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ABSTRACT An adversarial reinforced report-generation framework for chest x-ray images is proposed.
Previous medical-report-generation models are mostly trained by minimizing the cross-entropy loss or
further optimizing the common image-captioning metrics, such as CIDEr, ignoring diagnostic accuracy,
which should be the first consideration in this area. Inspired by the generative adversarial network, an adver-
sarial reinforcement learning approach is proposed for report generation of chest x-ray images considering
both diagnostic accuracy and language fluency. Specifically, an accuracy discriminator (AD) and fluency
discriminator (FD) are built that serve as the evaluators bywhich a report based on these two aspects is scored.
The FD checks how likely a report originates from a human expert, while the AD determines how much a
report covers the key chest observations. The weighted score is viewed as a ‘‘reward’’ used for training the
report generator via reinforcement learning, which solves the problem that the gradient cannot be passed back
to the generative model when the output is discrete. Simultaneously, these two discriminators are optimized
by maximum-likelihood estimation for better assessment ability. Additionally, a multi-type medical concept
fused encoder followed by a hierarchical decoder is adopted as the report generator. Experiments on two large
radiograph datasets demonstrate that the proposed model outperforms all methods to which it is compared.

INDEX TERMS Medical report generation, encoder-decoder, adversarial training, reinforcement learning.

I. INTRODUCTION
Automatic radiology-report generation is a computer-aided
diagnostic technology used for generating a free-text
description of disease diagnosis or future treatment based
on radiology images (such as chest x-rays). Compared with
general disease diagnosis technology, it is closer to artificial
intelligence (AI), for it can not only output a list of num-
bers corresponding to the probabilities of possible diseases
but also ‘‘write’’ an easy-to-understand report with natural
language. With this technology, patients can read the chest
x-rays by themselves, and no longer have to queue up to
consult doctors. Moreover, the workload of radiologists will
be greatly lightened.

Chest x-rays are the most common type of radiology
image, which produces images of the heart, lungs, airways,
blood vessels, and bones of the spine and chest, and is used
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for diagnosis and treatment of chest diseases, such as pneu-
monia and pneumothorax. A chest x-ray report example is
shown in Figure 1. Such a report includes two important
parts: findings and impression. The former part describes in
detailed the representations of different organs and regions
and a determination of whether the patient has a certain or
potential disease. The latter part is only the conclusion of the
former part. Hence, the focus in this article is on generation
of the findings.

A similar study area is natural image captioning in com-
puter vision and natural language processing because it has
the same objective of mapping from images to text sequences.
Hence, some common points exist between the two stud-
ies. First, encoder-decoder architecture is the basic architec-
ture used to tackle these problems, in which the encoder,
composed of a deep convolutional neural network (CNN),
encodes images into a contextual vector, and the decoder,
composed of long short-term memory (LSTM) [1], decodes
the contextual vector into a word sequence step by step.
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FIGURE 1. Example of chest x-ray images with corresponding report and
post-extracted medical labels. Solid box shows the origin radiology report
and dashed box the post-extracted medical labels used in the proposed
approach.

Additionally, the entire model is usually trained by mini-
mizing the cross-entropy loss or further retuned via rein-
forcement learning. However, an image-captioning approach
cannot be directly applied to medical report generation for
several significant reasons: (1) compared to natural images,
chest x-rays involve complex and abstract medical concepts,
e.g., ‘‘pulmonary atelectasis’’ and ‘‘cardiomegaly’’ shown
in Figure 1, which is difficult for a plain encoder to capture;
(2) a natural image caption mostly has one sentence, while
a finding contains four, five, or even more sentences, and
thus the basic decoder may struggle to learn such long-term
dependencies; and (3) for medical report generation, one
should make diagnostic accuracy the top priority, rather than
blindly seeking high text-relevance scores (such as BLEU
score).

Following [2]–[5], some improvements are made herein
based on the original encoder-decoder approach. First,
multi-type medical concepts are incorporated into the
encoder. Detailed common chest observations and medical
subject heading (MeSH) labels are adopted as two types
of intermediate semantic information, which are predicted
by a separate sub-network (called multi-label classification,
or MLC) in the encoder. These predicted medical concepts
will be embedded in the follow-up decoder along with the
encoded image features. These two types of medical con-
cepts have different semantic granularities, in which the
observations cover generalized diseases, while the MeSH
terms narrow their concepts to medical vocabulary. Second,
a hierarchical LSTM is adopted as the decoder. The hierar-
chical decoder splits the decoding process into two stages:
given encoded features, the sentence LSTM decodes topic
vectors one by one, and then the word LSTM decodes a
word sequence from a topic vector. Furthermore, the attention

mechanism [6], [7] is also applied to the two decoding stages.
More importantly, to achieve highly accurate and fluent
medical reports, adversarial reinforcement learning (ARL)
is introduced. Specifically, two additional discriminators are
developed as the evaluator to provide an overall score con-
sidering both accuracy and fluency of a generated report.
Different from the generative adversarial network (GAN)
in image generation, the output of the report generator is a
discrete sequence of words sampled from decision probabili-
ties, and it blocks the transmission of the gradient from the
discriminator to the generator [8], [9]. To solve this prob-
lem, reinforcement learning (RL) is introduced to optimize
the generator. In adversarial training, the report generator is
trained by RL viewing the overall score as the reward, and
simultaneously the discriminators improve their judgment
through maximum-likelihood estimation. The discriminators
are the language fluency discriminator (FD) and diagnostic
accuracy discriminator (AD), allowing for readability and
accuracy, respectively. The FD checks how likely a report
originates from a human expert, while the AD determines
how much a report covers the ground-truth observations.

To the best of our knowledge, this is the first introduction
of ARL to report generation for medical images. In short,
the main contributions of the proposed framework are sum-
marized as follows. (1) A novel ARL framework (Figure 2)
is proposed in which the report generator is trained by RL
with the rewards provided by discriminators, and the discrim-
inators are updated via maximum-likelihood estimation in
training iterations. (2) The proposed model is evaluated on
two large chest-radiograph datasets with common captioning
metrics and diagnostic accuracy, and it is found that the
proposed model achieves the best performance against com-
pared methods. (3) The medical concept prediction model
(MLC branch) is embedded in the encoder, and, accordingly,
the proposed model cannot only generate a free-text report,
but also predict observations compared to previous studies.

