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ABSTRACT Deep learning technology is rapidly spreading in recent years and has been extensive attempts
in the field of Brain-Computer Interface (BCI). Though the accuracy of Motor Imagery (MI) BCI systems
based on the deep learning have been greatly improved compared with some traditional algorithms, it is still
a big problem to clearly interpret the deep learning models. To address the issues, this work first introduces
a popular deep learning model EEGNet and compares it with the traditional algorithm Filter-Bank Common
Spatial Pattern (FBCSP). After that, this work considers that the 1-D convolution of EEGNet can be explained
by a special Discrete Wavelet Transform (DWT), and the depthwise convolution of EEGNet is similar to
the Common Spatial Pattern (CSP) algorithm. Therefore, this work improves the EEGNet by using the
algorithm Temporary Constrained Sparse Group Lasso (TCSGL) to enhance its performance. The proposed
model TSGL-EEGNet is tested on the BCI Competition IV 2a and BCI Competition III IIIa datasets that
both are 4-classes classification MI tasks. The testing results show that the proposed model has achieved
78.96% (0.7194) average classification accuracy (kappa) on the dataset BCI Competition IV 2a, which are
greater than EEGNet, C2CM, MB3DCNN, SS-MEMDBF and FBCSP, especially on insensitive subjects.
The proposed model has also achieved 85.30% (0.8040) average classification accuracy (kappa) on the
dataset BCI Competition III IIIa, which are greater than the EEGNet, MFTFS et al. At last, this work
uses average-validation and stacking to further enhance the effect of the model. The 4-classes classification
average accuracy rates reach 81.34% and 88.89%, and the kappas reach 0.7511 and 0.8519 on dataset
BCI Competition IV 2a and BCI Competition III IIIa, respectively. Additionally, this work also uses the
Grad-CAM to visualize the frequency and spatial features that are learned by the neural network.

INDEX TERMS Motor imagery, BCI, CNN, FBCSP, temporary constrained sparse group Lasso.

I. INTRODUCTION
To decode the MI EEG precisely is one of the key issues
for the BCI system. Generally, BCI system includes three
aspects. The first one is the signal processing and data
enhancement. The second one is feature extraction, including
feature selection and fusion, and the last one is the classifi-
cation and recognition. Generally speaking, the former pro-
cess is called signal pre-processing, the latter two processes
are called signal decoding [1]–[8]. Alternatively, the second

The associate editor coordinating the review of this manuscript and

approving it for publication was Vincent Chen .

process is also called the decoding, and the last process is
called the classification. In the traditional machine learning
methods, motor imagery based BCI system mainly moni-
tors sensorimotor rhythm (SMR). The SMR is an oscillatory
rhythm in electrical brain signals that originates in brain
regions involved in the preparation, control and execution of
voluntary movements [9], [10]. The increase in activity in
a particular frequency band is called event-related synchro-
nization (ERS), while the decrease in a particular frequency
band is called event-related desynchronization (ERD) [9].
The motor imagery, motor activity and sensory stimulation
can trigger the ERSs and ERDs [11], [12]. The EEG for
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the brain activity is usually divided into five distinct types:
δ rhythm (< 4 Hz), θ rhythm (4-7 Hz), α rhythm (8-12 Hz),
β rhythm (12-30 Hz), γ rhythm (> 30 Hz), and so
on. In references [4], [13], the α rhythm recorded from
within the sensorimotor area of the cerebral cortex is called
µ rhythm. For the left-hand and right-hand classification of
motor imagery tasks, µ and β rhythm variations are used
to identify the type of task in progress. The γ rhythm is
reliably used in invasive MI BCI, but it is rarely used effec-
tively in scalp EEG. For the multi-object MI BCI system,
the common motion types include the left hand, right hand,
foot and tongue motion [14]–[16]. These events have been
shown to produce significant discriminative changes in the
EEG signal relative to the background EEG signal. Addition-
ally, the feet motions are usually grouped together, and there
is no distinction between left and right foot motion, as well as
themovements of specific fingers. This is because the cortical
areas associated with these different movements are too small
to produce distinctive ERD and ERS signals [9]. However,
as far as we know, there is only one research [17] suggests that
β rhythm has the potential to be used to distinguish imagery
signals of movement between the left and right foot.

To process the EEG signals is challengeable because they
are non-stationary, and easily affected by external noise and
prone to signal camouflage. Additionally, the EEG acqui-
sition is difficult, and the signal-to-noise ratio (SNR) is
low, and the size of EEG dataset (number of trials) is
usually small. In MI tasks, although the number of tar-
get samples of each classification is relatively balanced,
there are difficulties in persons sensitivity. For example,
based on the estimation of the classification effect of the
state-of-the-art model on BCI Competition IV 2a dataset,
about 30% of participants were not sensitive to MI tasks
(i.e. the effect of the same decoding method varies from
person to person). Furthermore, the EEG signals were
also influenced by the subjects’ postures and emotions.
In recent years, there has been a lot of research on MI BCI.
Ang et al. [18] proposed a classical algorithm FBCSP.
It should be noted that the FBCSP has the mathematical
derivation and good interpretability. It won the champi-
onship of BCI Competition IV 2a/b dataset in 2008, but it
is not enough effective in practice. Schirrmeister et al. [6]
proposed the Deep Conv and Shallow Conv based on con-
volutional neural network (CNN). The Deep Conv and Shal-
low Conv use one-dimensional (1-D) convolution to extract
effective information, and explore the convolution structure
and the effectiveness of deep learning in MI BCI system.
Lawhern et al. [3] proposed the EEGNet, a universal deep
learning framework for the EEG tasks. The EEGNet is a com-
mon Deep learning framework for multiple EEG paradigm,
which is based on the improvement of the Deep Conv and
Shallow Conv, and achieves higher decoding accuracy and
shorter training time. Zhao et al. [7] used a multi-branch
3D CNN method to classify MI EEG signals. Their method
was somewhat like the popular feature pyramid networks for
object detection in videos. However, because EEG signals are

