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ABSTRACT The accurate and reproducible delineation of tumors from uninvolved tissue is essential for
radiation oncology. However, the tumor margin may be challenging to identify from magnetic resonance
(MR) images of nasopharyngeal carcinomas (NPCs). Additionally, clinical diagnoses such as T-staging may
already provide some information on tumor invasion. To use this information and improve the performance
of tumor segmentation, we propose a novel deep learning neural network architecture that can incorporate
both T-staging and image information. Based on U-Net, our model adds a T-channel composed of T-staging
information and uses the attention mechanism. Since the T-staging information is defined by the extent
of tumor invasion, the T-channel using T-staging information can improve the segmentation accuracy
at different stages. Additionally, the addition of an attention mechanism allows our model to retain the
most valuable pixels of the image, thus further improving the delineation accuracy. In our experiments,
the proposed network was trained and validated based on records from 251 clinical patients using 10-fold
cross-validation. The dice similarity coefficient (DSC) and average symmetric surface distance (ASSD) were
used to evaluate our network’s results. The average DSC and ASSD and their standard deviation (SD) values
are 0.841 £ 0.011 and 0.747 & 0.199 mm. The unique T-channel effectively utilizes T-staging information to
improve the results. With the combination of the T-channel module and the attention module, we significantly
improved NPC tumor delineation performance.

INDEX TERMS Deep learning, magnetic resonance images, autosegmentation, nasopharyngeal carcinoma.

I. INTRODUCTION
NPC is epithelial cancer with a worldwide distribution. It is
endemic in Southeast China, especially in the Guangzhou
area’s Cantonese population (up to 80 cases per 100,000 peo-
ple per year). A medium incidence is found in other parts
of North Africa and Southern Asia and among indigenous
people in Greenland and Alaska (8—12 cases per 100,000 peo-
ple per year) [1]. Radiotherapy (RT) for NPC is the primary
treatment and has achieved 5-year survival rates of 90% and
84% for early-stage I and IIA diseases, respectively [2].
Radiotherapy planning is significantly affected by NPC
delineation accuracy, and MR is a preferred technique
for NPC delineation because it uses nonionizing radiation,
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is non-invasive, and has superior soft-tissue contrast [3].
In clinical practice, NPC is manually delineated by expe-
rienced physicians. However, it is a time-consuming and
subjective process that has an enormous influence on RT
planning.

Although many studies have investigated the autosegmen-
tation of NPC tumors, it remains a challenging task due to
the complicated anatomical structures involved, and medical
images contain much more information than what can be
observed by humans [4]. Additionally, the patient’s T-staging,
based on tumor invasion, is assessed by an experienced radi-
ologist during an appropriate diagnosis [5]. The classification
of malignant tumor TNM is a globally accepted classification
standard for cancer spread. It is the classification system
of tumor anatomy. T-staging describes the size of the orig-
inal tumor and whether it has invaded nearby tissue [6].
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Therefore, we considered combining the T-staging informa-
tion with deep learning model to improve NPC tumor seg-
mentation performance. There are no related works to our
knowledge.

In this study, we propose a deep learning model that incor-
porates T-staging and image information to further improve
NPC tumor delineation accuracy.

Based on U-Net [7], our model adds a T-channel composed
of T-staging information and uses the attention mechanism.
Since the T-staging information is defined by the extent
of tumor invasion, the T-channel using T-staging informa-
tion can improve different stages’ effect. Simultaneously,
the addition of an attention mechanism allows the model to
retain the most valuable pixels of the image, further improv-
ing the delineation accuracy. In our experiments, the proposed
network was trained and validated on 251 clinical patients
using 10-fold cross-validation. The MRIs used in our study
consisted of T1-weighted (T1W), T2-weighted (T2W), and
contrast-enhanced T1-weighted (CE-T1W) images. Different
types of MRIs show different information on the same tissue,
which is helpful for tumor segmentation. Additionally, we uti-
lize T-staging information as input to a deep learning model
designed as an additional channel of input images.

This paper is organized as follows. Section II summarizes
the related research progress of NPC tumor automatic delin-
eation. The details of our proposed automatic segmentation
model are described in Section III. Section IV introduces
the experimental details, and the results are presented in
Section V. Finally, we discuss the research results and defi-
ciencies in Section VI.

