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ABSTRACT Channel state information (CSI) is required at the transmitter for achieving the maximum
potentials of multiple-input multiple-output (MIMO) systems. In fast time-variant vehicular communications
channels high data rate feedback lines are required in a frequency division duplex (FDD) transceiver
for updating the transmitter with the rapidly changing CSI. Even with high data rate feedback lines, the
delay caused by channel estimation and feedback may lead to outdated CSI at the transmitter. To reduce
both the feedback load and CSI delay, this paper presents a reduced rank autoregressive (AR) channel
predictor based on low dimensional discrete prolate spheroidal (DPS) sequences. The new subframe-
wise DPS basis expansion model (DPS-BEM) channel predictor properly exploits the channel’s restriction
to low dimensional subspaces for reducing the prediction error and the computational complexity. The
proposed channel predictor can be applied for updating the precoding matrix in time-variant MIMO systems.
Simulation results demonstrate that the proposed channel predictor outperforms the DPS based minimum
energy (ME) predictor at different Doppler frequencies and has better performance than the conventional
Wiener predictor for slower time-variant channels and almost similar performance for very fast time-variant
channels with reduced amount of computational complexity.

INDEX TERMS MIMO channel prediction, time varying vehicle-to-everything (V2X) channel, feedback
delay, discrete prolate spheroidal sequences, precoder.

I. INTRODUCTION
Multiple-Input Multiple-Output (MIMO) wireless communi-
cation attracted high attention during the past decades due
to its capability for providing higher capacity and perfor-
mance gains compared to Single-Input Single-Output (SISO)
systems. High spectral efficiency can be achieved in MIMO
systems through sending multiple data streams simultane-
ously over multiple transmit antennas without consuming
extra frequency bandwidth, which is called spatial multi-
plexing [1]. The performance of spatial multiplexing can be
further improved if the transmitted streams are matched to
the propagation channel. Linear precoding is a technique that
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uses the available Channel State Information (CSI) at the
transmitter (CSIT) for adapting the data streams to the instan-
taneous propagation channel [2], [3]. In frequency division
duplex (FDD) systems the CSIT can be obtained through the
feedback technique. However, the feedback load and feed-
back delay should be minimized for reliable communication
with fast time-variant channels. The feedback load can be
reduced by sending some quantized form of CSI through
the feedback channel [2], [4], [5]. However, feedback delay
causes the CSIT to become out of date and degrades the
performance of the precoder especially in fast time-variant
channels such as vehicle-to-everything (V2X) communica-
tions, which is characterized by a dynamic environment,
high mobility, and comparatively low antenna heights on the
communicating entities [6], [7]. Channel prediction has been
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proposed as a promising scheme to overcome the feedback
delay problem.

Channel prediction techniques can be mostly divided into
three groups, the parametric radio channel (PRC) model,
the autoregressive (AR) model and basis-expansion model
(BEM) [8]. The PRC approach models the time-variant chan-
nel as a sum of complex sinusoids each of which is deter-
mined with its amplitude, Doppler and phase shift. The
parameters associated with each complex sinusoid is esti-
mated using the known channel coefficients and is used for
channel prediction. References [9]–[12] use the PRC method
for SISO channel prediction and [13], [14] apply PRC for
MIMO and Multi-user MIMO channel prediction, respec-
tively. Recently, a data-driven deep neural network (DNN)
approach is proposed to enable remote CSI inference for
no explicit models of the complicated wireless channels at
the expense of requiring large amounts of training data and
corresponding computational power [15].

The conventional AR schemes use a linear minimummean
square error (MMSE) filter for predicting the future channel
as a linear combination of the known channel coefficients
[16]–[20]. This requires the knowledge of channel correlation
matrix. For the case of unknown or time-variant correlation
function, adaptive AR schemes have been developed which
are based on adaptive filtering techniques such as least mean
squares (LMS) [21], recursive least squares (RLS) [22] and
Kalman filtering [23]. For AR models the computational
complexity grows with the number of antennas when they are
extended for MIMO channel prediction [24].

BEM is a widely used type of channel representation for
time varying systems where the time varying channel taps can
be approximated as a linear combination of some low dimen-
sional orthogonal basis such as complex exponential (CE)
functions, polynomials, discrete prolate spheroidal (DPS)
Sequences, etc. The basis are determined based on the chan-
nel’s Doppler spread and the basis coefficients are estimated
using the channel information at pilot positions.

Exploiting the over-sampled complex exponential basis
expansion model (CE-BEM), a subblockwise tracking
scheme for the BEM coefficients using time-multiplexed
(TM) periodically transmitted training symbols is proposed
in [24]. Paper [24] also investigate three adaptive algorithms,
including a Kalman filtering scheme based on an assumed
AR model of the BEM coefficients, and two RLS schemes
for BEM coefficient tracking.