II. RELATED WORK
In this section, related research on natural image caption-
ing, radiology-report generation, and adversarial training is
reviewed.

A. NATURAL IMAGE CAPTIONING
The basic encoder-decoder architecture (also called
CNN-RNN) for natural image captioning was first pro-
posed by Vinyals et al. in 2015, overturning the pre-
vious template-based approach [10]. In this approach,
the CNN-composed encoder maps an image into a con-
text vector representation, and then the LSTM composed
decoder unrolls and outputs the word distribution at every
time step conditioned on the context vector. This model
is trained by minimizing negative log-likelihood or cross-
entropy. Later, Xu et al. introduced the attention mechanism
from machine translation to the decoder and achieved better
performance [7]. All the above approaches are top-down,
which start from an image and convert it into words, while in
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FIGURE 2. Overview of proposed framework involving three components: encoder, decoder, and reward module. The encoder is comprised of two
separate branches that extract visual and semantic features for the decoder separately. The decoder generates a report hierarchically. Note that the
decoding process is not unfolded due to space limitations. In adversarial training, the generator is trained by RL using rewards offered by the
discriminators. Simultaneously, the discriminators are updated by the maximum-likelihood estimation approach.

You et al.’s study another bottom-up approachwas introduced
that derives words describing various aspects of an image;
in addition, semantic attention was also adopted [11]. For
generating longer image captions, a hierarchical decoder was
utilized to produce more detailed and coherent paragraph
descriptions [12]. Prior models are mostly trained by mini-
mizing negative log-likelihood or cross-entropy, but they suf-
fer exposure bias and wrong-objective problems [13], among
which the former means that the model is only exposed to
the training data distribution instead of its own prediction,
and the latter means cross-entropy loss trains the model to
be adept at greedily predicting the next word at each time
step without considering the entire sequence. Rennie et al.
proposed a novel self-critical [14] training method that views
the model as an agent and optimizes the CIDEr score by
reinforcement learning. This work proves that RL is a very
worthwhile recipe with which to boost the performance of
captioning models.

B. RADIOLOGY-REPORT GENERATION
The achievements in natural image captioning have greatly
promoted the development of medical report generation. The
encoder-decoder architecture is also widely used in this area.
To enforce the coherence between sentences, Xue et al.
built an iterative decoder with visual attention [15], while
Jing et al. introduced the hierarchical decoder and proposed
a co-attention mechanism [2] that simultaneously attends to
images and predicted tags. Additional works relevant to ours
originate from Yuan et al. [5] and Liu et al. [3]. Yuan et al.
extracted medical concepts as intermediate semantic features
from images to enrich the decoder, which reduced the dif-
ficulty of direct mapping from medical images to reports.
The medical concept prediction and visual feature encoding
shared the same networks and only attended one type of
concept feature into the decoder. In our work, a separateMLC
model used for predicting multiple medical labels including
observations and MeSH terms is built, and these predictions

cannot only be fused into follow-up decoder, but also serve
as one part of the final output for disease diagnosis. Liu et al.
retuned their model by RL by designing two kinds of rewards:
a natural language generation reward (NLGR) and a clinically
coherent reward (CCR) that consider readability and accu-
racy, respectively. However, the reward design is empirically
based and computationally complex, and cannot be improved
during training. In the proposed approach, the reward is gen-
erated from learnable discriminators and can be updated in
adversarial training.

C. ADVERSARIAL TRAINING
The GAN invented by Goodfellow et al. is one of unsu-
pervised deep-learning systems [16]. Its general idea is that
to train a generator (G) one selects another network as a
discriminator (D), and the two neural networks compete with
each other in the training process. G tries to generate a more
realistic data distribution to deceive D, and D aims to estimate
the probability of a sample come from real distribution rather
than G. Owing to its significant effectiveness, adversarial
training has become a general training methodology widely
used in all kinds of generative models. Hundreds of GAN
variants have been put forward for image generation in recent
years, such as DCGAN [17] and StackGAN [18]. Different
from image generation, sequence generation must go through
a sampling operation, which is non-differentiable and cannot
be optimized by gradient descent. Yu et al. proposed Seq-
GAN [9] and optimized the sequence generator using RL
to overcome this problem, which is similar to the approach
proposed in the present paper.

III. METHODOLOGY
A. OVERVIEW
In general, the proposed model can be divided into three
components: encoder, decoder, and reward module, as shown
in Figure 2. The encoder is comprised of two separate
branches (CNN and MLC) that extract visual and semantic
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features for the decoder separately. The MLC branch, serv-
ing as a multi-label classification task, predicts common
observations and other medical concepts for given images.
These predicted medical labels are embedded in vectors and
then inserted into the decoder. The decoder is developed by
hierarchical LSTM [1], [12] with multi-level attention [5],
[19]: the sentence LSTM generates topics vectors step by
step and the word LSTM generates words one by one based
on a topic vector. In adversarial training, the reward module
composed of two discriminators generates a reward according
to the quality of a generated report, which is then used to
train the generator via RL. The decoder and reward module,
as a pair of adversaries, are updated alternatively in train-
ing iterations. The details are elaborated in the following
subsections.

B. ENCODER
Prior works [2], [5], [11], [20], [21] have proved that incor-
porating semantic information can improve the performance
of natural image captioning and medical-image-report gen-
eration. These semantic labels are predicted commonly by
multi-label classification (MLC) [2], [5], [22]. In the studies
of [2] and [5], the extraction of visual and semantic features
shares the same network, but in practice it is found that the
MLC task is easier to learn than text generation; the shared
network tends to learn the former task with higher prior-
ity and incurs lower loss, whereas the latter task performs
worse. Hence, the proposed encoder selects two separate
CNN branches, i.e., the CNN backbone and the MLC branch,
which are used to extract visual and semantic features,
respectively.