Il. RELATED WORKS

A. TRADITIONAL SEGMENTATION MODELS

Several automatic delineation algorithms have been
developed over the past 20 years. Jolly [8] cultivated a
segmentation model with registrations and minimum surfaces
in medical images. The deformable model used to be rep-
resentative of medical image segmentation. Billet et al. [9]
developed the deformable model and achieved good perfor-
mance. The use of a shape prior had also been a trend in the
past. Lin er al. [10] utilized a shape prior model to finish
segmentation tasks. Active shape and appearance models
(ASM/AAM) [11] represent shape and texture variability in
medical images.

Subsequently, Zhang et al. [12] developed an autoseg-
mentation algorithm with the AAM/ASM model. An atlas
shows the different structures present in a given image [13].
Lotjonen et al. [14] used an atlas to complete segmentation
in medical images.

B. DEEP LEARNING FOR MEDICAL IMAGE
SEGMENTATION

With the development of deep learning in recent years, sig-
nificant progress has been made in the automatic segmenta-
tion of medical images. A fully convolutional network was
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developed for pixel-level prediction [15], making it possible
to use deep learning to complete segmentation tasks. The
subsequent development of U-Net further improved segmen-
tation accuracy, and U-Net achieved better results in the field
of medical image segmentation. Kumar et al. [16] used U-Net
to complete the real-time segmentation of breast masses.
Yang et al. [17] used ResNet [18] and U-Net to achieve brain
tumor segmentation.

In recent studies, various modified U-Net models have fur-
ther improved the accuracy of delineation. Milletari et al. [19]
cultivated a 3D convolution and a residual module to address
3D tasks. Nie et al. [20] changed the concatenation of
skip connections into convolutions to improve performance.
Wang et al. [21] combined local and global information and
obtained better results.

In the abovementioned studies, deep learning has shown
unique advantages in medical image segmentation, making it
necessary for future progress.

C. DEEP LEARNING FOR NPC SEGMENTATION

Li et al. [22] proposed an automatic segmentation method
for NPC based on a CNN with dynamic contrast-enhanced
MRI, which significantly improved NPC delineation accu-
racy. Zhao et al. [23] used fully convolutional networks with
auxiliary paths to achieve the NPC’s automatic segmentation
on PET-CT images. During training, they implemented a deep
supervision technique by adding auxiliary paths to improve
the network’s capability. Guo et al. [24] designed a 3D CNN
with a long-range skip connection and a multiscale pyramid
for NPC segmentation. This network can perceive the mul-
tiscale features of tumors as well as hierarchical semantic
and contextual information. They also used deep supervision
to generate auxiliary segmentation prediction and added the
weighted loss of the auxiliary segmentation map to the total
loss, which helped accelerate the network’s convergence.
Ye et al. [25] proposed and verified an accurate and efficient
automatic NPC segmentation method based on dense con-
nectivity embedding U-Net (DEU) and dual-sequence MRI
images. The DEU extracted the features of TIW and T2W
in different paths automatically and fused the features with
dense connectivity blocks, which contributed to the increased
accuracy.

There are considerable differences in NPC patients’
tumors, such as the shape and dimension, making delineation
difficult. By using a CNN, the accuracy of NPC automatic
segmentation can be significantly improved.

D. OUR CONTRIBUTIONS
In this work, we proposed a deep learning model that incorpo-
rated both T-staging information and MR image information.
Additionally, we added an attention module into our network
that made the model more robust and accurate. The contribu-
tions of this study can be summarized as follows:

(1) We developed a novel T-channel module for our net-
work to incorporate T-staging information and a deep learn-
ing model.
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FIGURE 1. The flowchart of our proposed method. In the data combination part, we transfer T-staging information into the T-channel to the MR
images. In the result prediction part, we develop an attention U-Net to complete segmentation.

(2) We proposed a novel modified U-Net with an attention
module and a T-channel module that can be used in autoseg-
mentation for NPC.

(3) We used 251 patients to train and validate our model
and obtained a robust result.

lll. METHODS
A. INPUT DATA PROCESSING
The data combination part is shown in Figure 1. First,
we took five slices of each type of MR image and
composed them into different channels (T1W-channel,
CE-T1W-channel, and T2W-channel). Then, we merged
these three channels through a concatenation operation and
obtained a 512 x 512 x 15 image volume. This opera-
tion helped the model learn the same features from the
input images in different states and be applied to different
MR images.