Paper [25] models the user movement as the one-order
unknown Markov process and proposes a spatial-temporal
basis expansion model for channel tracking method in mas-
sive multiple-input multiple-output systems under both time-
varying and spatial-varying circumstances. By using the
polynomial basis expansion model (P-BEM), paper [26]
proposes a tracking algorithm based on the fact that the
changes in the channel path number and path delays are small
over a few adjacent orthogonal frequency-division multiplex-
ing (OFDM) symbols.

In [25], the transmitted symbols are segmented into over-
lapping blocks each containing several sub-blocks. The cor-
responding CE basis coefficients are updated for each block
which in fact is equivalent to sub-block wise tracking of the
basis coefficients since the adjacent blocks only differ by
one sub-block. The sub-block wise updating of the CE-BEM
coefficients for each block is performed both using a Kalman
filtering scheme for an assumed first-order ARmodel of basis
coefficients and using an RLS algorithm without considering
any model for basis coefficients. A similar tracking scheme
to [25] is also proposed in [27] where the extra information
from the decision symbols is considered together with the
information from the training sessions for improving the
estimation of CE-BEM coefficients.

DPS-BEM is another commonly used BEM which is
shown to outperform the polynomial-BEM and CE-BEM
in approximating the Jakes’ channel model for different
ranges of Doppler spreads [28]. Several publications have
considered the low dimensional channel estimation based
on the DPS basis [29], [30]. As for the channel tracking,
[31] proposes a minimum energy (ME) extrapolation-based
predictor where the time-concentrated and band-limited DPS
sequences are used for approximating the channel over a
period of time for which the channel coefficients are known
(estimated). The same estimated basis coefficients together
with the same extrapolated DPS basis are used for the predic-
tion of the future channel samples. Although ME predictor
has low complexity, its performance degrades for long range
prediction over fast time-variant channels [8].

In this paper we develop a newDPS-BEM channel predict-
ing scheme which can be applied for reduced feedback load
and feedback delay precoder design in fast time-variant V2X
communications. The proposed channel predictor assumes
non-overlapping transmitted frames and applies a sub-frame
wise tracking approach for updating the DPS-basis coeffi-
cients based on a Q-order AR modelling of the basis coef-
ficients. The proposed scheme differs from the sub-block
wise CE-BEM tracking approaches of [25], [27] in that they
exploit the CE basis for the overall channel variation in each
frame which implies the basis duration being the same as
the frame duration and increases the required number of
CE basis for channel modelling. Since the frame length is
large, overlapping frames are considered for better tracking of
the basis coefficients. However, for the proposed DPS-BEM
tracking scheme a few number of DPS basis which are time-
limited to the sub-frame length are used for exploiting the
channel variation inside each sub-frame and an AR model is
applied for tracking the channel variation between subframes
without any requirement for considering overlapping frames.
Moreover, the CE-BEM tracking schemes of [25], [27] con-
sider time-multiplexed training sessions inside each subframe
for updating the basis coefficients, while the proposed frame
structure only assumes known channel coefficients at the
beginning of each frame. The detailed contributions are as
follows:
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1) We formulate the channel prediction problem consider-
ing a DPS-BEM of the time-variant channel coefficients over
each sub-frame and an AR model of the time-variant DPS
basis coefficients over the whole transmitted frame.

2) The error contribution from the AR prediction of the
DPS basis coefficients and the DPS modelling of the channel
coefficients are investigated and an algorithm for obtaining
the optimal sub-frame length (correspondingly the optimal
ARmodelling order) and the optimal number of basis per sub-
frame is proposed through minimizing the total prediction
error of the transmitted frame.

The paper is organized as follows. The MIMO system
model is presented in Section II. Section III reviews the DPS
sequences, the ME and AR channel predictors. In Section
IV, the new DPS-AR channel predictor and its application to
precoder design are presented. Section V presents simulation
results and the conclusion is provided in Section VI.
Notation: We denote a scalar by a, a column vector by a

with its ith element [a]i and a matrix by A with its (i,j)th ele-
ment [A]i,j. The inverse, transpose and Hermitian transpose
of a matrix A is denoted by A−1, AT and AH , respectively.
a∗ denotes the complex conjugate of a. We denote the set of
all real numbers by R, the set of all integers by Z and the set
of non-negative integers {0, 1, · · · , n−1} by In. The smallest
integer that is greater than or equal to a ∈ R is denoted by dae.