1) VISUAL FEATURE EXTRACTION
The CNN branch (shown in Figure 2) is responsible for visual
feature encoding. For one patient, there may exist one or more
radiology images, representing different views. Yuan et al. [5]
conducted a multi-view fusion on deep features after the
CNN backbone. However, an implicit and simpler approach
is adopted here; that is, different views are treated as different
input channels and it is assumed that the deep CNN can learn
how to perform effective feature fusion during training.

In the proposed approach, the CNN backbone is roughly
based on Resnet-152 [23] for the following reasons. First,
it has a deeper structure, which is suitable for feature repre-
sentation learning. Second, the CNN module is at the bottom
of the generative model, and it is easy to suffer the vanishing
gradient problem. However, the residual block of ResNet is
helpful to solve this problem. The last classification layer is
removed and an adapter module added for channel number
conversion at both ends. This adapter module is composed of
a convolutional layer, batch-normalization layer, and rectified
linear unit (ReLU).

Given a group of frontal and lateral radiology images, they
are resized and packed into a three-dimensional (3D) tensor
I with the shape of 224 × 224 × 2, which means that each
channel represents a specific view. Then, the input tensor is

fed into the proposed CNN backbone and finally encoded to
a 1024-dimensional visual vector v.

2) SEMANTIC FEATURE EXTRACTION
The MLC branch maps raw images to intermediate semantic
labels that can help the rear decoder generate words more
accurately. In the proposed approach, a submodel is used
to predict medical label probabilities for given images; this
probability vector and label embedding are viewed as seman-
tic features that will serve as the input of the rear decoder.

Following [5], the semantic information is derived from
two sources: 14 common chest radiographic observa-
tions [24] (including enlarged cardiomediastinum,
cardiomegaly, lung opacity, lung lesion, edema, consolida-
tion, pneumonia, atelectasis, pneumothorax, pleural effusion,
pleural other, fracture, and support devices and no finding)
and MeSH labels. MeSH is a standard medical vocabulary
used for indexing, cataloging, and searching of biomedical
and health-related information. These two types of labels pro-
vide information from different semantic granularities. The
observation labels focus on generalized medical concepts,
while the MeSH terms narrow these concepts to medical
keywords. The total number of MeSH labels depends on the
dataset, so it is denotedM .

VGG-16 [25] is a common CNN backbone with strong
fitting ability. An improvement of VGG-16 is to use several
consecutive 3 × 3 convolution kernels to replace larger con-
volution kernels (11×11 or 5×5). For a given receptive field,
using a stacked small convolution kernel is better than using a
large convolution kernel, because multiple non-linear layers
can learn more complex patterns and the cost is relatively
small. Therefore, it has been widely used in medical image
classification [26]–[28].

A small multi-task network, which is based on the
VGG-16, is built to predict these two types of labels by
MLC. The two tasks share the same backbone with different
classification layers. For observation prediction, given the
image tensor I, the MLC network outputs a 14-dimensional
vector lo =

(
lo1 , l

o
2 , . . . , l

o
14

)T, where the ith value represents
the probability for the ith observation label. The observa-
tion MLC task is trained by binary cross-entropy (BCE)
loss [26], [29]:

LoMLC = −
14∑
i=1

(
w+i l

o?
i log loi + w

−

i

(
1− lo?i

)
log

(
1− loi

))
,

(1)

where lo? =
(
lo?1 , l

o?
2 , . . . , l

o?
14

)T denotes the ground-truth
binary labels of observations, andw+i andw−i are loss weights
for the ith class, determined by the class distribution, to han-
dle the data imbalance problem,

w+i =

∣∣lo?i = 1
∣∣

K
, w−i =

∣∣lo?i = 0
∣∣

K
, (2)

where K denotes the number of samples and |·| represents the
count operation.
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FIGURE 3. Workflow of hierarchical decoder. For simplicity, the embedding layer in word LSTM is not shown.
In general, there exist two-level loops: the sentence LSTM unfolds in the vertical direction and the word LSTM
in the horizontal direction.

Similarly, one can obtain the MeSH loss function LmMLC .
Finally, the total MLC loss LMLC is the weighted sum of the
two,

LMLC = LoMLC + L
m
MLC . (3)

C. DECODER
The proposed decoder is composed of hierarchical LSTMs
and multi-level attention. Given encoded features, the sen-
tence LSTM generates topic vectors in an external loop, and
the word LSTM outputs words in an internal loop starting
with one topic vector (shown in Figure 3). Moreover, it is
worth noting that the attention mechanism is used in this
procedure. The extracted semantic information, including
observations and MeSH predictions, is used with the hidden
state of the sentence and word LSTM, respectively, helping
to generate abnormal-aware reports.

1) SENTENCE DECODER
As shown in Figure 3, the sentence LSTM is initialized with
the encoded visual vector v, and the input is derived from the
attention between the hidden state and observation embed-
ding weighted by their corresponding probabilities. The topic
vector and stop probability are mapped from the hidden
state.

Similar to [5], the attention function soatt =

ATTEN (So, lo,hs) is defined as follows:

α = softmax
(
Watt tanh

(
SoWs,1lo+Ws,2hs

))
,soatt = SoTα,

(4)

where So ∈ R14×D is the observation embedding matrix, lo ∈
R14 are predicted observation probabilities, hs ∈ RD is the
hidden state of the sentence LSTM, α ∈ R14 are attention
weights, soatt ∈ RD is the attention output, andWatt ∈ R14×14,

Algorithm 1 Decoding Recurrence of Sentence Decoder
Input: v: visual vector; So: observation embedding matrix;

lo: predicted observation probability vector; Nmax : max-
imum number of topics. γ : stopping threshold.

Output: topic vectors
(
τ (1), τ (2), . . .

)
1: initial n = 1, h(0)s = v;
2: repeat
3: compute attention So(n)att = ATTEN

(
So,lo,h(n−1)s

)
;

4: run one-step LSTM operation h(n)s =

LSTMCell
(
So(n)att ,h

(n−1)
s

)
;

5: compute a topic vector τ (n) = tanh
(
Wτh

(n)
s

)
;

6: compute stop probability y(n)s =sigmoid
(
Wsh

(n)
s

)
;

7: n = n+ 1;
8: until y(n)s > γ or n > Nmax

Ws,1 ∈ RD×14, and Ws,2 ∈ R14×D are learnable parameter
matrices. Note that the bias term is omitted in this article for
simplicity.