time-varying and non-stationary, the 3DCNN cannot perform
as well as in the object detection task. Ha and Jeong [8]
used CapsuleNet to realize a MI BCI system. They trans-
formed EEG into graphs, and this transformation by using
the Short-time Fourier Transform (STFT) might lose some
EEG information. To avoid this problem, they use the Capsu-
leNet to process graph classification. Though the CapsuleNet
was a good model in computer vision, some modifications
and improvements should be applied to it if we use it in the
BCI system. Generally speaking, some traditional algorithms
have good interpretability, and their computational speeds are
also fast. The neural network algorithms often get greater
accuracy rate, but the training speeds are slow. It is not
easy to be understood how these neural networks to achieve
the results. Therefore, the main research of this paper is to
make the neural network algorithm close to the traditional
algorithm in interpretability, and keep or even improve its
accuracy.

This paper proposes the Temporal-constrained Group
Lasso EEGNet (TSGL-EEGNet) algorithm by using the reg-
ularization method, which is an convolutional neural network
based approach for the motor imagery BCI system. Addi-
tionally, this method is based on the FBCSP and EEGNet,
and improves them according to the Temporary Constrained
Sparse Group Lasso (TCSGL) in [19]–[21]. The main work
of the method proposed in this paper is to combine the tradi-
tional method and the deep learning models with the theory
of MI BCI, and to discuss the interpretability of the neural
network methods in BCI domain.

The rest of the paper is below. In Section II, we intro-
duce the dataset and pre-processing method. In Section III,
we review the related works, and present the mathematical
formulation of our TSGL-EENet. In Section IV, we thor-
oughly evaluate the proposed model performance and use the
visualization way to interpret it. After that, we make some
discussions about the persons sensitivity and the method of
using cropped training to select the optimal time-segment
in Section V. Finally, we conclude the paper and propose a
methodology to guide the building of neural network struc-
tures in future work.

II. DATA
In our work we use two public datasets. The first one is
the BCI Competition IV 2a dataset (2008) [22], which is
a classical dataset and involves 4 classes of motor imagery
samples of left hand, right hand, feet and tongue movements
from 9 subjects. The data were recorded by 22 Ag/AgCl
electrodes, sampled at 250 Hz and bandpass filtered between
0.5 and 100 Hz and processed by 50 Hz notch filtering.
One trial of the data were 4 seconds length, and it was
obtained after 2 seconds fixation cross. The second dataset
is the BCI Competition III IIIa, which contends 4 classes of
motor imagery EEG signals of left hand, right hand, feet and
tongue movements from 3 subjects. The data were recorded
by 60 electrodes, sampled at 250 Hz and bandpass filtered
between 1 and 50 Hz with Notchfilter on. One trial of the
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data were 4 seconds length, and it was obtained after 2 sec-
onds blank screen and 1 seconds fixation cross with a short
beep. In data pre-procession, the data with missing values are
processed by using linear interpolation, detrending, filtering
between 4 and 38 Hz and standardization. The EEG data in
the datasets do not require some special data pre-processing
measures, and some pre-processing measurements are from
existing studies [3], [6], [7], such as detrending, standardiza-
tion, filter and the method of removing artifact signals.

III. METHODS
A. FBCSP
The FBCSP algorithm is an excellent traditional algorithm,
and its predecessor CSP algorithm is a kind of data-driven
algorithm by learning a spatial filter (linear transformation) to
maximize the two kinds of variance of training data for classi-
fication. Spatial filter is mainly concerned with the channel of
EEG data. In the Motor Imagery paradigm, the left-hand and
right-hand motor imagery responses have different channel
responses, so the CSP algorithm achieves better performance
in two-categories-classification tasks. The FBCSP adds the
feature of frequency domain to CSP algorithm, which has
been tested for a long time. The core of the FBCSP algorithm
is described as follows [5], [18], [23]:

1) All EEG data are filtered by filter banks, which are
usually composed of 4-8 Hz, 8-12 Hz, · · · , 32-36 Hz.
Usually, the bandwidth is 4 Hz, and the number of
filters is 9.

