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ABSTRACT The top-k influential individuals in a social network under a specific topic play an important
role in reality. Identifying top-k influential nodes of a social network is still an open and deeply-felt problem.
In recent years, some researchers adopt the swarm intelligence algorithm to solve such problems and obtain
competitive results. There are twomain algorithmmodels for swarm intelligence, namelyAnt Colony System
(ACS) and Particle Swarm Optimization (PSO). The discretized basic Particle Swarm Algorithm (DPSO)
shows comparable performance in identifying top-k influential nodes of a social network. However, the per-
formance of the DPSO algorithm is directly related to the choice of its local search strategy. The local
search strategy based on the greedy mechanism of the initial DPSO can easily lead to the global suboptimal
solution due to the premature convergence of the algorithm. In this paper, we adopt the degree centrality
based on different neighbourhoods to enhance its local search ability. Through experiments, we find that local
search strategies based on different neighbourhoods have significant differences in the improvement of the
algorithm’s global exploration capabilities, and the enhancement of the DPSO algorithm based on the degree
centrality of different neighbourhoods has a saturation effect. Finally, based on the degree centrality of the
best neighbourhoodwith improved local search ability, we propose theDPSO_NDC algorithm. Experimental
results in six real-world social networks show that the proposed algorithm outperforms the initial DPSO
algorithm and other state-of-the-art algorithms in identifying the top-k influence nodes.

INDEX TERMS Discrete particle swarm optimization, local search strategy, neighbourhood degree
centrality, top-k influential nodes, social network.

I. INTRODUCTION
People from all sides of the world can connect and form a spe-
cific complex network, such as wireless sensor network [1],
traffic network [2], software network [3] and so on. With the
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development of information technology, the scale of a social
network is becoming larger and larger, and it becomes more
and more impractical to make a comprehensive analysis of
such a social network. For a specific topic in a social net-
work, identifying the top-k influential nodes is a crucial issue,
which relates to the wide applications, such as information
spreading [4], [5], management and control [6]–[8], viral

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 21345

https://orcid.org/0000-0003-3955-7765
https://orcid.org/0000-0001-8054-5446
https://orcid.org/0000-0002-6822-0590
https://orcid.org/0000-0002-9891-389X
https://orcid.org/0000-0002-1826-320X
https://orcid.org/0000-0001-7070-6699


L. Han et al.: Identifying Top-k Influential Nodes Based on Discrete PSO

marketing [9], [10], traffic bottlenecks identification [11] etc.
Up to now, there are many methods to identify the top-k
influential nodes in a social network, such as centrality of
degree [12], path [13], information entropy [14], coritiv-
ity [15], evidence theory centrality [16], k-shell [17] etc.With
the increasing scale of the social network, the efficiency of the
traditional centrality algorithm is very low. Some heuristic
approaches show higher efficiency in solving this problem,
such as SAEDV [18],DPSO [19] etc.

In this paper, we proposed a method to identity the top-
k influential nodes in a large-scale social network by inte-
grating the DPSO algorithm with the neighbourhood degree
centrality of a network. The main contributions of this paper
are summarized as follows:

1) We proposed the DPSO_NDC algorithm, whose local
search strategy that based on the neighbourhood centrality
can enhance the local search ability and can obtain the opti-
mal global solution.

2) By comparing the LIE values of the algorithm with an
enhanced local search strategy that based on different neigh-
bouring domains, we find that the neighbourhood degree cen-
trality within the range of 3-hop improves the performance
of the initial DPSO algorithm significantly, and followed by
2-hop. However, the performance improvement of the neigh-
bourhood degree centrality within the 4-hop range is far less
than that of the 2-hop and 3-hop, or even far worse than 1-hop.
In other words, the neighbourhood degree centrality has a
saturation effect in improving the global searching capability
of the initial DPSO algorithm.

3) Experimental results in the six real social networks show
that the proposed DPSO_NDC algorithm has competitive
performance with the algorithms proposed in state of the art.
Comparedwith the original DPSO algorithm, its performance
is improved significantly.

The rest of the paper is structured as follows:
Section 2 reviews some relevant works. The problem defi-
nition and the introduction of discrete Particle Swarm Opti-
mization Algorithm is presented in Section 3. The method
that integrated the DPSO algorithm with the local neigh-
bourhood centrality is proposed in Section 4. In section 5,
the experimental results and comparisons are shown. Finally,
the conclusions are summarized in section 6.