Given the visual vector v, the observation embedding
matrix So, and predicted observation probability vector lo,
the decoding recurrence of sentence decoder is listed in
Algorithm 1.

In Algorithm 1, τ (n) ∈ R2D denotes the topic vector for the
nth sentence, y(n)s is a real number, representing the probabil-
ity of stopping recurrence, andWτ ∈ RD×2D andWs ∈ RD×1

are the learnable parameter matrices. LSTMCell(·) represents
the standard operation of LSTM for one step. γ denotes the
threshold of stopping generation. For simplicity, the cell state
of LSTM is omitted in this article. The output topic vectors
will be used as the initial hidden state of LSTM in the word
decoder.
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In the pre-training stage, the decoder is trained using
cross-entropy loss. The partial loss from the sentence decoder
is

Lsent=−
N∑
n=1

(
y?(n)s logy(n)s +

(
1− y?(n)s

)
log
(
1−y(n)s

))
, (5)

where y?s =

(
y?(1)s , y?(2)s , . . . , y?(N )

s

)T
denotes the

ground-truth stopping labels for one report. For example,
if one report has four sentences, then y?s = (0, 0, 0, 1)

T .

2) WORD DECODER
Similar to the sentence decoder, the word decoder is also
based on a single-layer LSTM. The word LSTM initialized
with a topic vector is fed with attended MeSH embeddings
and previously generated word embeddings. The attention
operation is the same as that of the sentence decoder, except
that the inputs are replaced by MeSH embeddings Sm ∈
RM×D, MeSH probabilities lm ∈ RM , and the hidden state
of the word LSTM, hw. The word-decoding recurrence for
the nth sentence is demonstrated in Algorithm 2.
In Algorithm 2, the superscript (n, t) denotes that the cur-

rent sentence step is n and the word step is t; < bos >

and < eos > denote the beginning and end tokens of one
sentence, respectively. We ∈ RD×D, Wm ∈ RD×D, and
Wh ∈ RD×C are learnable parameter matrices. Embedding
represents the embedding layer and y(n,t)w ∈ RC the predicted
word distribution. sampling denotes the operation of sam-
pling a word from the probability distribution y(n,t)w . Finally,
a full report is obtained by collecting all sampled words in
order.

In the pre-training state, the loss of the word decoder is

Lword = −
N∑
n=1

T∑
t=1

C∑
i=1

y?(n,t)w,i log y(n,t)w,i

= −

N∑
n=1

T∑
t=1

log y(n,t)w,gt , (6)

where y?(n,t)w =

(
y?(n,t)w,1 , y?(n,t)w,2 , . . . , y?(n,t)w,C

)T
denotes the

one-hot encoded ground truth, C is the size of vocabulary,
and y(n,t)w,gt represents the probability retrieved with an index
of the ground-truth token in y(n,t)w (i.e., the likelihood for the
ground-truth token).

The total loss of the decoder in the pre-training stage is the
weighted sum of Lsent and Lword :

Lg = wsentLsent + wwordLword . (7)

D. REWARD MODULE
The reward module composed of two discriminators provides
rewards for the generator in ARL. In this section, details of
the reward module design are given.

To fully measure the quality of a generated medical image,
two aspects are considered: language fluency and diagnostic

Algorithm 2 Decoding Recurrence of Word Decoder

Input: τ (n): nth topic vector; Sm: MeSH embedding matrix;
lm: predicted MeSH probability vector; Tmax : maximum
number of words per sentence.

Output: nth sentence
(
z(n,1), z(n,2), . . .

)
1: initial t = 1, z(n,0) =< bos >, h(n,0)w = τ (n);
2: repeat
3: compute attention Sm(n,t)att =ATTEN

(
Sm,lm,h(n,t−1)w

)
;

4: compute input a(n,t) = WeEmbedding
(
z(n,t)

)
+

WmS
m(n,t)
att

5: run one-step LSTM operation h(n,t)w =

LSTMCell
(
a(n,t),h(n,t−1)w

)
;

6: compute word probability y(n,t)w =softmax
(
Whh

(n,t)
w

)
;

7: sample next word z(n,t) = sampling
(
y(n,t)w

)
;

8: t = t + 1;
9: until z(n,t) =< eos > or t > Tmax

accuracy. Hence, two discriminators are designed to sepa-
rately evaluate one report from these two aspects.

1) READABILITY
Previous work [3], [13], [30], [31] used natural language
generation (NLG) metrics like BLEU [32], ROUGE [33],
and CIDEr [34] as important metrics with which to calculate
the reward. However, this rule-based method cannot capture
natural language structure information and can often be mis-
leading. For example, repeated words or sentences can simply
improve these metrics, although it has no practical use.

A language fluency discriminator Df is designed to mea-
sure the fluency of a generated report. Given an embedded
word sequence of a medical report X =

(
x(1), x(2), . . .

)
,

the following formulation is used to calculate the fluency
reward:

rf = Df (X)

= sigmoid
(
Wf LSTM (X)

)
, (8)

where rf is the fluency reward for the given report. A higher
value means better language fluency. Wf ∈ RD×1 is a
learnable parameter matrix, and LSTM in the above equation
denotes multi-step LSTM operation.

2) ACCURACY
To measure the diagnostic accuracy, an accuracy discrim-
inator Da is designed that checks how much a report can
cover the key observations. Note that these observations are
parts of labels used in semantic information extraction. Da
takes in embedded word sequence of an entire report X and
a binary vector of observation ground truth lo?, and outputs a
consistency reward ra. The detailed formulation of Da is

ra=Da
(
X, lo?

)
= sigmoid

(
Wa,o

((
Wa,l lo?

)
�
(
Wa,hLSTM (X)

)))
, (9)
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where Wa,h ∈ RD×14, Wa,l ∈ R14×14, Wa,o ∈ R14×1 are
parameter matrices of the accuracy discriminator.

3) REWARD FUNCTION
Considering both language fluency and diagnostic accuracy,
the weighted sum of rf and ra is used as the final reward:

r
(
X, lo?