2) After filtering, all the data is decomposed into nine
bands. The data on each band are calculated using
the CSP algorithm. This are done by maximizing the
following objective function as Eq. (1):

w∗ = argmax
w

wT
∑

c1 w

wT
∑

c1 +
∑

c2 w
, (1)

where
∑

c1 and
∑

c2 correspond to the channel covari-
ance matrix of

∑
c1 and

∑
c2 , respectively. w is a

spatial filter. This objective function, also known as a
Rayleigh Quotient, has an analytic solution, which is
equivalent to solving a generalized eigenvalue decom-
position (GEVD) problem. If x is the sample, i is
the class number, and j is the frequency band ordi-
nal, then the feature F is derived from the following
function Eq. (2):

F i,j = wxi,j. (2)

3) The 2 × NW extreme eigenvalues (the maximum and
the minimum of NW eigenvalues) corresponding to the
spatial filter are selected. Then each maximum and
minimum eigenvalues of the spatial filter is matched
to each other accordingly (spatial filter channel pair).

4) The energy (variance) of the spatially filtered channel
is calculated and normalized to the total energy of the
channel in a given frequency band. The logarithm of
the energy is the final features.

5) By concatenating the features from all 9 filtering bands,
the mutual information-based feature selection is car-
ried out on 2× NW × 9 spatial filtering channels, and
NS filtering channel pairs are selected. A maximum of
2 × NS features can be selected based on whether the
selected features are already paired with each other.

6) Because CSP is designed for two-classes classification
problems, in the case of multi-classes tasks, a one-vs-
rest or one-vs-one policy must be specified. The former
will result in up to class× 2× NS features in FBCSP.

7) SVM and other maximum interval classification algo-
rithms are used to effectively classify the features.

B. EEGNet
The EEGNet imitates the feature engineering of FBCSP in
some way. It consists of a 1-D convolution, a depth-wise con-
volution and a separable convolution. The final classification
is carried out through full connection layer and activated by
the Softmax function.

In Fig. 1, the structure of EEGNet is represented as three
parts: feature extraction, feature selection and classification.
All of its convolution structures do not use the bias terms.
There are several reasons to say that it imitates the FBCSP’s
feature engineering. In feature extraction, the EEGNet con-
sists of a 1-D convolution and a depth-wise convolution.

FIGURE 1. The structure of EEGNet.
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The essence of convolution is to calculate the similarity
between the convolution and the convolution kernel. This
is similar to the DWT process, and the convolution kernel
is similar to the wavelet basis function with a fixed scale.
Actually, the DWT can be realized by the filter bank. Hence,
the 1-D convolution without the bias is a filter bank for a sig-
nal, and the convolution kernel is the filter. Therefore, when
1-D convolution kernel convolutes along the time dimension
for a single channel, it can be regarded as filtering the fre-
quency. The depth-wise convolution convolutes the data on
the channel dimension, and obtains a set of spatial filters.
Each spatial filter represents a linear transformation that maps
all channels to one feature. The whole procedure is similar to
the FBCSP algorithm.

The EEGNet’s feature extraction can be expressed by the
following formula Eq. 3:

F i,j = w(f jxi) = wxi,j, (3)

where F is the features, and x is the samples, and w is the
spatial filters, and f is the frequency filters. i and j represent
the category number and the frequency filter ordinal, respec-
tively. It can be seen that Eq. (2) is equivalent to Eq. (3)
in general, and the latter has more variable parameters and
higher degrees of freedom. Together, the feature learning part
of the EEGNet consists of a filter bank (1-D convolution) and
a spatial filter (depth-wise convolution), which is the main
content of the FBCSP.

In feature selection, it convolutes time-spatial features
in different frequencies with 1 × 16 depth-wise convolu-
tion firstly and then using 1 × 1 point-wise convolution to
mix them, which cannot be exactly understood. As a fact,
the separable convolution is not exactly choosing features but
mixing them with different weights to imitate the selection.
In practical application, the feature selection part increases
the robustness of the EEGNet and improves the accuracy
of decoding and classification. Feature selection is also a
very important part of CSP algorithms. The feature selection
methods commonly used in MI BCI [18], [23] such as the
Mutual Information based Best Individual Feature (MIBIF),
the Mutual Information-based Naïve Bayesian Parzen Win-
dow (MINBPW), theMutual Information based feature selec-
tion (MIFS), the Fuzzy-Rough set-based Feature Selection
(FRFS), the Mutual Information-based Rough Set Reduction
(MIRSR). The regularization algorithms are also used as
feature selection methods recently by Zhang et al. [19], and
Jin et al. [24], [25]. Choosing the appropriate feature selection
method is a good way to improve the model effect.

At last, in the classification part, its input includes three
domains: time, frequency and spatial domains. The time
domain features are generated by time dimension. The fre-
quency domain features are generated by 1-D convolution
and separable convolution. The spatial domain features are
generated by depth-wise convolution based on frequency
domain features. After all these features are selected, four
probabilities are output through a fully connected layer with
the activation function of Softmax to get the category.

By conclusion, the main ideas of the EEGNet and FBCSP
algorithm are the same, which can be said that the EEGNet is
a deep learning algorithm evolved from the classic algorithm.