To utilize the T-staging information for improving the per-
formance of a CNN model, we transferred its digital informa-
tion to the T-channel by:

F (n) = nax (D

where n represents the T-staging information (1 to 4 rep-
resents the T1 to T4 stages) and « denotes the weight of
the background; here, we set o to 0.25 due to the four
different stages and x is a background image, which is a
512 x 512 image with a pixel value of 255. Through F (n),
we obtained the T-channel of each stage shown in Figure 3.
We concatenated the T-channel with the T1W-channel, CE-
T1W-channel, and T2W-channel and obtained the final input
as a 512 x 512 x 16 input volume that contained different
type and stage information.
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B. ATTENTION U-NET

We trained a U-Net with an attention module to accom-
plish our task. The basic structure of our model is shown in
Figure 2. The input volume (512 x 512 x 16) was obtained
from the data combination part, and then the encoder part
extracted highly representative features and reduced the input
volume size. The decoder part utilized a deconvolution oper-
ation, an upsampling transposed convolution, to rebuild an
image of the same size as the input image from the extracted
features.

The encoder part was composed of four downsampling
blocks and a bottom block. Each downsampling block con-
sisted of two 3 x 3 convolutional layers, two batch nor-
malization (BN) [26] layers, and double rectified linear unit
(ReLU) [27] layers. The BN layer was designed to prevent
gradient explosion and vanishing, and a ReLU activation
function followed each BN layer. The ReLU is defined as:

0, x<0O
= ’ 2
y {x, >0 2

where x represents the input and y denotes the output.

The decoder part was composed of three upsampling
blocks. Each upsampling block consisted of a 3 x 3 decon-
volutional layer, a concatenation layer, two BN layers, two
3 x 3 convolutional layers, and double ReLU. High-
resolution images may lose information because of the decon-
volution operation.

The skip connection operation was used to address this
problem by fusing the feature maps from the downsam-
pling blocks with the feature maps in the deconvolutional
layer. These concatenation layers can obtain more contex-
tual information on multiple scales to improve delineation

21325



IEEE Access

M. Cai et al.: Combining Images and T-Staging Information to Improve the Automatic Segmentation of NPC Tumors

Encoder

Decoder

9
[0} @
o o
£ 2
g 8
£ 1 2
(A)— =
® |
-
o
> Conv3x3 + ReLU > Upsampling Skip connection
Max pooling > Convixl (A) Attention Gate

FIGURE 2. lllustration of our proposed convolutional neural network architecture. The network includes two phases of encoder
and decoder. The encoder part extracted highly representative features and reduced the input volume size and the decoder part
utilized a deconvolution operation, to rebuild an image of the same size as the input image from the extracted features.
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FIGURE 3. The T-channel of each stage. We use different pixel values to
represent each stage.

performance. Finally, the feature maps were computed by a
1 x 1 convolutional layer with a sigmoid function.

With all the upsampling blocks, the model output a
512 x 512 image that was rebuilt by the decoder part, which
was the same size as the input images. The dice loss [19]
between the ground truth and the prediction mask was com-
puted as a loss function for our network. In the encoder
and decoder parts, an attention mechanism was applied to
optimize the extracted spatial information of the feature
maps [28], [29].

In our study, a mask with pixel values between O and 1
was generated by transformation, and then the feature maps
were multiplied by the mask. The region of interest stayed
unchanged, and the rest of the feature map was set to zero.
Finally, the attention mechanism ensured that the useful infor-
mation in the feature maps was preserved. Figure 4 shows
our attention gating signal unit. A gating signal unit that
consists of a 3 x 3 convolutional layer, a BN layer, a ReLU,
a1 x 1 convolutional layer, and a sigmoid function used to
produce the signal information of the input feature map that
kept the region of interest unchanged. The attention gating
was responsible for synthesizing feature maps from different
parts. The entire attention module process is shown in fig-
ure 5. First, the module receives two feature maps as input,
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x? is from downsampling blocks, and x* is from upsampling
blocks, then we obtain the corresponding gating signal infor-
mation through G(x). An element-wise product was applied
for the input and their corresponding gating signal, which
preserved the image’s essential information. Finally, we got
two feature maps with the same size through a deconvolution
operation and added them together to obtain the attention
module output.

IV. EXPERIMENTS

A. DATASETS AND EXPERIMENTS

A total of 251 NPC patients diagnosed and histologically
confirmed at the Fudan University Shanghai Cancer Cen-
ter from February 2010 to January 2012 were selected for
this study. The patients included 183 males and 68 females
who ranged from 13 to 75 (average 46.19) years old. The
patients’ T-staging information based on the 8th edition of the
UICC/AJCC staging system was extracted from Electronic
Medical Records (EMRs) and reviewed by one radiation
oncologist. The NPC tumor boundary’s ground truth was
manually delineated by physicians with five years of expe-
rience with MR images.