)
= λrf + (1− λ) ra
= λDf (X)+ (1− λ)Da

(
X, lo?

)
, (10)

where λ is a trade-off parameter within [0, 1].

E. ADVERSARIAL REINFORCEMENT LEARNING
Before ARL, some pre-training steps must be taken: (1)
pre-train the embedding layer by word2vec [35], [36]; (2)
train the MLC model using loss function 3; (3) fix the MLC
and pre-train the encoder-decoder with loss function 7; and
(4) pre-train the discriminators with the ground-truth reports
and generated reports. The ARL stage is focused on first.

In each training iteration of ARL, the two discriminators
are first updated by the loss functions defined later with the
fixed generator, and then the generator is optimized using RL
by fixing the discriminators (see Figure 4).

1) TRAINING DISCRIMINATORS
Given generated reports and real reports with their observa-
tion labels, discriminators are trained bymaximum likelihood
estimation, aiming to give a higher reward for real data and
lower for generated data.

The one positive sample pair is defined as (I,X?, lo?),
where I denotes image data, and X? and lo? represent its
corresponding ground-truth report sequence and observation
labels, respectively. Feeding image data into the generator,
one can obtain a negative sample pair (I,X, lo?). Note that
the ground-truth observation labels are still used instead of
the predictions by MLC. According to maximum-likelihood
estimation, the losses of FD and AD comprise the negative
log-likelihood:

Lfd = −logDf
(
X?
)
− log

(
1− Df (X)

)
, (11)

Lad = −logDa
(
X?, lo?

)
− log

(
1− Da

(
X, lo?

))
. (12)

2) TRAINING GENERATOR
Given the reward provided by discriminators, the generator is
refined by RL to generate more realistic reports. The genera-
tor is viewed as an agent, and the input image and previously
generated words as environmental states s. An ‘‘action’’ a
refers to the prediction of the next word conditioned on the
input image and previous actions in decoding recurrence. The
agent interacts with the environment and takes actions based
on its policy πθ , which is defined by the parameters in the
generator.

In the training process, the policy πθ is performed stochas-
tically to sample a word at every time step and uses it as input
for the next time step. Stochastic policy represents that the

probability distribution of the agent choosing an action equals
the predictive probability distribution by πθ (a | s):

π (a | s) , p(a | s), (13)∑
a∈A

π (a | s) = 1, (14)

where a denotes an action belonging to an action space A,
and s is a description of the environment.

The final reward r can be calculated by the reward module
after all words are generated. The training goal is to minimize
the negative expected reward:

Lrlg (θ ) = −EX∼πθ
[
r
(
X, lo?

)]
, (15)

where X denotes the sampled report, lo? ground-truth
observation labels, and r (X, lo?) the total reward provided
by discriminators for this sampled report. According to the
REINFORCE algorithm [37], the gradient of Lrlg (θ ) with
respect to θ can be represented as

∇θLrlg (θ ) = −EX∼πθ
[
r
(
X, lo?

)
· ∇θ logπθ (X)

]
≈ −r

(
X, lo?

)
· ∇θ logπθ (X) . (16)

To reduce the variance of gradients, a baseline is subtracted
from the origin reward, and the baseline reward is derived
from the greedy decoding of the generator similarly to the
self-critical algorithm [14]:

∇θLrlg (θ ) ≈ −
(
r
(
X,lo?

)
−r

(
X̂,lo?

))
·∇θ logπθ (X) , (17)

where X̂ represents the greedily decoded report, while X is
the sampled report. With the gradient formula given above,
one can use the policy gradient (PG) [37] to update the
parameter θ . The PG is a gradient-based optimization method
for RL, and it can be used even if the agent is a continuously
differentiable function. In the training process, if a series
of actions achieve a high reward, the PG will update the
parameters to improve the joint probability of these actions.

In conclusion, the ARL algorithm is detailed in
Algorithm 3.

IV. EXPERIMENTS
In this section, the datasets used, implementation details,
compared methods, and evaluation metrics are presented.
Finally, experimental results and discussion are provided.

A. DATASETS
IU X-Ray. The Indiana University Chest X-ray
Collection [38] is a public dataset consisting of 7,470 frontal
and lateral view images paired with their corresponding
3,955 diagnostic reports. Each report contains four parts:
comparison, indication, findings, and impression. Our focus
is generating the findings in this article. To acquire the ground
truth for observations and MeSH, CheXpert labeler1 [24]

1https://github.com/stanfordmlgroup/chexpert-labeler
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FIGURE 4. Illustration of adversarial training. The upper part of the figure shows the process of training the
generator, and the lower part demonstrates that of training the discriminators. In this figure, ‘‘G’’ refers to the
generator (also the policy), Df to the fluency discriminator, and Da to the accuracy discriminator. The
parameters of gray blocks are not learnable. Da takes in a report (real or generated) and its corresponding
observation ground truth to offer an accuracy reward by comparing the consistency of each other, while Df
‘‘reads’’ a report to provide a fluency reward that is used to measure how likely it has been written by a
human expert.

and NIH MTI web API,2 respectively, are utilized. Given a
report, the first tool gives four possible values for each of the
14 observations: present (1), absent (0), uncertain (-1), or not
mentioned (blank), and then it is mapped to a binary label
(replacing -1 with 1 and filling 0 in blanks). The second tool
extracts several keywords asMeSH labels from origin reports.
The minimal occurrences are empirically set as 20 and
50 MeSH labels obtained. Then, the image-report pairs are
selected by the following conditions: (1) the report of the
sample corresponds to multiple views; (2) the report contains
the finding part; (3) the report has more than three sentences;
and (4) the sample is assigned to at least one observation
and MeSH label. After selection, 2,658 reports associated
with 5,316 images are obtained. In the tokenization process,
the low-frequency tokens with occurrences lower than three
are ignored and, finally, 889 tokens in total are yielded.