II. SYSTEM MODEL
A precoded MIMO system with MTx transmit antennas and
MRx receive antennas is shown in Fig. 1. The input bit stream
is first QPSK modulated and then it is demultiplexed into
K -spatial data streams represented by {di[m]}Ki=1 at time m.
Note that K ≤ MRx ≤ MTx in general and for a full-rate
system K = MRx = MTx which is assumed in the rest of
this paper without loss of generality. Considering d[m] =
[d1[m], d2[m], · · · , dK [m]]T as a vector which contains the
mth symbol of all data streams, this vector is then multiplied
by the precodermatrixF[m] to obtain the transmitted symbols
as

x[m] = F[m]d[m] (1)

where x[m] =
[
x1[m], x2[m], · · · , xMTx

[m]
]T contains the

symbols transmitted from MTx transmit antennas at time m.
Similarly, the corresponding received vector is represented by
y[m] =

[
y1[m], y2[m], · · · , yMRx

[m]
]T where for a single tap

channel,

y[m] = H[m]x[m]+ z[m] (2)

H[m] is the MRx × MTx channel matrix and z[m] is the
corresponding additivewhite Gaussian noise vector at timem.
The received vector, y[m], is first multiplied by the combiner
matrix G[m] and then is processed for data detection.
Precoder and combiner matrices are designed to make

decoupling of data steams possible at the receiver. To avoid
performance degradation, the precoder and combiner should
be matched to the channel matrix. The optimal precoder

and combiner can be obtained from the eigenvectors of the
channel matrix [2]. For the slow time-varying channels, the
precoder matrix F[m] is considered to be constant over each
transmitted frame of lengthMf , i.e., form ∈ IMf . So, it can be
calculated once based on the estimated channel matrix at the
beginning of each frame. The precodermatrix is then fed back
to the transmitter directly in infinite feedback rate systems or
it is first quantized based on a predefined codebook and the
quantization index is fed back in finite feedback rate systems.
The same precoder will be used through the whole frame.
However, in fast time-variant channels, F[m] becomes out of
date very quickly and it is required to be updated even inside
one frame which is impossible due to channel estimation and
feedback delays. To overcome the feedback delay problem,
it is proposed to predict the channel coefficients and design
the precoder in advance [2], [5]. In the next section we will
investigate two channel prediction schemes which can be
used for precoder design in fast time-variant channels.

Note that, here after, hk,l[m] represents the channel impulse
response for (k, l)-antenna pair at time m. Moreover, we con-
sider independent and identically distributed (i.i.d.) Rayleigh
fading channel based on the Jakes’ model for each antenna
pair with no spatial correlation between different antennas as
in [32].

III. ME AND AR CHANNEL PREDICTORS
In this section a brief introduction to DPS sequences as well
as the ME and AR channel predictors is presented which then
will be used for introducing the proposed DPS-AR channel
predictor in the next section.

A. DPS SEQUENCES
DPS sequences were first introduced by Slepian in 1978
[33], for approximation, prediction and estimation of band
limited signals [28]. The DPS sequences {ui[m,W ,M ]}M−1i=0
with time concentration to IM and band limitation to W =
[−fdTs, fdTs] are the solutions to

M−1∑
`=0

C[`−m,W ]ui[`,W ,M ]=λi(W ,M )ui[m,W ,M ] (3)

where m ∈ Z, fd is the maximum Doppler frequency and
Ts is the sampling period. It is shown in [31] that C[n,W ]
is proportional to the covariance function of a process with
constant spectrum overW and can be evaluated as

C[n,W ] =
∫
W
ej2πnνdν for n ∈ Z (4)

and

λi(W ,M ) =

M−1∑
m=0
|ui[m,W ,M ]|2

∞∑
m=−∞

|ui[m,W ,M ]|2
(5)
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FIGURE 1. Precoded MIMO system at time m.

represents the energy concentration of ui[m,W ,M ] within
IM . While being band limited toW = [−fdTs, fdTs], hence

ui [m,W ,M ] =
∫ fdTs

−fdTs
Ui (v)ej2πmvdv, (6)

where Ui (v) is the spectrum of ui [m,W ,M ], given by

Ui (v) =
∞∑

m=−∞

ui [m,W ,M ] e−j2πmv. (7)

The DPS sequence is the unique sequence u0 [m,W ,M ] that
is band-limited andmost time-concentrated in a given interval
with length M , u1 [m,W ,M ] is the next sequence having
maximum energy concentration among the DPS sequences
orthogonal to u0 [m,W ,M ], and so on. Thus, the DPS
sequences show that a set of orthogonal sequences exists that
is exactly band limited and simultaneously posses a high (but
not complete) time concentration in a certain interval with
length M . The eigenvalues λi (W ,M) are a measure for this
energy concentration expressed by (5).

DPS sequences have a double orthogonality property: They
are orthogonal over the finite set {0, 1, · · · ,M − 1} and the
infinite set Z = {−∞, · · · ,∞} simultaneously. This means
that the DPS sequences {ui[m,W ,M ]}M−1i=0 are orthogonal on
the set m ∈ {0, 1, · · · ,M − 1} and orthogonal on the set m ∈
{−∞, · · · ,∞} = Z. More specifically

M−1∑
m=0

ui [m,W ,M ]uj [m,W ,M ]

= λi (W ,M)
∞∑

m=−∞

ui [m,W ,M ]uj [m,W ,M ]

= δi,j, i, j = 0, 1, · · · ,M − 1. (8)

This remarkable property enables parameter estimation with-
out the drawbacks of windowing in the case of the CE
sequences.