C. TSGL-EEGNet
In the field of deep learning technology of BCI, EEGNet is
a delicate algorithm, which has a clear explanation. But it is
still not enough, since its feature selection part is difficult to
be understood, and the increasing of the feature space will
lead to over-fitting. Keeping the main body of the EEGNet
unchanged, increasing the interpretability of the feature selec-
tion part and reducing the over-fitting cases will be a good
beginning to solve the problem. To deal with the over-fitting,
the regularization is a good method to solve the problem, and
it also has good interpretability. In addition, the regularization
is also one of the feature selection methods. Therefore, this
paper proposes a Temporal-constrained Sparse Group Lasso
EEGNet (TSGL-EEGNet) using regularization.

The structure of the TSGL-EEGNet is shown in Fig. 2
and Table 1. The main difference from EEGNet is the
Feature selection section. Unlike the EEGNet’s separable
convolution, only 1-D convolution is used here for better
interpretability. The TSGL penalty is added to this convolu-
tion, which makes the weight matrix of this layer change in
the direction of penalty minimization during the training.

FIGURE 2. The structure of TSGL-EEGNet.
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TABLE 1. Structure of TSGL-EEGNet.

The TSGL regularization is shown in Fig. 3. The black
squares represent the inhibition of parameters, and the
white squares represent the activation, and the gray squares
also represent the activation but with small weights. The
Group Lasso (GL) can inhibit groups which is repre-
sented by outgoing vectors. The Sparse Group Lasso (SGL)
can inhibit some parameters in the activated groups. The
Temporal-constrained Lasso (TL) can keep temporal domain
being smooth. The GL will inhibit or activate a whole group
when it is affected, and the SGL will inhibit some parameters
of the activated groups based on the GL, and the TL will
decrease or increase some parameters to keep the difference
of a group in temporal domain being small. In Fig. 3, it can
be seen that the TSGL regularization consists of the TL and
SGL. In order to explain these Lassos in mathematics, some
symbols are defined as follow. In the N classification prob-
lem, for one sample, the selected feature can be expressed as
wF , where the feature obtained by the feature learning part is
a 2-Dmatrix namedF and the 1-D convolutionweight matrix
is a 3-D matrix named w.
The purpose of the Temporary Constraint is to keep the

time domain features smooth and reduce the distortion caused
by other regularization, so as to be closer to the real EEG
signals. The Temporary Constraint uses the features of the
latter time minus the features of the former time. Thus, when
the temporal domain is smooth enough, the temporary loss
should be close to 0. By assuming that there are T timesteps
in EEG data, the features of 1 to T − 1 timesteps are wF1
and 2 to T timesteps are wF2, so the Temporal-constrained
Lasso can be expressed as ‖wF2 − wF1‖1.
The Sparse Group Lasso, which consists of a Group Lasso

and a L1 Norm, can make the groups sparse. In the Sparse

FIGURE 3. The GL, SGL and TSGL regularization. The black squares
represent the inhibition of parameters, and the white squares represent
the activation, and the gray squares also represent the activation but with
small weights. Group Lasso (GL) can inhibit groups which is represented
by outgoing vectors. Sparse Group Lasso (SGL) can inhibit some
parameters in the activated groups. Temporal-constrained Lasso (TL) can
keep temporal domain being smooth.

Group Lasso, the activated group elements can also have
the sparsity. The frequency and spatial domain features are
grouped in this paper to select appropriate frequency and
spatial features, and the time domain features of these can also
be selected by L1 Norm, which can be expressed as ‖w‖2,1+
‖w‖1. ‖w‖2,1 =

∑
g∈w
√
|g|‖g‖2 =

∑
g∈w

√
|g|
∑

g2,
‖w‖1 =

∑
w |w|, where g is a group vector that is generally
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the length of a dimension of w. |g| is the length of the
vector. In this paper, we treat the features calculated by the
feature selection convolution as a group, and each feature is
an element of the group vector. Therefore |g| represents the
length of the dimension that determines the number of output
features in the matrix w.
The final weight matrix w∗ is obtained by solving the

following problem Eq. (4):

w∗ = arg min
w,a,b
−
1
n

∑
x

N∑
i=1

[
Softmax(awF + b)iyi

+(1− yi)ln(1− Softmax(awF + b)i)
]

+
β1

n
‖w‖2,1 +

β2

n
‖w‖1 +

β3

n
‖wF2 − wF1‖1, (4)

where β1, β2, β3 are the regularization coefficients, and x is
the sample, and y is the ground truth. a, b is the Layer FC’s
weight and bias, respectively. n is the number of samples.
Let σ represent the activation function (here is Softmax) and
z represent awF + b, the problem’s loss function C can be
expressed as Eq. (5):

C = −
1
n

∑
x

N∑
i=1

[
σ (z)iyi + (1− yi)ln(1− σ (z)i)

]
+
β1

n
‖w‖2,1 +

β2

n
‖w‖1 +

β3

n
‖wF2 − wF1‖1. (5)

The gradient descent method is used to obtain the approx-
imate solution of the problem, where the gradient is Eq. (6),
Eq. (7), and Eq. (8):

∂C

∂w
=

1
n

[∑
x

N∑
i=1

aF
(
σ (z)i − yi

)
+ β1

√
|g|

w
‖w‖2

+β2sgn(w)+ β3sgn(wF2 − wF1)
]
, (6)

∂C

∂a
=

1
n

∑
x

N∑
i=1

wF
(
σ (z)i − yi

)
, (7)

∂C

∂b
=

1
n

∑
x

N∑
i=1

(
σ (z)i − yi

)
. (8)

After the final weight matrix w∗ is obtained, the selected
features can be acquired with formula Eq. (3).