MIMIC-CXR. MIMIC-CXR is a large publicly avail-
able dataset of labeled chest radiographs [39] that provides
more than 300,000 chest x-rays associated with correspond-
ing medical reports. Data selection is the same as the first
dataset. In the experiments reported here, only a part of the
dataset is selected because of limited computing resources;
nevertheless, MIMIMC-CXR is 7 times larger than the first
dataset, reaching 19,364 pairs. The observation labels are

2https://ii.nlm.nih.gov/MTI/index.shtml

provided by this dataset and the MeSH labels with a num-
ber of 120 are achieved in the same way as above. Finally,
the report texts are tokenized to 2,104 unique words with a
minimum frequency of five.

The rank of occurrences for observation and MeSH labels
on the two datasets is listed in Table 1. From the table, it can
be found that the MeSH terms are more specific on medical
concepts in contrast with the observations. In experiments,
both datasets are split into training, validation, and test sets
according to the ratio 7/1/2.

Three measures are taken to tackle the data imbalance
problem. First, the normal cases are under-sampled and their
proportion reduced to less than 60%. Second, a stratified sam-
pling approach is adopted to split the training/validation/test
set to keep the proportion roughly equal in different sets.
Finally, the weighted BCE loss is used in the optimization
of the MLC model.

B. IMPLEMENTATION DETAILS
All proposed models are implemented on PyTorch [40]. First,
the embedding layer is pre-trained by gensim [36] with the
total reports of the two datasets separately; gensim is a python
module that implements the word2vec [35] family of algo-
rithms, using highly optimized C routines. The embedding
dimension D is set to 512.
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Algorithm 3 ARL Algorithm
Input: I: image tensor; X?: embedded ground-truth report

sequence; lo?: ground-truth observation vector; λ:
trade-off parameter.

Output: the optimal Df , Da, πθ
1: repeat
2: sample one data pair (I,X?, lo?) from training set;
3: sample report based on policy X ∼ πθ (· | I);
4: compute fluency rewards for real and generated reports

Df (X?), Df (X);
5: compute accuracy rewards for real and generated

reports Da (X?, lo?), Da (X, lo?);
6: optimize Df and Da by loss function (12);
7: compute Df (X), Da (X, l?) again with updated mod-

els, and compute total reward r (X, lo?) by equa-
tion (10);

8: greedily sample X̂ ∼ πθ (· | I), and compute its total
reward r

(
X̂, lo?

)
9: optimize policy πθ by gradient function (17);
10: until Df ,Da,πθ converge

TABLE 1. Observations and MeSH term occurrences on datasets; only the
top 14 MeSH terms are listed.

The MLC backbone is based on VGG-16 [25], and the
origin classifier is replaced by the two classifiers proposed for
observations and MeSH terms. In MLC training (the second
training state), the maximum epoch is set to 200, Adam [41]
is adopted as the optimizer, with a learning rate of 0.0005, and
the batch size set to 20. Early stopping is taken when the vali-
dation loss does not decrease for 5 epochs. The dimension of
LSTM in the encoder-decoder equals 512 and the dimension
of topic vector 1,024.

In the third pre-training stage, the CNN backbone is
roughly based on ResNet-152 [23]. The parameters of the
MLC are fixed and the encoder-decoder model pre-trained
by cross-entropy loss. The Adam optimizer is also adopted,

TABLE 2. Complexity of proposed model.

but the learning rate is set to 0.00005. The training process
is stopped if the CIDEr of the validation set does not rise for
5 epochs.

The generator is used to sample ‘‘fake’’ reports, and
these reports, with ground-truth reports and observations, are
viewed as the dataset with which to pre-train the discrimi-
nators. The optimization method used is also Adam with a
learning rate of 0.0005. The training process is stopped if the
validation loss does not decrease.

In the ARL stage, the tradeoff parameter is set to 0.5 and
the batch size changed to 5. The SGD optimizer is used with
a momentum of 0.9, and the learning rate is 0.00005. Early
stopping is also used.

In inference mode, the maximum number of sentences
per report Nmax is 10 and the maximum number of words
per sentence Tmax is 50. The stopping threshold γ is 0.5.
Table 2 illustrates the complexity of each module in the

proposed model. Two common measures are adopted: the
number of learning parameters and the floating-point opera-
tions (FLOPs). Note that some values in this table are related
to the size of vocabulary or the length of a report, and these
values are calculated based on the worst case.

C. COMPARED METHODS
To verify the performance of the proposed approach, four
competitive models are chosen as the compared methods.

CNN-RNN [10] is a canonical image-captioning model
proposed in 2015, composed of a CNN as the encoder
and a single-level RNN as the decoder. For comparability,
the encoder is the same as the proposed CNN model and the
decoder is the same as the proposed word decoder. The model
settings are also consistent. Additionally, this model is trained
by minimizing cross-entropy loss.

CoAtt [2] Different from the CNN-RNN, the CoAtt model
introduced the co-attention and hierarchical RNN to the
decoder. In the encoder, the visual features and semantic
features (embeddedMeSH terms) are extracted from the same
network, and these features are only combined with sentence
LSTM for the topic generation. In experiments, the model
is trained by minimizing the cross entropy loss produced in
stopping and word prediction.

MvH-AttL-MC [5] The MvH-AttL-MC inference model
is similar to the proposed model. The encoder encodes visual
features andmedical concept features, and the decoder is hier-
archical with multi-level attentions. However, the differences
of inference architecture are (1) visual features and medical
information share the same backbone similar to CoAtt, and
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(2) the predicted observations are not fused into the attention
mechanism in the decoder. In addition, this model is also
trained by minimizing the cross-entropy.

NLGR-CCR [3] The NLGR-CCR model adopts a deep
CNN as the encoder and a hierarchical LSTM as the decoder.
More importantly, it is fine-tuned by RLwith two empirically
designed rewards, i.e., NLG and CCR.

Since the authors of CoAtt and MvH-AttL-MC did not
release their source code, their models were implemented
based on details in their papers. Some implementation details
and hyper-parameters may be different from the original
settings, and, accordingly, some gaps exist between the exper-
imental results.

D. EVALUATION METRICS
To fully evaluate the performance of the proposed model,
several different metrics considering both language fluency
and diagnostic accuracy are adopted.

First, popular natural language generation (NLG) eval-
uation metrics, including BLEU-4 [32], METEOR [42],
ROUGE-L [33], and CIDEr [34], are adopted, which are
used to measure the statistical correlation between two text
sequences. In the experiments, the automatic tool3 is used to
calculate these metrics.