B. ME CHANNEL PREDICTOR
A low complexity ME channel predictor is proposed in [31]
which is based on a subspace spanned by time-concentrated
and band limited DPS sequences and it is shown that for
a fading process with constant spectrum over its support

the ME predictor is identical to a reduced-rank maximum-
likelihood predictor.

For (k, l)-antenna pair, the ME predictor uses the band-
limitation of the fading channel and models the channel over
the first M known coefficients of each frame as a linear
combination of Dt dominant DPS basis

hk,l[m] =
Dt−1∑
i=0

ui[m,W ,M ]ψk,l
i for m ∈ IM (9)

where Dt is the essential dimension of the subspace spanned
by DPS sequences and is given by [33],

Dt (W ,M ) = d|W |Me + 1. (10)

with |W | = 2fdTs indicating the maximum normalized
support of the signal in frequency domain. For a highly
oversampled fading process |W | � 1 and the process can
be approximated by Dt (W ,M ) � M DPS basis which
reduces the amount of computational complexity. The basis
coefficients {ψk,l

i }
Dt−1
i=0 are estimated as

9k,l = UHhk,l (11)

where hk,l = [hk,l[0], · · · , hk,l[M − 1]]T contains the
known channel coefficients, 9k,l = [ψk,l

0 , · · · , ψ
k,l
Dt−1

]T and
[U]m,i = ui[m,W ,M ] for m ∈ IM and i ∈ IDt .
In the ME predictor, the estimated basis coefficients

from (11) are used for predicting the future channel coef-
ficients by extrapolating the DPS basis {ui[m,W ,M ]}Dt−1i=0
over m = M , · · · ,Mf − 1 based on (3) and using the same
linear combination of the extrapolated basis presented in (9).
As the DPS sequences are most energy concentrated in IM ,
among the infinitely many ways for extending the band-
limited channel samples overm ∈ Z\IM , the ME predictor is
the only one that extends the channel in an ME continuation
sense [31].

C. AR CHANNEL PREDICTOR
Comparing different channel prediction algorithms, it is con-
cluded in [34] that the AR model based predictors, known
as Wiener predictors [35], outperform the PRC model based
schemes both for synthesized and measured radio channels
at least for the narrowband case. Assuming the channel is
known over the first M samples of each frame, the Wiener
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predictor predicts the channel at m ∈ {M , · · · ,Mf −1} using
theweighted linear combination of theM most recent channel
coefficients as follows,

ĥk,l[m] = wk,l[m]H h̃k,l[m] (12)

where wk,l[m] is the M × 1 weighting vector and h̃k,l[m] is
defined as

h̃k,l[m] =
[
ĥk,l[m− 1], ĥk,l[m− 2], · · · , ĥk,l[m−M ]

]T
(13)

which we call it the history vector with ĥk,l[m′] being
the known channel coefficient for m′ ∈ {0, · · · ,M − 1}
and the previously predicted channel coefficient for m′ ∈
{M , · · · ,Mf − 1}. The weighting vector wk,l[m] is obtained
through minimizing the mean square error (MSE) between
the predicted channel and real channel at time m,

w[m] = argminwE
{
‖ h[m]− w[m]H h̃[m]‖2

}
(14)

which leads to

w[m] = Rhh[m]−1rhh[m] (15)

and the M × M matrix Rhh and the M × 1 vector rhh are
defined as

[Rhh[m]]n,` = E
{
h[m− n]h∗[m− `]

}
[rhh[m]]n=E

{
h[m]h∗[m−n]

}
for n, ` = 1, · · · ,M (16)

Note that for notation simplicity, the antenna pair index (k, l)
is omitted in (14)-(16) and in the rest of the paper.

IV. PROPOSED DPS BASED AR PREDICTOR
In this section a new DPS based AR channel predictor is
presented. The new predictor takes advantage of the low
computational complexity induced by the DPS sequences and
the performance gain of AR model, simultaneously. We will
also investigate the application of the proposed scheme for
the precoder design in time-variant channels.