D. MODEL SAVING
In this paper, a special method is used to save the best
performed model in training procession, which is considered
to be an aspect of the performance improvement of the model.
The model was usually trained with either early stopping
strategy or optimal retention strategy. The early stop strategy
can effectively reduce the training time, but setting the tol-
erance to the early stop is a big issue. If the tolerance is too
small, the model may not be trained to optimum, and too large
will waste a lot of computing resources and time. In practice,
usually only one of the accuracy or loss metrics is considered.

In order to obtain the good performance for both accuracy
and loss metrics, we proposes a statistical optimal retention
strategy. The strategy focuses on the loss optimizations, but
allows 2.5% to float up and down, which is considered as
an insignificant change. If the model trained by the epoch
has a better rate of accuracy appearing within the range of
fluctuations, the model will be saved since the loss optimality
is a constant at this point. If the loss drops significantly,
the current model is considered to be the optimal model.
Otherwise, the current model will not be saved because its
performance has not been improved.

The method used in this paper is a combination of
early-stop strategy and statistical optimal retention strategy,
which not only retains the advantages of the early-stop strat-
egy but also preserves optimal model.

E. ENSEMBLE METHOD
The cross-validation is often used in the training process
of the BCI system to improve the generalization perfor-
mance. The cross-validation usually divides the training set
into K equal parts, one of which is used as the validation
set, and the rests are used as the training set to train the
model. This is also called K-fold cross-validation. When
evaluating the model’s performance, the average perfor-
mance of each cross-validation model on the test set is
taken as the performance of this model on the data set. The
cross-validation method will reduce the size of the training
set and the validation set, and it is suitable for the large-sized
and medium-sized data sets. For the small-sized data sets,
the model training and verification will be insufficient, espe-
cially the neural network models are difficult to train. Actu-
ally, the training data size is usually small in MI BCI feild,
so it is not suitable to directly use the cross-validationmethod.
Therefore, this paper adopts the average-validation method
and simplified bagging method to improve the performance
of the model.

The average-validation method is to perform K indepen-
dent training on the same training set and test set. It requires
random initialization for each independent model, and the
feeding order of the training data is also random. That is to
say, each fold is trained from a different starting point, and
the trajectory of gradient descent is different as well. These
ensure that the models will not converge to the same local
minimum with a high probability, and will converge to the
global minimum (if it exists), which means it has a certain
generalization performance.

The bagging method is a classical application of ensem-
ble learning. It generally generates multiple weak classifiers
through data sampling. Whether we use the cross-validation
or the average validation, K models will be eventually pro-
duced in the validation procedure. The performance of these
K models is different, and none of them are very strong
classifiers especially for insensitive subjects. If they can
play a role in forecasting together, the better results can be
achieved. So this paper uses a simplified bagging method,
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that is called stacking, to integrate them, thereby enhancing
the performance of the final model.

We let c1, . . . , ck be the classifiers, 1 ≤ k ≤ K , x be
the training trials and y be the groudtruth. The simplified
bagging method can be expressed as finding the optimal
weights α1, . . . , αk so that

(
α1c1(x) + · · · + αkck (x)

)
− y is

the smallest. That is to solve the following optimal problem
as Eq. (9) shown:

arg min
α1,...,αk

(
α1c1(x)+ · · · + αkck (x)

)
− y,

s.t. α1 + · · · + αk = 1,

α1, . . . , αk ≥ 0. (9)

Let A = [α1, α2, . . . , αk ], and let C(x) = [c1(x), c2(x), . . . ,
ck (x)]T . Eq. (9) can be rewritten as the Linear Regres-
sion (LR) problem shown in Eq. (10):

argmin
A

1
2
‖AC(x)− y‖22 (10)

Since the weight matrix A has found, it can use Eq. (11) to
classify trials.

Class = AC(x) (11)

IV. RESULTS & VISUALIZATION
A. RESULTS
Although we hope to present a complete end-to-end model
in this paper, the regularization coefficient still needs to be
specified artificially. In order to avoid the influence of subjec-
tive priori information on the model, the grid search method
is used to select the regularization coefficients L1, L2,1 and
TL1 automatically. L1 is the coefficient of Sparse Lasso, and
L2,1 is the coefficient of the Group Lasso, and TL1 is the
coefficient of the Time Constrain penalty. Each grid search
training uses 5-fold average-validation. The results on BCI
Competition IV 2a dataset are shown in Table 2.

TABLE 2. Selection of regularization parameters for different subjects on
BCI Competition IV 2a dataset.