The diagnostic MR images included T1-weighted (T1W),
T2-weighted (T2W), and contrast-enhanced T1-weighted
(CE-T1W) images. We obtained T1W and T2W images on
a 1.5 T MRI system (GE, Milwaukee, WI) with an 8-channel
phased-array joint coil. TIW scans (echo time [TE]: 9-15 ms,
repetition time [TR]: 600-800 ms) in the sagittal and trans-
verse planes and T2W scans (TE: 80-100 ms and TR:
3000-4000 ms) in the transverse plane were obtained before
the injection of a contrast agent. Gadolinium-diethylene
triamine pentaacetic acid (Gd-DTPA) was applied as the
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TABLE 1. Distribution of patient and slice numbers in each group.

Fold 1 2 3 4 5 6 7 8 9 10
Patient Number 25 25 25 25 25 25 25 25 25 26
Total Slices 426 425 427 430 430 429 428 431 425 443
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FIGURE 4. The structure of gating signal unit. This unit includes a
3 x 3 convolutional layer, a BN layer, a ReLU, a 1 x 1 convolutional layer,
and a sigmoid function used to produce the gating signal.

contrast-enhanced agent at a dose of 0.1 mmol/kg. The CE-
T1W ([TE]:1.9-2.5 ms and [TR]:185-215 ms) in the coronal
and transverse planes was obtained after the injection of the
contrast agent. The matrix size was 512 x 512, and the
in-plane resolution was 0.468-0.523 mm.

The patients were randomly divided into ten groups. Our
models were validated with one group, and the other nine
groups were used as the training dataset. The distribution of
the numbers of patients in the ten groups is shown in Table 1.

To verify the effectiveness of our model, we performed a
10-fold cross-validation experiment. A baseline model was
designed based on our proposed model without a T-channel.
Then, we evaluated our T-channel model and baseline model
by 10-fold cross-validation. Additionally, we verified the
effect of the attention module and T-channel module in com-
paring different module experiments.

B. IMPLEMENTATION AND EVALUATION

In our 10-fold cross-validation experiment, we randomly
divided all the patients into ten groups. Each model was
validated with one group, and the other nine groups were
used as the training dataset. The network was implemented
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FIGURE 5. The workflow of our attention gate. The attention gate was
responsible for synthesizing feature maps from different parts.

in PyTorch [30] and trained on two NVIDIA Geforce GTX
1080 Ti GPUs for 600 epochs. An Adam [31] optimizer was
applied with g1 = 0.9 and B2 = 0.999, and the learning
rate, which was initially set to le-4, was reduced to le-
5 after 400 epochs. In our attention experiment, we utilized
the same training and validation dataset as foldl, which is
shown in Table 1. A total of 600 epochs were trained for this
experiment, and the parameters were the same as those in the
10-fold cross-validation experiment.

We used the validation dataset to evaluate the segmentation
performance of all the models by calculating the dice simi-
larity coefficient (DSC) [32] and average symmetric surface
distance (ASSD). Specifically, we let A and B represent the
ground truth and the prediction mask, respectively. Then,
the DSC and ASSD are computed by:

2|ANB|
DSC = ——— 3)
(1Al + 1B
where | - | denotes the number of 1s in the ground truth or

prediction mask and |A N EB| indicates the number of Is
shared by A and B. A larger DSC indicates a more accurate
result.

ASSD
_ l { Dacta Minyeppd (a,b) 3 pcpgmingcpqd (b, a) }
2 |A] B
“)
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TABLE 2. The average DSC and ASSD of each fold between our T-channel model and without T-channel model.

Model 1 2 3 4 5 6 7 8 9 10 Ave
DSC 0.845 0.863 0.833 0.847 0.841 0.820 0.844 0.843 0.833 0.845 0.841
T-channel ASSD
(mm) 0.533 0.594 0.679 0.709 1.201 1.020 0.609 0.816 0.658 0.647 0.747
DSC 0.815 0.847 0.800 0.847 0.824 0.815 0.814 0.804 0.810 0.807 0.818
Without

T-channel ?Sﬁg 0830 0813 0974 0718 0941  1.070 0875 0874 0762 0915  0.877

Without T-channel T-channel Ground truth TABLE 3. Comparisons of segmentation performance for different

models (95% CI).