A. DPS-AR CHANNEL PREDICTOR
Consider the transmitted frame over each antenna is divided
into Qf subframes of Ms = Mf /Qf length shown in Fig. 2.
The first Q = M/Ms subframes contain the M perfectly
known channel samples, and the channel coefficients of the
rest of Qf − Q subframes are to be predicted. We use the
DPS sequences to model the channel’s time-variation inside
each subframe. It is clear from (3) that for each subframe
the DPS basis depend on the length of the subframe and the
normalized Doppler spread of the channel. Considering the
same maximumDoppler frequency over the whole frame and
the same length for all subframes, the DPS basis would be
the same for all subframes and only the basis coefficients
would change from one subframe to another one. Using Ds
dominant DPS basis, the channel impulse response inside

the qth subframe can be approximated as follows for each
antenna pair,

h[(q−1)Ms+m]≈
Ds−1∑
i=0

ui[m,W ,Ms]ψi[q], m ∈ IMs (17)

where m indicates the mth sampling time inside each sub-
frame and ψi[q] is the ith basis coefficient for subframe q. As
mentioned previously, the basis {ui[m,W ,Ms], i ∈ IDs ,m ∈
IMs} are independent of q and they are the same for all
subframes. So for tracking the time-variation of the channel,
we only require to track the changes of the basis coefficients
{ψi[q]}

Ds−1
i=0 over adjacent subframes. In order to predict the

basis coefficients for future subframes we will use the AR
model. For the qth subframe, the ith basis coefficient, ψi[q],
is predicted from,

ψ̂i[q] = wi[q]H 9̃i[q] (18)

where 9̃i[q] is a Q × 1 history vector which contains the ith
coefficient of the Q recent predicted/known subframes and is
defined as

9̃i[q] =
[
ψ̂i[q− 1], · · · , ψ̂i[q− Q]

]T
. (19)

Using the same idea as (14), the MMSE weighting vector
wi[q] is obtained from

wi[q] = Ri[q]−1ri[q] (20)

where

[Ri[q]]n,` = E
{
ψi[q− n]ψ∗i [q− `]

}
[ri[q]]n=E

{
ψi[q]ψ∗i [q−n]

}
for n, `=1, . . . ,Q (21)

and E
{
ψi[q]ψ∗i [q

′]
}
indicates the amount of the correlation

between the ith basis coefficient of the qth and q′th subframes.
For estimating the correlation between the basis coefficients
of different subframes we can write the following vector-
matrix relationship for the qth subframe based on (17) and
by considering Ds = Ms,

h[q] = Ut9t [q] (22)

where Ut is anMs ×Ms matrix with [Ut ]m,i = ui[m,W ,Ms]
for m, i ∈ IMs , h[q] contains the channel coefficients of the
qth subframe with [h[q]]m = h[(q−1)Ms+m] and [9t [q]]i =
ψi[q]. Multiplying both sides of (22) by their Hermitian at q′

and taking the expectation of them the following relationship
is obtained between the correlation function of the channel
and the correlation function of the basis coefficient of the qth
and q′th subframes,

R9t [q, q
′] = UH

t Rh[q, q
′]Ut (23)

where R9t [q, q
′] = E{9t [q]9t [q′]H } and Rh[q, q′] =

E{h[q]h[q′]H }. Note that for a stationary channel Rh[q, q′] =
Rh[q− q′] and consequently R9t [q, q

′] = R9t [q− q
′] which

results in the same wi[q] for different value of q.
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FIGURE 2. Transmitted frame structure for each antenna.

B. MEAN SQUARE ERROR OF THE PREDICTOR
As discussed in the previous section, the channel inside each
subframe is modelled by Ds DPS basis and each basis coeffi-
cient is predicted using a Q-order ARmodel. So the predicted
channel impulse response of the qth subframe is modelled as,

ĥ[q] = UDs9̂Ds [q] (24)

where UDs is an Ms × Ds matrix containing the first Ds
dominant DPS basis as its columns and 9̂Ds [q] is a Ds × 1
vector containing the corresponding predicted basis coeffi-
cients at the qth subframe which differs from the original
basis coefficient vector 9Ds [q] by the AR prediction error
vector eAR[q] as follows

9̂Ds [q]=9Ds [q]+ eAR[q] for q=Q+1, · · · ,Qf (25)

where for i = 1, 2, · · · ,Ds,

[eAR[q]]i = ψ̂i[q]− ψi[q]

= wi[q]H9i[q]− ψi[q]︸ ︷︷ ︸
eM [q,i]

+wi[q]Hei[q]︸ ︷︷ ︸
eP[q,i]

. (26)

In (26) ψ̂i[q] is replaced by wi[q]H 9̃i[q] according to (18)
and the error contribution from the previously predicted
coefficients, resulting in the so-called AR propagation error
eP[q, i], is reflected in theQ×1 vector ei[q] = 9̃i[q]−9i[q]
with [ei[q]]j = [eAR[q− j]]i being its jth element. eM [q, i]
is called the AR modelling error which is the result of the
prediction in an MMSE sense using the MMSE weighting
vector wi[q].
Using (22), (24) and (25), the mean square error of the qth

block is defined as,

MSE[q] = E
{
‖ h[q]− ĥ[q] ‖2

}
= E

{
‖ VHh[q] ‖2

}
︸ ︷︷ ︸

MSEDPS[q]

+E
{
‖ eAR[q] ‖2

}
︸ ︷︷ ︸

MSEAR[q]