II. RELATED WORK
Since Kempe [20] formalized such problem as an opti-
mization problem in 2003, a large number of algorithms
have emerged to solve this problem in the social network.
In summary, these methods are mainly summarized as the
methods based on network structure and heuristic methods.
In the research of algorithms based on network structure,
Chen et al. [21] proposed the Single Discount (SD) algo-
rithm, which sorts all nodes of a network based on degree
and iteratively selects a node with the maximum degree.
Kundu et al. [22] proposed an algorithm based on the dif-
fusion degree of nodes, which filters out the top-k influential
individuals with the highest diffusion degree value to form

the influential seed node-set. Chen et al. [23] introduced path
diversity and found that it can largely improve the identifying
accuracy. Zhao et al. [24] provides GIN (global importance of
each node) model to identify influential nodes from the global
perspective of the complex networks. Liu et al. [25] proposed
a GMM model, which combines the local information and
global information of the network to identify the most influ-
ential nodes in the social network. Wen et al. [26] proposed
multi-local dimension (MLD) method to identify the vital
spreader in the social network and found that the node with
low MLD value would be more important in the network.
On the other hand, heuristic algorithms based on greedy
mechanisms mainly include CELF [27], CELF++ [28], etc.
Salehi and Masoumi [29] proposed a metaheuristic algorithm
based on Katz centrality to solve IM problem in the social
network.

In recent years, swarm intelligence algorithms are used
to identify the top-k individuals in a social network.
Jiang et al. [18] applied the Simulated Annealing (SA)
algorithm to obtain the optimal solution of influence
maximization. Simsek and Kara [30] employed the Grey
Wolf Optimizer (GWO) and Whale Optimization Algo-
rithm (WOA) to solve the influence maximization problem,
in which experimental results show that the swarm intelli-
gence approach is effective and efficient. Sankar et al. [31]
adopted the bee algorithm to explore the bee colony’s wag-
gle dance behavior for identifying influential individuals.
Tang et al. [32] proposed a discrete shuffled frog-leaping
algorithm to select top-k influential nodes in a social net-
work. Zareie et al. [33] use gray wolf optimization algo-
rithm to identify the influential users in the social network.
Singh et al. [34] proposed ACO-IM algorithm using the ant
colony optimization to solve the maximizing influence in the
social network. Sheikhahmadi and Zareie [35] adopted multi-
objective artificial bee colony optimization to identify the
influential spreaders in a social network. As can be seen from
the above-mentioned researches, the application of swarm
intelligence algorithm to solve this problem has been paid
more and more attention by scholars.

III. PRELIMINARIES
A. PROBLEM DEFINTION
Let G = (V ,E) denote a social network graph,
where {v1, v2, · · · , vn} denotes a set of nodes and E =
{e1, e2, · · · , em} denotes a set of edges. A node represents
an individual actor in a social network graph, and an edge
represents the relationship between individuals, such as col-
laboration, friendship, or certain social relationships. The dif-
ferent social relationships can build different network graphs.
To study the influence spread, a node’s state in the net-
work models is defined as active and inactive. The acti-
vated node indicates that the corresponding individual can
spread information or influence. In contrast, the inactive node
denotes that the active nodes can influence the corresponding
individual.
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Definition 1 (Top-k Influence Nodes): The top-k influence
nodes are defined as a set of nodes of size k that have the
most influence in the network for a particular topic. It aims
at identifying a set of nodes of size k based on a specific
topic or a model whose influence or importance in the social
network is greater than that of any other nodes outside the
set. The significance of node v under a specific mode or topic
is denoted as f (v), so the influence node set S ′ and the
relationship between top-k influence nodes can be expressed
as in (1):

S ′=
k∑
v=1

f (v){|S ′| = k, f (1) ≥ f (2) ≥ · · · ≥ f (v) · · ·≥ f (k)}.

(1)

where k is the user-specified number of nodes.
Definition 2 (Influence Maximizing Nodes):A set of nodes

consisting of K nodes that have the widest range of influence
under a given propagationmodel and propagation probability,
i.e. the number of nodes expected to be influenced is the
largest. Formally, it is denoted as d(S) [20]:

S∗ = argmax[d(S)]{S ∈ V , |S| = k}. (2)

where k is the size of the seed node-set. It aims at identifying
the top-k nodes set of maximum influence spreading. It is an
optimization problem and a sub-problem of the identification
of the top-k influence nodes.
Definition 3 (Independent Cascade Diffusion Model): The

Independent Cascade (IC) model [20] is a random process in
a social network. In the IC model, the entire influence prop-
agation process is composed of discrete random propagation
steps. In each time step, there are only two states of nodes
in the network: active state and inactive state. In each step
of propagation, the node in the active state activates its direct
neighbour nodes with probability p, and the node can only
change from the inactive state to the active state, and vice
versa. For simplicity, the probability pi is usually defined as
a constant value.

