scρc
(8)

P is rock volume accounts for the total volume of coal and
rock, Sr is the surface area of rock layer cut, Sc is the surface
area of coal layer cut. ρc, ρr are the density of coal and rock
respectively.

Fig. 11 shows the drum cutting mode of shearer, where h is
the height of the shearer drum embedded in the rock, which
can be estimated by Sr :

cos∅ =
R− h
R

(9)

Sr = 2πRh+
∅πR2

180
− R (R−h) sin∅ (10)

Sc = S − Sr (11)

R, ∅ are the radius of the drum and angle shown in Fig. 9. S is
the surface area of a cylinder cut. Ideally, when there is no
coal seam caving except the cutting part, S is a fixed value:

S = 5πR2 (12)

By using formula (8)-(12), the coal-rock interface model
can be established to estimate h. In this way, our ultimate
goal, on-line coal-rock interface characterization, is achieved
by using THz-TDs.

IV. CONCLUSION
The intelligent mining face require the automatic height
adjustment of the shearer to realize. Such automation is
required to complete by automatic coal and rock detection
technology. This research has demonstrated how THz-TDs
can be utilized to detect the ratio of rock around the shearer,
and how the ratio of rock can be used to perform online
characterization of the coal-rock interface.

During the establishment of the coal and rock quantitative
detection model, both BPNN and LSSVM models based
on refractive index data can accurately quantitatively detect
coal and rock samples. Compared with the BPNN model,
LSSVM performs better in predicting rock ratio regardless
of which THz signal is used as parameter. Obviously, the
LSSVM model based on refraction spectrum as input can
meet the prediction accuracy requirements. The quantitative
detection model is combined with the theoretical model built
in section III. D to prove the possibility of coal-rock interface
characterization. What’s more, in terms of sample sparsity
analysis, we found that the SVM can accurately classify spar-
sity, and the classification accuracy is higher when sparsity is
higher than 20%.

All the obtained results implied that the novel method of
on-line coal-rock interface characterization using THz-TDs
could not only detect coal-rock interface online, but also
adjust the height of the next cut of shearer in time. Therefore,
the proposed method can accelerate the development process
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of intelligent mines, and it is of great significance to ensure
the safety of underground mining person, prolong the life of
shearer and improves the production efficiency.
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