(27)

where in deriving (27) we used the fact that the DPS basis are
orthonormal and independent of the AR prediction error and
V = [uDs , . . . , uMs−1] contains the Ms − Ds less dominant
DPS basis spanning the subspace orthogonal to the signal
subspace spanned by columns of UDs . MSEDPS[q] is the
mean square of DPS reconstruction error caused by using the
limited number of basis for modelling the channel inside each

subframe which according to (23) can be simplified to,

MSEDPS[q]=
Ms−1∑
i=Ds

uHi Rh[q, q]ui=
Ms−1∑
i=Ds

E{|ψi[q]|2} (28)

where for a stationary channel MSEDPS[q] is independent
of the subframe index q. Using (26), MSEAR[q] can be also
obtained from,

MSEAR[q] =
Ds−1∑
i=0

E
{
|eM [q, i]+ eP[q, i]|2

}
(29)

It is clear that for a given normalized channel bandwidth
W , MSEDPS[q] and MSEAR[q] can be controlled by the sub-
frame length Ms and the number of DPS basis per subframe
Ds. While increasing the number of basis would decrease
MSEDPS[q], it would increase the AR prediction error since
more coefficients are required to be predicted. As for the
subframe length, choosingMs to be too small would increase
the AR modelling error as the history vector is more cor-
related specifically for low Doppler frequencies which can
result in a rank deficient matrixRi[q] in (20) and less accurate
weighting vector wi[q] estimation. Smaller subframe length
also increases the number of subframes to be predicted which
can lead to a bigger AR propagation error. On the other
hand, very large subframe length may also increase the AR
modelling error due to the increased distance between the
history samples which may not be correlated enough with the
basis coefficient to be predicted especially in fast time variant
channels.

So for the normalized bandwidthW andM known channel
coefficients at the beginning of each frame, the subspace
dimension and the subframe length which minimize the total
MSE over the frame of length Mf with Qf subframes can be
obtained from the following optimization problem,

[Mopt
s (W ),Dopts (W )]

= argmin
Msis a factor ofM
Ds∈{1,2,...,Ms}

Qf∑
q=Q+1

Ms−1∑
i=Ds

E{|ψi[q]|2}+
Ds−1∑
i=0

E
{
|eM [q, i]+eP[q, i]|2

}
(30)

In (27) Ms should be a factor of M such that the M known
samples at the beginning of each frame can be divided into
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an integer number of subframes represented by Q = M/Ms.
Moreover, for any chosen Ms, Ds should be a member of
1, 2, . . . ,Ms. So, for solving (27), it is only required to iterate
between limited possible choices ofMs andDs and choose the
optimal pair which minimizes theMSE over the whole frame.
Algorithm 1 presents the search procedure for optimal values
of Ms and Ds for any given values ofM , Mf and W .

Algorithm 1 Algorithm for Calculating Mopt
s (W ) and

Dopts (W )
Input: M , Mf , W
Output: Mopt

s (W ), Dopts (W )
1: Initialisation: k = 1, Ms(k) = M
2: Q = M

Ms(k)
, Qf =

Mf
Ms(k)

3: Find Ds(k) ∈ {1, · · · ,Ms(k)} which minimizes (30)
4: k ← k + 1
5: Ds(k)← Ds(k − 1)
6: Find Ms(k) ∈ {m|m is a factor ofM and m ≥ Ds(k)}

which minimizes (30)
7: whileMs(k) 6= Ms(k − 1) do
8: k ← k + 1
9: Ms(k)← Ms(k − 1)

10: Repeat 1 to 5
11: end while
12: returnMopt

s (W ) = Ms(k) and D
opt
s (W ) = Ds(k)

Assuming M = 30 and Mf = 120, Table 1 shows
the optimum values of Ms, Ds and the corresponding value
of Q = M/Ms, for different normalized Doppler frequen-
cies.We consider a traditional MIMO communication system
which operates at carrier frequency of 5.9 GHz, data rate
of 100 kBd (kilo-Bauds), therefore Ts = 10 µs, and a
varying Doppler spread fd in the range of 0 to 2000 Hz,
or the normalized Doppler spread fdTs from 0 to 0.02 (Cor-
responding to the maximum mobile velocity of 366 km/h). It
is clear that by increasing the maximum normalized Doppler
frequency the optimal subframe length decreases and the
ratio of Ds/Ms increases. In fact when the channel varies
more rapidly, the correlation between the basis coefficients
of different subframes will decrease which requires smaller
subframe length for reducing the AR prediction error. There-
fore, for controlling the AR prediction error, the basis coeffi-
cients are required to be sampled with a higher sampling rate
which is equivalent to reducing the subframe length. More-
over, to reduce the DPS reconstruction error at high Doppler
frequencies more DPS basis per subframe are required for
better tracking of the time-variation of the channel in each
subframe.