B. LOCAL INFLUENCE EVALUATOR
The computation of the influence spread d(S) in the social
network has been proved to be a NP-hard problem. To solve
this problem, Jiang et al. [18] proposed a fast EDV objec-
tive function that applies to evaluate the spreading scale
for the social networks. For the convenience of calculation,
Gong et al. [19] proposed the Local Influence Estimation
(LIE) function to approximate the influence of the nodes.
This objective function is the suite for the influence spread
approximation of large-scale social networks in the ICmodel.
The estimation function LIE is formulated as follows:

LIE = σ0(S)+ σ ∗1 (S)+ σ
∼

2 (S)

= k + σ ∗1 (S)+
σ ∗1 (S)

|N (1)
S \ S|

∑
u∈N (2)

s \S

p∗ud
∗
u

= k + (
1

|N (1)
S \ S|

∑
u∈N (2)

s \S

p∗ud
∗
u )

·

∑
i∈N (1)

S \S

(1−
∏

(i,j)∈E,j∈S

(1− pi,j)) (3)

where N (1)
s and N (2

s ) are the sums of the degree values within
the range of one-hop and two-hop of each node in the seed
node set S, respectively. Pu* is the constant probability of
successfully activating its neighbour node.Du* is the number
of edges for node u within the range of one-hop and two-hop.
It has been proved in some literature [36] that the LIE eval-
uation function has good approximate results. In this way,
the problem of identifying the top-k influence nodes becomes
an optimization problem of the objective function LIE, that is,
the optimal k nodes are selected to form the seed node-set by
the maximization principle of the LIE function value.

C. PSO AND DPSO
The basic particle swarm optimization (PSO) algorithm is
a classical optimization algorithm, which is inspired by the
evolutionary behavior of birds’ collective flight. The original
PSO model can be formulated as follows:

V t+1
i = wV t

i +c1r1(Pbesti−X
t
i )+c2r2(Gbest−X

t
i ) (4)

X t+1i = X ti + V
t+1
i (5)

where Vi(vi1, vi2, · · · , vid ) denotes the position vectors of
particle i, and Xi(xi1, xi2, · · · , xid ) denotes the velocity vector
of particle i(i = 1, 2, · · · ,N ). N is the size of particle
swarm, and d is the dimension of the problem space. Constant
learning factors are c1 and c2, r1 and r2 are two random
factors that take the random value from (0, 1). In the wV t

i
item,w is the weight.Pbesti = (pbesti1, pbesti2, · · · , pbestik )
denotes the optimal position of particle i, and Gbest =
(gbest1, gbest2, · · · , gbestk ) represents the global optimal
position in the particle swarm.

Above traditional PSO is suitable for the solution space of
continuous function and has good optimization performance.
To apply the basic PSO algorithm to the discrete complex
network space, Gong et al. [19] proposed discrete particle
swarm optimization (DPSO) algorithm based on redefining
the form of the basic PSO. The form of DPSO model is
formulated as follows:

V t+1
i = H [ωV t

i + c1r1(Pbi ∩ X
t
i )+ c2r2(Gb ∩ X

t
i )] (6)

V t+1
i = X ti ⊕ V

t+1
i (7)

where Xi is the integer number of the node ID, and the Pbi and
Gb are vectors composed of Xi. Operator "H (·)" is a decision
function, operator " ∩ " is a logical similar intersection oper-
ation. Velocity vector Vi = (0, 1), where 0 indicates that the
node corresponding to the location in the current seed node-
set Xi does not need to be replaced, 1 represents the node
corresponding to the location of seed node Xi needs to be
adjusted.
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IV. METHOD
In this section, the local search strategy of the DPSO algo-
rithm is discussed and the neighborhood centrality is intro-
duced. Then, we present the improved local search strategy
based on the neighbourhood degree centrality to enhance the
global searching ability of the initial DPSO algorithm.

A. LOCAL SEARCH STRATEGY ANALYSIS
As the general slope required for the optimization problem
cannot be directly generated in the discrete network solution
space, the basic DPSO algorithm cannot be directly applied to
solving the top-k influence nodes identification in the discrete
network space. In the continuous solution space, the basic
PSO algorithm follows the general slope over the surface to
converge at the global optimum. However, In the IM prob-
lem, it cannot converge to the global optimum. To make the
particles converge to a global optimal solution in the DPSO
algorithm, the author [19] proposed the local search operator
that is based on a greedy strategy. For the detailed local search
strategy of the DPSO algorithm see Algorithm 1. Where
function Replace(·) is used to replace node xbi with one of
its nearest neighbor nodes randomly.