Model DSC ASSD (mm)

U-Net 0.811 (0.719, 0.882) 0.830(0.212, 1.939)

FIGURE 6. Qualitative results of our proposed method. For each
sub-figure, the left column indicates the results with T-channel. The
middle column, as comparative results, shows the results without
T-channel. And the right column represents the ground truth.

where A and B represent the surface voxels of the ground
truth and the predicted segmentation results, respectively, and
d(a, b) represents the Euclidean distance between a and b.
A smaller ASSD denotes a more accurate result.

V. RESULTS

A. TENFOLD CROSS-VALIDATION EXPERIMENT

As shown in Table 2, the average DSC and ASSD of the
T-channel models were 0.841 and 0.747 mm, respectively,
in the 10-fold cross-validation experiment. The average DSC
and ASSD at our model without T-channel were 0.818 and
0.877 mm, respectively. Our proposed model performed
better than the model without T-channel, which indicated
the T-channel’s effectiveness. Figure 6 shows the qualita-
tive results of our experiments. For each sub-figure, the left
column, as comparative results, shows the results without
T-channel. The middle column indicates the results with
T-channel. And the right column represents the ground truth.

B. COMPARISON OF DIFFERENT MODULES

Table 3 shows comparisons of the segmentation performance
among the different modules in our experiments. The U-Net
model’s DSC and ASSD reached 0.811 and 0.830 mm,
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U-Net + Attention

U-Net + T-channel

U-Net + Attention
+ T-channel

0.815(0.707, 0.892)

0.839 (0.775, 0.897)

0.845 (0.791, 0.897)

0.778 (0.213, 1.873)

0.614 (0.187, 1.703)

0.533 (0.174, 1.254)

respectively. Next, we evaluated the effects of the attention
module and the T-channel. The U-Net and attention module
combined model ultimately achieved a DSC of 0.815 and
an ASSD of 0.778 mm, while U-Net with T-channel per-
formed better, with DSC and ASSD values of 0.839 and
0.614 mm, respectively. Finally, we combined the attention
and T-channel modules and obtained our proposed model,
with a DSC of 0.845 and an ASSD of 0.533 mm, performing
better than using a single module alone.

C. COMPARISON WITH THE START-OF-THE-ART METHODS
We compared our model with four state-of-the-art methods:
(1) PSPNet [33] that uses Resnet50 [18] as the backbone;
(2) SegNet [34]; (3) U-Net [7] and a variant of it that uses
DenseNet-201 as the backbone; (4) DeepLabv3+ [35] that
uses Resnet101 as the backbone. We trained all these net-
works with the same training and validation dataset as fold1’s
dataset. Quantitative comparison results of these methods are
presented in Table 4. It shows that all state-of-the-art methods
have good performance in terms of Dice score and ASSD.
Our approach yielded the best results on both dice and ASSD
with a dice score of 0.845 and an ASSD of 0.533 mm, which
is considerably improved compared with the other methods.

VI. DISCUSSION

We proposed an automated NPC segmentation method based
on the combination of clinical diagnosis information and a
CNN. To address NPC segmentation’s difficulty, we convert
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TABLE 4. Quantitative evaluations of the state-of-the-art methods and
our proposed network for NPC segmentation (95% Cl).

Network DSC ASSD (mm)

PSPNet [33] 0.737 (0.625, 0.822) 0.875 (0.429, 1.587)

SegNet [ 34] 0.785 (0.713,0.870) | 0.744 (0.259, 1.974)

DeepLabV3+ [35] 0.803 (0.683, 0.884) 0.668 (0.226, 1.488)

U-Net [7] 0.811(0.719,0.882) | 0.830(0.212, 1.939)
DenseUnet 0.824 (0.715,0.889) | 0.604 (0.212, 1.411)
Proposed 0.845 (0.791,0.897) | 0.533 (0.174, 1.254)

the T-staging information into an additional image channel
and concatenate it with different types of MR images, which
provides more reliable staging information for NPC segmen-
tation and improves the accuracy of tumor segmentation.
Besides, we added an attention mechanism to the model to
retain the image’s essential information, further improving
our model’s accuracy. We achieved better performance with
our model, as shown- in Table 2 and Figure 6. The perfor-
mance on the validation dataset proved the robustness of our
model.

As shown in Table 2, in our 10-fold cross-validation exper-
iment, there were ten models in total, of which the model
using our proposed T-channel module performed better. The
T-channel model significantly improved the average DSC for
fold3, fold8, and fold10, which was more than 0.030 higher
than that of the model without T-channel. The other models
also achieved higher results than those without T-channel.
In the end, we achieved average DSCs of 0.841 (T-channel
model) and 0.815 (without T-channel model). The T-channel
module we proposed effectively improved the delineation
performance, and ultimately, the average DSC increased by
0.023, and the ASSD decreased by 0.130 mm.