For two different normalized Doppler frequencies and the
optimum values of Table 1, Fig. 3 shows the AR prediction
mean square error for each of the basis coefficients as well as
the DPS reconstruction mean square error for each subframe
q ∈ {Q+1, · · · ,Qf } over the prediction length ofMf −M =
90 channel samples. It can be seen fromFig. 3, theDPS recon-
struction error is constant over different subframes since the

FIGURE 3. Basis coefficients’ AR prediction error and DPS modelling error
per each subframe q ∈ {Q+ 1, · · · , Qf } over the prediction length of
Mf −M = 120− 30 = 90 channel samples for
(a) fd Ts = 0.001, Ms = 10, Q = 3, Qf = 12,
(b) fd Ts = 0.02, Ms = 5, Q = 6, Qf = 24.

TABLE 1. Optimal subframe length and subspace dimension for M = 30
and Mf = 120.

simulated channel is wide sense stationary. The small amount
of MSEDPS[q] indicates the proper performance of the time
variationmodelling of the channel inside each subframe using
adequate number of DPS basis. As for the AR prediction
error, it is clear the less dominant basis have smaller predic-
tion error as they have less contribution in channel modelling
(have smaller basis coefficients).

For evaluating the prediction quality of the proposed
scheme over the samples of each subframe, we can also
calculate the amount of error at the mth sample of the qth
subframe as follows,

e[q,m] = h[(q− 1)Ms + m]− ĥ[(q− 1)Ms + m]

= h[(q− 1)Ms + m]−
Ds−1∑
i=0

ui[m]ψi[q]︸ ︷︷ ︸
eDPS [m]
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FIGURE 4. MSE of the proposed DPS-AR prediction scheme
over 90 channel samples.

−

Ds−1∑
i=0

ui[m] [eAR[q]]i︸ ︷︷ ︸
eAR[m]

(31)

where eDPS [m] and eAR[m] are associated with the DPS mod-
elling error and the AR prediction error of different basis
coefficients, respectively. As discussed, the error contribu-
tion from the DPS modelling is fairly small and it can be
concluded that the error at each sample is mainly controlled
by the second term which is a linear combination of the AR
prediction error of different basis coefficients weighted by
the corresponding DPS basis values at time m. Since the
DPS basis may not be all strictly ascending or descending
functions over the subframe length and can take both positive
and negative values, the error at each sample inside each sub-
frame can follow an increasing, decreasing or even constant
trend due to constructive or destructive contribution from
the weighted prediction error of different basis coefficients.
Fig. 4 indicates the error per sample for different normal-
ized Doppler frequencies and the optimal values of Table 1.
It can be seen from Fig. 4, the amount of MSEDPS[q] will
increase along with the increasing of the normalized Doppler
frequency.

C. APPLICATION TO PRECODER DESIGN
The DPS based AR channel predictor which is proposed in
the previous section can be used to reduce the feedback rate
and the feedback delay of sending the CSI to the transmitter
for precoder design in time-variant channels. Based on the
proposed scheme shown in Fig. 5, for a MIMO system with
MTx transmit antennas and MRx receive antennas, it is only
required to feedback the Ds basis coefficients of the first
Q known/estimated subframes for each antenna pair which
results in total feedback load of MTx ×MRx × Q × Ds basis
coefficients. These coefficients are used for precoder design
over the subsequent subframes of each frame. The relative
amount of feedback load reduction compared to the case of
sending back the channel impulse response of the firstM sam-
ples of each frame is in the order of FR = O(Ms/Ds) per each

antenna pair and the total amount of feedback load reduction
over all antennas in terms of the number of coefficients
required to be fed back isMTx×MRx×(M−Q×Ds). Based on
the optimum values ofMs and Ds presented in Table 1, Fig. 6
evaluates the relative feedback load reduction with MIMO
sizes. We can observe from the figure that the proposed
DPS-AR predictor offers significant amount of feedback load
reduction specially for slower time-variant channels and the
relative feedback load reduction of the proposed DPS-AR
predictor will increase along with the increasing of MIMO
sizes.

It should be also noted that, the DPS sequences are the
same for different subframes and can be calculated once and
stored at the transmitter based on the known maximum nor-
malized Doppler frequency and the chosen subframe length.
Once the channel is predicted for each subframe the precoder
can be obtained using the SVD decomposition of the channel
matrix. BEM can also be used to reduce the feedback load for
heterogeneous multiuser transmissions by capturing the time-
variation of themultiuser downlink channels and reducing the
number of the channel parameters [36].

V. SIMULATION RESULTS
In this section the performance of the proposed DPS-AR
channel predictor is compared with that of the AR and the
ME channel predictors. We consider the same MIMO system
with parameters described in Section IV.