The 5-fold average-validation training using the regu-
larization coefficients selected by grid search is compared
with other baseline models. It should be noted that the
TSGL-EEGNet and the EEGNet used the saving-model
method are proposed in this paper. The results are shown

in Table 3. It can be seen that our method reaches 81.34%
average accuracy and 0.7511 average kappa, which is obvi-
ously higher than other methods. When comparing with the
EEGNet, it can be seen that the TSGL-EEGNet has effec-
tively reduced the over-fitting and improved the accuracy.
When comparing with other neural network methods such
as the MB3DCNN, it can be seen that the TSGL-EEGNet
usually has more advantage in kappa than accuracy, which
explains that the TSGL-EEGNet performs well in all classes.
When comparing with other traditional methods such as the
SS-MEMDBF, it can be seen that the TSGL-EEGNet has
more advantage on insensitive subjects, which explains that
the TSGL-EEGNet is more suitable for most people. As
shown in Table 4, the two-sided p-values of the proposed
method and the others are all less than 0.05. The T Test
shows the two results do not have the same mean and the
KS Test shows the two results are differently distributed. This
shows that the method proposed in this paper is a significant
improvement on the former, which is more effective and
robust.

To fully prove the effectiveness of TSGL-EEGNet, we use
an additional dataset BCI Competiton III IIIa to test the pro-
posed method. The Grid Search results are shown in Table 5.
The 5-fold average-validation results are shown in Table 6.
We don’t calculate the p-value on this dataset, because the
number of subjects in this dataset is too small that the p-value
is not statistical. It can be seen that ‘TSGL-EEGNet (16,10)
stacking’ reaches 88.89% average accuracy and 0.8519 aver-
age kappa, which higher than 1st method by 7.48% and
higher than the EEGNet by 11.04% according to kappa. This
can show that the proposed method could be widely used.

B. VISUALIZATION
All of the following model-related images are determined by
the specific data and models. This does not mean that other
data and models will have the same images, but some com-
mon knowledge can be gained from it. The best model is from
Subject 03, which has the highest decoding accuracy, and here
we use it as the visualization model. In feature selection, both
the EEGNet and the proposed model use 1-D convolution,
so the frequency feature of the model may be decided by
both of the 1-D convolution of feature extraction and selection
section. It adds the unnecessary complexity to interpret the
whole model. Therefore, in this part, the 1-D convolution
and its variant in feature selection are replaced by 1 × 1
convolution. This can effectively avoid the interference of
other factors, and show more clearly what the model learned,
and explain the role of TSGL regularization.

We produce the Fourier Transform on the results for each
frequency filter to find the certain frequency features that the
model learned. As shown in Fig. 4, the horizontal axis is the
frequency, and the vertical axis is the amplitude. Different
colors of lines represent the different channels, and different
frequency-filters are represented as different letters. From
this we can see that the filters are obtained from different
frequency information, and different channels (electrodes)
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TABLE 3. Accuracy (kappa) of different models on the dataset BCI Competition IV 2a. The TSGL-EEGNet and EEGNet are using 5-fold average-validation,
and the others are from references.

TABLE 4. Accuracy (kappa)’s p-value of the purposed method ‘TSGL-EEGNet (16,10) stacking’ to other methods on the dataset BCI Competition IV 2a.

TABLE 5. Selection of regularization parameters for different subjects on
BCI Competition III IIIa dataset.

are similar in one filter. Some filters have similar effects,
such as Filter (e), (f) and (g), but some filters are not doing
anything, such as Filter (l) and (p).

Fig. 5 averages the frequency features in Fig. 4 for each
class. As shown in Fig. 5, it can be seen that the frequency
bands mainly cover 0− 30 Hz and 38− 55 Hz. According to
[6], [18], we divide the frequency into 5 bands, where 2−8Hz
is δ and θ rhythm, and 8−12Hz is α rhythm, and 12−20Hz is
low β rhythm, and 20−30 Hz is high β rhythm, and> 30 Hz
is γ rhythm. Therefore, the frequency features learned by the
model cover δ, θ , α, low β, high β and γ rhythm. What’s
more, there is not much difference in the frequency features
of each class. It shows that the unselected features can’t use
directly to classify EEG signals.

The similarities of the depth-wise convolution and the
CSP spatial filtering have been illustrated in Section III-B.
To conveniently observe the depth-wise convolution, the spa-
tial topology map is shown in Fig. 6, in which it uses the
numbers to represent these spatial filters and uses the same
letters in Fig. 4 to represent frequency filters. In our method,

the data is standardized that the mean is 0 and the standard
deviation is 1. Additionally, the distribution of the weights
should be the same as the data, that is, the mean is 0 and the
standard deviation is 1, and some weights could be negative
values. If two spatial patterns are complementary, they are
somewhat equivalent since they maybe work together for a
signal which has both positive and negative values. It can be
found in Fig. 6 that after passing through the frequency filter
of similar frequency band, the spatial filter is also similar such
as filter (b), (g), (k), and there are some symmetrical filters
in each group of spatial filters such as filter (b, 7) and (b, 8),
(k, 3) and (k, 4). It also can be seen that there are many spatial
filters that pick up features near C3, C4,Cpz, and Pz, which
are common spatial features that distinguish left and right
hand imagery.