Table 3 shows our comparative experiments for verifying
the effectiveness of our attention module and T-channel mod-
ule. We used the fold1 dataset in the 10-fold cross-validation
for training, controlling all the training parameters to be
the same. When using U-Net, we obtained an average DSC
of 0.811 (95% CI = 0.719 to 0.882) and an ASSD of 0.830
mm (95% CI = 0.212 mm to 1.939 mm). Then, we combined
U-Net with the attention module and T-channel module sep-
arately. When the attention module was used alone, the aver-
age DSC and ASSD reached 0.815 (95% CI = 0.707 to
0.892) and 0.778 mm (95% CI = 0.213 mm to 1.873 mm),
respectively. The average DSC was 0.004 higher than that of
the original U-Net, and the ASSD declined by 0.052 mm.
When the T-channel module was used alone, the model’s
performance was significantly improved compared to that
of the original U-Net. The DSC reached 0.839 (95% CI =
0.775 to 0.897), the ASSD reached 0.614 mm (95% CI =
0.187 mm to 1.703 mm), the DSC was 0.028 higher than
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U-Net, and the ASSD was 0.216 mm lower than U-Net.
When we combined these two modules, we obtained better
performance than when using one of the modules alone and
ultimately obtained a DSC of 0.845 (95% CI = 0.791 to
0.897) and an ASSD of 0.533 mm (95% CI = 0.174 mm
to 1.254 mm). Figure 7 shows a scatterplot of the DSCs
of U-Net and the other models, which show better results
than the basic U-Net. In Figure 8, we can see the effect of
each module in improving segmentation performance. The
model we proposed combining the T-channel module and
the attention module obtained the best results among all the
models and was also more stable than the others.

From the experimental results, we drew the following two
conclusions: (a) both the attention module and the T-channel

DSCs of validation patients between U-Net and other networks
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H
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a
.
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FIGURE 7. A scatterplot that shows the differences between U-Net and
other networks.
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FIGURE 8. A boxplot showing the DSCs of different models. The model

with attention gate and T-channel exclaims less variance and a higher
average DSC.
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module can improve the performance of the model, and the
combination of these components can further improve the
accuracy of delineation; (b) the improvement in the model
from the T-channel module is more evident than that from
the attention module, proving the importance and necessity
of T-channel in our study. The comparison results between
our model and other methods are shown in Table 4. We used
251 patients to train and evaluate our experiments to ensure
that our results were reliable. Among the studies shown
in Table 4, our method has the best results on dice and ASSD.
Our research has the following limitations: (a) due to the
GPU memory limitation and to maintain the original image
without compressing it, we ultimately set the batch size to
6 in our experiments; a larger batch size may help improve
the performance. Using group normalization [36] may solve
this problem and increase accuracy. (b) We trained a total
of 20 models in T-channel model and baseline model in the
10-fold cross-validation experiment. To reduce the training
time, we set the number of epochs to 600 and obtained a
convergence result. A larger number of epochs may improve
the model’s performance. (c) The T-channel occupied only
one channel of the input volume; compared with the 15 chan-
nels of the original image, the proportion was tiny. Increasing
the proportion of T-channel may improve the performance
of the model. In this study, we proposed and evaluated an
accurate and useful automatic NPC segmentation method
based on the combination of clinical diagnosis information
and CNN.

T-staging information indicates the extent of tumor inva-
sion. We employ different pixel values to represent each
stage, which is equivalent to setting a specific background
color for each stage. The CNN can distinguish the stage of the
patient by the background color, thereby further promoting
the precision of segmentation.

Although U-Net has been applied widely in tumor seg-
mentation tasks, no research has added T-staging infor-
mation into a CNN model. We proposed this method for
the first time for the NPC’s automatic segmentation and
achieved more reliable and better performance than other
methods. With the combination of the T-channel module
and attention module, we successfully improved NPC tumor
delineation performance. The 10-fold cross-validation results
showed that our proposed method displayed better perfor-
mance with T-channel. Future studies may aim to improve
segmentation accuracy with more kinds of clinical diagnosis
information.

VII. CONCLUSION

Our proposed T-staging network performs better than a net-
work using image information only, when using the same
dataset under the same test conditions. The unique T-channel
effectively utilizes T-staging information to improve the
result. With the combination of the T-channel module and
the attention module, we significantly improved NPC tumor
delineation performance.
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