Second, to measure the diagnostic accuracy of generated
reports, the CheXpert labeler [24] is applied to the generated
reports, and the precision, recall, and F1 scores are calculated.

E. PERFORMANCE COMPARISONS
In this section, first all the models are separately trained
on the two datasets. The training sets are used for parame-
ter learning, validation sets for early stopping, and the test
sets are invisible during training for conducting experiments.
To ensure the comparability of experimental results, all the
hyper-parameters are kept as consistent as possible.

1) NLG METRIC EVALUATION
The performance comparisons by NLG metrics on both
datasets are presented in Table 3. In general, the full pro-
posed model outperforms all baselines across all metrics.
As expected, the CNN-RNN performs the worst among
all models, especially for the MIMIC-CXR dataset, which
indicates that a simple encoder-decoder architecture without
techniques has limited learning ability when used on large
amounts of data. On the IU X-Ray dataset, the NLG metric
scores are very close within CoAtt, MvH-AttL-MC, NLGR-
CCR, and the proposed model, even though the latter model’s
scores are better by 1%–2%. The narrow gap may be due
to three reasons: (1) the data volume of IU X-Ray is rel-
atively small, which limits the representation capability of
these models; (2) the sentence structure of the medical report
is relatively simple; and (3) the average length of reports
is relatively short. In contrast, the gaps between different
methods are obvious on the larger MIMIC-CXR dataset.

3https://github.com/tylin/coco-caption

TABLE 3. NLG metric scores(%) of different methods on test sets from IU
X-Ray and MIMIC-CXR datasets. The complete proposed architecture is
labeled ‘‘Full-ARL’’ in contrast with the variants (decomposed models) in
the follow-up study.

The proposed model achieves the best performance across
all metrics, leading the second-best performer, NLGR-CCR,
by 4%-5%, and the two methods are both retuned by RL.
Despite the similar inference architecture, the proposed
model clearly outperforms on MvH-AttL-MC, which indi-
cates that the improvement in training scheme (employing
ARL) can help generate highly relevant finding reports.

2) DIAGNOSTIC ACCURACY EVALUATION
For medical report generation, a more important metric is
diagnostic accuracy. Similar to [3], the CheXpert [24] labeler
is utilized to achieve the binary labels from the generated
reports and ground-truth reports for 14 observations, and then
the precision, recall, and F1 scores are computed for each
observation class. The class distribution of the IU X-Ray
dataset is extremely unbalanced, so only an evaluation of the
full proposedmodel is conducted on theMIMIC-CXRdataset
and compared with MvH-AttL-MC and NLGR-CCR.

Table 4 illustrates the detailed comparison results of diag-
nostic accuracy. Generally, the proposed model achieves the
highest scores in most observation classes. Specifically, for
the high-frequency observations, e.g., No Finding, the pro-
posed model can maintain the balance between precision and
recall, while the other two methods prefer the recall score.
Even though the diagnostic accuracy metric is susceptible
to observation proportion, the proposed model obtains the
highest F1 score on the small-share observations. In addition,
among the three methods, MvH-Att-MC performs the worst,
which can be reasonably explained by the fact that this model
is only optimized by cross-entropy loss and does not consider
clinical accuracy. Furthermore, compared to the NLGR-CCR,
the proposed model performs better on low-frequency obser-
vations, which verifies that its learnable accuracy discrimina-
tor can provide effective rewards superior to the rules-based
approach. In addition, from the last two rows of Table 4,
the proposed model performs best on macro precision, recall,
and F1 score, while it is outperformed by NLGR-CCR on
micro scores. One possible reason for this is that the micro
scores are prone to being influenced by larger-scale classes.
Therefore, the macro scores are more reliable and compre-
hensive in terms of reflecting the performance of all models
on diagnostic accuracy.
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TABLE 4. Diagnostic accuracy evaluation results of different methods on
MIMIC-CXR dataset. Second column lists the proportion (%) of each
observation, and starting from the next column, it exhibits
precision/recall/F1 (%) for different methods across all observations,
where ‘‘−’’ denotes that precision and recall equal zero, and thus F1 score
is undefined. Note that the word ‘‘Enlarged’’ in the observation column is
short for ‘‘Enlarged cardiomediastinum’’ since this phrase is too long to
display in the table.

TABLE 5. Effect of CNN and MLC backbones on model performance.

FIGURE 5. Pre-training for discriminators.

F. STUDY ON BACKBONES
To explore the effect of the CNN and MLC backbones on
the model performance, the CNN and MLC backbones are
switched and the output of the MLC and generator evaluated
without the discriminators. The experimental results are listed
in Table 5, in which the AUC score is used to measure
the output of the MLC branch, so it is independent of the
CNN backbone. From this column, it can be concluded that
VGG-16 is superior to ResNet-152. As shown in Table 2,
the number of parameters of VGG-16 is more than twice that
of ResNet-152. The other two metrics (CIDEr and F1) are for
the generator. As expected, ResNet-152 as the CNNbackbone
combined with VGG-16 as the MLC branch achieves the best
performance.

FIGURE 6. Curves of CIDEr score (%) for variants of proposed model
during training. No-ARL denotes that ARL is not used throughout the
training process. Full-ARL means that the proposed model is retuned by
the full reward module including FD and AD based on No-ARL at the
retuning point. ARL-FD and ARL-AD, as their names imply, only adopt one
of the two discriminators, respectively, during the retuning state (after
black dotted line).

FIGURE 7. Macro precision/recall/F1 scores (%) of different variants of
proposed model for observations. Full-ARL results are consistent with
those in last row of Table 4.

FIGURE 8. Relative change rate of F1 and CIDEr with respect to λ on
MIMIC-CXR dataset.