In feature selection, the visualized model uses 1 × 1
convolution and TSGL regularization penalty to select and
fuse the features. The inputs of this part are all the features,
and the outputs are the selected and fused features. In this
paper, the selected and fused features are called new features,
while the unselected features are called original features.
These new features are the direct basis for classification,
so they represent what the model really learns and what is
really useful in the data. If the regulation of the new features
is reflecting by using Grad-CAM [30] algorithm, the features
that contribute to classification can be obtained. This paper
presents an overview of the features of each class, as shown
in Fig. 7 and Fig. 8.

It can be seen that the selected new features are clearly dis-
tinguished among the different classes. In terms of frequency

VOLUME 9, 2021 25125



X. Deng et al.: Advanced TSGL-EEGNet for MI EEG-Based BCIs

FIGURE 4. TSGL-EEGNet original frequency features on Subject 03 for each frequency filter.

TABLE 6. Accuracy (kappa) of different models on the dataset BCI Competition III IIIa. The TSGL-EEGNet and EEGNet are using 5-fold average-validation,
and 1st and 2nd are the winners of the competition. (1st : Fisher ratios of channel-freqency-time bins, feature selection, designing mu and beta passband,
multiclass CSP, SVM; 2nd : surface laplacian, 8-30Hz filter, CSP (one-vs-rest), SVM+kNN+LDA, bagging).

FIGURE 5. TSGL-EEGNet original frequency features on Subject 03 for
each class.

features, the left hand (Fig. 7(a)) and the foot (Fig. 7(c))
have relatively high amplitude features, and the right hand
(Fig. 7(b)) and the foot (Fig. 7(d)) features have low ampli-
tude. It mainly show that the rhythm of δ, θ, α, β of the
right hand is inhibited to the left hand at 2-25 Hz. The foot
(Fig. 7(c)) is similar to the left hand, which implies that
spatial features may be different. The difference between the
features of the foot and tongue (Fig. 7(d)) is similar to that

between the left and right hands. Moreover, there are some
differences between the right hand and the tongue, mainly
reflected in the inhibition of the δ, θ , α rhythm of the right
hand motor imagery, which is the new knowledge for MI
tasks. In terms of the spatial features, as shown in Fig. 8,
the model obviously has leaned the different features for each
class and the interesting-band. From Fig. 8(a) and Fig. 8(b),
it can be known that the model exactly picks up features near
C3 and C4 electrodes for right and left hand motor imagery,
and it is well matched ERD and ERS in α and β bands.
The left hand (Fig. 8(a)) extracts the features of the right
hemispheres in α band and the left and right hemispheres
in β band, and the right hand (Fig. 8(b)) is the opposite
of the left hand. When we consider it combining with the
frequency features, it is consistent with the known facts that
the amplitude of the contralateral sensorimotor cortex signal
increases and the contralateral β band signal decreases simul-
taneously. Fig. 8(c) reveals that the spatial feature of the foot
motor imagery is concentrated on electrode Cpz. Fig. 8(d) is
similar to Fig. 8(a), but the tonguemovement’s δ, θ, α rhythm
amplitude are lower than left hand. Additionally, it can be
found that 38-55 Hz γ band frequency features amplitude for
all classes are almost the same and the spatial teatures are the
same too, which suggests γ band signals may be noises.
Compared with the EEGNet (Fig. 9 and Fig. 10), the pro-

posed method has some similarities with EEGNet. But
the EEGNet’s features has little difference among classes
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FIGURE 6. Topomaps of TSGL-EEGNet depth-wise convolution weights.

FIGURE 7. TSGL-EEGNet selected frequency features on Subject 03 for
each class.

and interesting-bands. It can be found that the EEGNet
seems to pay more attention to γ band features than
the TSGL-EEGNet from Fig. 9 and Fig. 10. Additionally,
the EEGNet don’t have significantly ERD and ERS from
Fig. 10(a) and Fig. 10(b). These may be the performances of
over-fitting. The proposed method can learn more different
features of classes, and can effectively avoid the over-fitting,
which is an important reason why this method is better than
the EEGNet.

FIGURE 8. TSGL-EEGNet selected spatial features in interesting-band on
Subject 03 for each class.

In addition to the above results, this paper also does some
research to try to explain why different subjects have different
accuracy rates, even uses the same best model. This issue will
be discussed in detail in the discussion section.

V. DISCUSSION
A. THE PROBLEM OF PERSON SENSITIVITY
To analyze this problem of the person sensitivity, this paper
chooses another Subject, Subject 06, whose model has the
worst decoding accuracy. We compares his optimal model
with the optimal model in section IV-B to find out the feature
difference between them. As shown in Fig. 11 and Fig. 12,
we can find that the EEGNet is difficult to learn enough useful
information from the subject data with low decoding accu-
racy. There is no significant difference in frequency features
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FIGURE 9. EEGNet selected frequency features on Subject 03 for each
class.

FIGURE 10. EEGNet selected spatial features in interesting-band on
Subject 03 for each class.

FIGURE 11. EEGNet selected frequency features on Subject 06 for each
class.

among the four classes, and the spatial features repeat the
same pattern in all interesting-bands of one class.