Fig. 7 shows the normalized MSE (NMSE) for different
prediction schemes at the prediction length pwhich is defined
as,

NMSE[p] =

M+p∑
m=M+1

E{|h[m]− hpre[m]|2}

p
M+p∑

m=M+1
E{|h[m]|2}

(32)

where hpre[m] is the predicted channel sample at time m.
It can be seen from Fig. 7 that the ME predictor has

lower accuracy both for low and high maximum normalized
Doppler frequencies compared to the proposed DPS-AR pre-
dictor. This is due to the fact that ME predictor assumes that
most of the energy of the channel is contained in the known
samples at the beginning of each frame and extends the
channel over the future time instants in an ME continuation
sense. Therefore,ME predictor has low complexity but would
not guarantee the best prediction accuracy for the signals
that do not have low energy over their prediction interval.
Furthermore, the proposed predictor also outperforms the
AR approach for low to medium normalized Doppler fre-
quencies and it has almost the same performance as the AR
method for high normalized Doppler frequencies. The reason
for that is the fact that in lower Doppler frequencies, the
history vector in the AR predictor contains more correlated
samples resulting in inaccurate weighting vector estimation.
However, for the proposed DPS-AR scheme the basis coeffi-
cients are sampled far enough from each other based on the
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FIGURE 5. Proposed Precoded MIMO system.

FIGURE 6. Relative feedback load reduction for different MIMO sizes.

selected subframe length which increases the accuracy of the
weighting vector estimation and reduces the AR prediction
error of the basis coefficients. On the other hand, by proper
selection of the number of basis the DPS reconstruction error
is controlled to be small enough and consequently the total
prediction error of the proposed DPS-AR scheme would be
smaller than that of the AR model. Increasing the Doppler
frequency, however reduces the correlation in the history
vector of the AR predictor leading AR predictor to reach its
best performance and reduces the performance gap between
the AR and DPS-AR schemes.

Fig. 8 and Fig. 9 shows the NMSE comparison between
proposed DPS-AR scheme and CE-AR scheme [25], [27]
at different prediction lengths and for different Doppler fre-
quencies in Rayleigh fading channel and COST2100 channel
[37]. It should be noted that in [25] and [27], the transmitted
symbols are segmented into over-lapping blocks with each
containing several sub-blocks. The corresponding CE basis
coefficients are updated for each block which in fact is equiv-
alent to sub-block wise tracking of the basis coefficients since
the adjacent blocks only differ by one sub-block. For the
sake of fairness, the performance of the proposed DPS-AR
scheme and CE-AR scheme are compared under the same
frame structure proposed in Section III. It can be seen from
Fig. 8 and Fig. 9, the proposed DPS-AR scheme works well
under both channel models.

FIGURE 7. NMSE comparison of different predictors at different
prediction length and for different Doppler frequencies.

FIGURE 8. NMSE comparison of CE-BEM for different doppler frequencies.

In terms of the computational complexity it is clear
from (15) and (20) that the conventional AR method requires
to calculate an M -order MMSE filter, w[m], for each m ∈
{M , · · · ,Mf −1}, while the proposed scheme needs to calcu-
late a Q-order MMSE filter, wi[q], for each i ∈ {0, · · · ,Ds−
1} and each q ∈ {Q + 1, · · · ,Qf }. The computational
complexity of the MMSE filter design for the conventional
AR model is in the order of CAR = O(M3(Mf − M ))
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FIGURE 9. NMSE comparison of CE-BEM for different doppler frequencies
(COST2100 channel).

FIGURE 10. Relative computational complexity reduction for different
MIMO sizes.

and for the proposed reduced rank DPS-AR scheme is in
the order of CDPS−AR = O(DsQ3Mf−M

Ms
). Fig. 10 shows

the relative amount of computational complexity reduction
CR = CAR/CDPS−AR = M4

s /Ds for different MIMO sizes.
So, although for more fast time variant channels the DPS-
AR method has almost the same performance as the AR
predictor, it still outperforms the AR method in terms of the
computational complexity.

VI. CONCLUSION
In this paper we have proposed a low complexity channel
predictor which uses the DPS basis in combination with an
AR model to track the V2X channel’s time variation. The
same DPS basis are used to model the time-variant channel
inside different subframes and the AR model is used for
tracking the time variation of the basis coefficients in each
transmitted frame. The subframe length and the number of
DPS basis used for channel modelling in each subframe are
obtained by minimizing the MSE of the proposed predictor
and it is shown that the bigger the normalized Doppler fre-
quency is, the smaller should be the sub-frame length and
the bigger should be the number of basis per subframe. The
simulation results demonstrates the better prediction accuracy
of the DPS-AR scheme in comparison to theME predictor for
different prediction length and different ranges of maximum

normalized Doppler frequency. Moreover, comparing to AR
predictor the DPS-AR approach has better performance both
in terms of computational complexity and MSE for low to
moderate time variant channels and has almost the same
performance for fast time variant channels with lower com-
plexity. The proposed channel predictor can be applied for
predicting the precoder in time varying MIMO channels with
reduced amount of the required feedback load. For future
work, we will discuss the effect of the noise on the proposed
DPS-AR channel predictor.
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