G. STUDY ON DISCRIMINATORS
In the preceding section, the competitive performance of
the proposed full model with different metrics is demon-
strated. Next, to verify the effectiveness of the discriminators
in the proposed full model, the FD and AD are decom-
posed separately and ablation experiments conducted on the
MIMIC-CXR dataset using metrics similar to those described
above. As stated in subsection IV-B, the discriminators must
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FIGURE 9. Examples of generated chest x-ray reports with their observations predicted by MLC. Emboldened words represent abnormal findings and red
words are predicted observation labels with their corresponding probabilities. Only those labels with probability greater than 0.5 are shown.

be pre-trained before ARL, and the results on the validation
set of the MIMIC-CXR dataset are illustrated in Figure 5.

The comparison of CIDEr curves of different variant mod-
els during training is given in Figure 6. The reward shown
in this figure is the relative total reward, i.e., the original
reward minus the baseline reward. The original rewards are
given for sampled reports, while the baseline rewards are
given for greedily decoded reports. At the beginning of train-
ing, there is a high probability of sampling a report with a
higher reward than the greedily decoded report. Therefore,
the relative reward starts with a large value. As the train-
ing continues, the policy is trained well, and the original

and baseline rewards become very close. Hence, the relative
reward is finally close to zero. The loss in the figure is
the cross-entropy loss for the generator in the pre-training
stage (i.e., the loss of the No-ARL model). The proposed
model is first trained by minimizing the cross-entropy loss
and computing the CIDEr score on the validation set every
1 epoch. The others (Full-ARL, ARL-FD, and ARL-AD)
are initialized by the No-ARL model at the retuning point
and trained separately. It can be found from this figure that,
without ARL, the CIDEr of the proposed model reaches the
upper limit of approximately 33% after 60,000 iterations,
and the proposed Full-ARL increases significantly after the
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turning point. Only with the FD is the CIDEr score 2% higher
than that of the No-ARL, while the ARL-AD score does not
increase significantly. This fact suggests that the combination
of FD and AD can achieve the best performance on textual
relevance.

To examine the effectiveness of the discriminators on diag-
nostic accuracy, a similar experiment with accuracy evalua-
tion is conducted as a performance comparison on variants of
the proposed model. The macro precision/recall/F1 scores for
observations are shown in Figure 7. The proposed Full-ARL
achieves the highest macro recall and F1 scores among all
models. The ARL-AD yields the highest macro precision
score, while its recall score is slightly lower than that of the
proposed full model, which indicates that a single AD may
not provide a comprehensive reward and must be assisted
with FD to achieve the best performance.

H. STUDY ON TRADE-OFF PARAMETER λ

In previous experiments, the trade-off parameter λ of
Full-ARL is just adopted as 0.5, and in this subsection the
sensitivity of the parameter to the performance of the pro-
posed model is explored.

This experiment was only performed on the MIMIC-CXR
dataset for the following reasons: (1) larger data size;
(2) larger share of abnormal cases; and (3) richer medical
vocabulary and longer report paragraphs.

Specifically, λ is varied in the range 0.1–0.9 with a step
of 0.2, and the ARL approach conducted based on the
No-ARLmodel separately, to observe the variations of F1 and
CIDEr. It is worth noting that there are three cases, i.e., λ =
0, 0.5, 1, which already been discussed in the study of dis-
criminators.

For better visualization, each dependent variable is
rescaled by subtracting the minimum and dividing by the
minimum, and the results are illustrated in Figure 8. From the
reward equation (10), the parameter λ is the weight of fluency
reward and 1 − λ the weight of accuracy reward. Therefore,
one may intuitively assume that the greater the value of λ,
the higher the CIDEr (or the smaller the λ and the higher
the F1 score). However, as Figure 8 shows, the optimal point
of F1 or CIDEr is not at the interval endpoint. For example,
the optimal point for F1 is roughly 0.5, while for CIDEr it is
approximately 0.7. This result implies that the combination
of AD and FD is more likely to ‘‘teach’’ the generator to
generate high-quality medical reports.

I. QUALITATIVE ANALYSIS
In this subsection, four representative examples are selected
for qualitative analysis, as shown in Figure 9. Compared
to the proposed full model, No-ARL has limited capability
to capture abnormal findings. For example, in the second
case, the proposed No-ARL only mentions ‘‘heart size is
enlarged,’’ while the proposed full model discovers all crit-
ical diseases. This proves that the ARL approach can boost
abnormal perception and diagnostic accuracy. Moreover,
the proposed Full-ARL can generate a longer paragraph than

No-ARL, which resembles the work of a radiologist. How-
ever, the proposed full model also makes some mistakes.
In the third case, it fails to discover ‘‘scattered calcified granu-
lomas bilaterally,’’ and thusmakes a ‘‘No Finding’’ diagnosis,
even though the ‘‘granuloma’’ is among the chosen MeSH
labels. In the last case, the proposed full model mentions
‘‘atelectasis is seen at the right base,’’ which is not covered
in the ground truth. From cases 2 and 3, it can be found that
the observation prediction and generated reports are highly
consistent. One possible reason is that the predicted obser-
vations are fused into the decoder, helping to capture these
abnormalities. Another reason may derive from the accuracy
discriminator (AD), which guides the model to cover these
key observations.

V. CONCLUSION
In this article, a novel medical report generation framework is
proposed that considers both language fluency and diagnostic
accuracy. From chest-radiograph images, the encoder extracts
visual features and multi-type medical concepts, and then
the hierarchical decoder inserts the medical concepts in sen-
tence and word level to generate reports. More importantly,
adversarial reinforcement learning (ARL) is introduced into
the training procedure of medical report generation. The
encoder-decoder is viewed as a generator and the reward
modules as discriminators. In training iterations, discrim-
inators are optimized by maximum-likelihood estimation,
whereas the generator is trained by reinforcement learning.
Finally, the reward modules give highly accurate rewards and
the generator generates better reports. In experiments, first
the high performance of the proposed full model is proved
by performance comparison with several classical or recently
proposed models from different aspects on two large chest
X-ray datasets. Ablation studies are then conducted to verify
the effectiveness of the language fluency discriminator (FD)
and the diagnostic accuracy discriminator (AD), followed by
trade-off parameter analysis and qualitative analysis. All of
the experimental results demonstrate that the proposed fully
learnable ARL architecture that combines AD and FD is
superior to purely traditional optimization by cross-entropy
alone, or to additional RL with manually designed reward
functions.
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