By using the TSGL-EEGNet, the result is better, but is still
not enough. As shown in Fig. 13 and Fig. 14, we can find that
the four classes have some obvious differences in frequency
features as well as the spatial features. This may be the reason
why the performance of the TSGL-EEGNet is better than
the EEGNet. But these features are not as remarkable as the

FIGURE 12. EEGNet selected spatial features in interesting-band on
Subject 06 for each class.

FIGURE 13. TSGL-EEGNet selected frequency features on Subject 06 for
each class.

FIGURE 14. TSGL-EEGNet selected spatial features in interesting-band on
Subject 06 for each class.

features of Subject 03, as shown in Fig. 7 and Fig. 8. This is
probably the reason why the models don’t work for everyone,
and it is a common phenomenon that may be related to some
specific factors such as skull thickness, density, shape, and so
on. How to adapt the model to all people, or how to develop
a targeted model to help these people, will be a long-term
problem to be solved.

B. SELECTING THE OPTIMAL TIME-SEGMENT
Since the EEG signals are time-varying and non-stationary,
it is important to select the optimal time-segment. Generally,
there are three kinds of methods to select time windows,
experience-based [13], [23], [26], [31], search-based [32],
and data-based. The experience-based method is obviously
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not good, and the search-based method requires training a
huge number of models, so both are not suitable for the
neural networks. However, the data-based methods almost
depend on the data, which would serve as the best choice
for neural networks. Additionally, the cropped training also
would be a good choice to select the time-segment when using
a point-to-point model. The cropped training is usually used
in the popular researches referred to [6], [7], and it is a data
reinforcement method during training period. It crops a long
data into many intersecting short ones which share the same
label, which likes using a window to slide throughout the long
data. The data size can be increased greatly using this method,
so that the size of the EEG data set is no longer small. For
example, the dataset used in this paper has a 4-second motor
imagery time and is sampled at a rate of 250 Hz, so each
sample has 1000 data points. Since the effective rhythm of
motor imagery is usually greater than 4 Hz (α, β, γ rhythms),
and according to the Nyquist-Shannon Sampling Theorem,
this paper uses a time window of 2s (500 data points) to cut
the data every 25 (< 31.25) data points. Thus, each sample
can generate 21 data, which all share the same label. That is,
the training and the test data size are both 21 times larger
than before and the data length is reduced to 2s. During
the training, the samples will be classified according to the
different subjects, and then each subject’s samples will be
loaded in random order.

The cropped training method crops a long data into many
intersecting short ones which share the same label. Thus,
a new neural network structure for short data is obtained.
As a fact, the main discrimination between online and offline
methods is the time requirement for computing. Online
methods emphasize immediacy which is difficult for offline
methods. However, the time requirement can be cut down
using the cropped training when amethod can output the clas-
sification results in the confidence level. Thus, the cropped
training can help the offline methods convert to the online
methods. The classification confidence level is the variance
computed by the outputs from the last Softmax activation
layer. Obviously, the larger the variance is, the higher the con-
fidence is presented. ForN classes task, the largest variance is
N−1
N 2 would be reached when outputs have only one element
values 1, and others value 0. In this way, all the algorithms
designed for off-line systems can be easily applied to on-line
systems, which will be a direction of our future researches.

VI. CONCLUSION
In this work, we propose a neural network model TSGL-
EEGNet, which has the good performance on the MI EEG
and the well interpretability for itself. The TSGL-EEGNet
is improved based on a popular deep learning model
EEGNet, and uses the traditional machine learning algorithm
for optimization. The proposed model in our work based on
the EEGNet is consistent with the principle of CSP algorithm,
whichmaximizes the variance of class features through learn-
ing a spatial filter. Based on the public datasets, the proposed
method reaches the 81.34% average classification accuracy

and the 0.7511 average classification kappa on the BCI Com-
petition IV 2a dataset. Its 4-classes classification accuracy
and kappa are significantly greater than EEGNet (74.95%
0.6658), SS-MEMDBF (0.60), MB3DCNN (75.02% 0.644),
C2CM (74.46% 0.659) and FBCSP (67.75% 0.57). Addition-
ally, the proposed method also reaches 88.89% average clas-
sification accuracy and 0.8519 average classification kappa
on the BCI Competition III IIIa dataset, which is greater than
the others as well. The results show that it is an effective way
to improve the classification accuracy by merging the tradi-
tional machine learning and deep learning algorithms. Fur-
thermore, the proposed model is somewhat interpretable. On
one hand, after themathematical explanation, it can be proved
that the proposed deep learning model and CSP algorithms
have equivalent feature extraction and selection parts. On the
other hand, through the visualization, it can also be proved
that the proposed model can learn meaningful features, such
as the features of reflecting ERSs and ERDs in α and β bands.
From the visualization, it can be seen that the deep learning
models can have the same interpretability as some traditional
machine learning algorithms. Thus, the interpretability of the
deep learning models could be achieved by incorporating
with some traditional mathematical algorithms. But this is
not to say that we should be content with the traditional
algorithms. On the contrary, the deep learning has the advan-
tages that some traditional algorithms cannot achieve, such as
end-to-end models, adaptive hyperparameters learning, and
high classification accuracy. This suggests that we need to
re-study in the traditional fields to get better, faster and more
interpretable neural network models.
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