Algorithm 1 Pseudocode of Local Search Strategy
Input: Particle Xa
Output: Particle Xb
1: Xb← Xa
2: for xbi ∈ Xb do
3: Flag← False
4: Neighbors← Nxbi(1)
5: repeat:
6: xbi← Replace(xbi,Neighbors)
7: if LIE(Xb) > LIE(Xa) then
8: Xa← Xb
9: else

10: Flag← True
11: until Flag == True
12: Xb← Xa
13: return Xb

From the local search strategy of DPSO, it can be seen
that if the replacement operation is executed iteratively,
i.e., LIE(Xb) > LIE(Xa), it may return an expected opti-
mal result. However, if the replacement operation is exe-
cuted prematurely to meet the condition of termination
(i.e., in statement on line 10), it will fall into a suboptimal
solution. Therefore, the global optimal solution of the DPSO
algorithm has a crucial relationship with the local search
strategy based on the greedy mechanism; it can effectively
solve the problem of global optimal convergence to some
extent. However, the local search strategy of DPSO is still
easy to make the algorithm premature and fall into the sub-
optimal solution.

B. PROPOSED ALGORITHM DPSO_NDC
As a meta-heuristic algorithm, DPSO has great advantages
in the optimization of a large-scale network, and the global
optimal solution of DPSO is closely related to the local search
strategy. Different local search strategies directly affect the
performance of DPSO algorithm.

1) NEIGHBORHOOD CENTRALITY
Among the identifying methods of top-k influential nodes,
although the centrality-based methods are simple, its calcu-
lation cost is very high and it is not suitable for the large-
scale network structure. Chen et al. [23] designed a semi-local
centrality method to identify influential nodes, which is a
tradeoff between efficiency and complexity of the centrality-
based approach. Liu et al. [37] proposed a way to measure the
influence of nodes, which is called neighbourhood centrality
that based on the centrality of a node itself and its nearest
neighbors.

Based on the inspiration of the above two works, we make
full use of this feature of the network local topology to
improve the local search ability of the DPSO algorithm.
We defined the neighbourhood centrality (NDC) of a node
as follows:

Cn
i (θ ) =

∑
j∈Γi

θj +
∑
l∈Γj\i

θl + · · · +
∑

s∈Γs−1\z

θs (8)

where θ is the metric of benchmark centrality, and Γi is the
node-set of nearest neighbours of node i. The number of items
in Eq.(8) is the hop of neighbours that taken into considera-
tion. This equation means that the neighbourhood centrality
contains the centrality of a node itself and its neighbour’s area
of considering hop.

2) LOCAL SEARCH STRATEGY WITH NDC
For the calculation of the neighbourhood degree centrality,
we calculate up to the fifth items in Eq.(8) to enhance the local
search capability for the proposed local search strategy. The
pseudo code of the improved local search strategy with neigh-
bourhood degree centrality is given in Algorithm 2. The set of
temporary seed nodes in each iteration is sorted in ascending
order of their neighbourhood degree centrality. In this way,
the node in the seed node-set with low neighbourhood degree
centrality is given priority to search that avoids the trap of
suboptimal solution when meeting the termination condition
prematurely. Besides, the greedy selection strategy is used to
replace the current optimal seed node, that is, the node with
the largest LIE value is selected to displace the current opti-
mal temporary seed node from the set of its neighbourhood
node set. In Algorithm 2, function SumNBDegree(gbesti) cal-
culates the degree of the x-step area of node gbesti. Function
AscSor(NBDSetxstep) sorts nodes in the node-set NBDSetxstep
by ascending order of degree. Function Size(Neiborhoodset)
returns the size of the node-set Neibourhoodset , and function
Replace(gbesti,NeiborhoodSet) is used to replace the node
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Algorithm 2 Local Search Strategy Based on Neighborhood
Degree Centrality
Input: Gbest∗, //globally optimal node set of current itera-
tion.
Output: Gbest∗, //The globally optimal seed set.
1: NBDGbest∗ ← Gbest∗

2: for each element gbesti ∈ NBDGbest∗ do
3: Flag← False
4: NBDSetxstep← SumNBDegree(gbesti)
5: NeiborhoodSet ← AscSort(NBDSetxstep)
6: index ← 0
7: while index < size(NeiborhoodSet) do
8: gbesti← Replace(gbesti,NeiborhoodSet)
9: if LIE(NBDGbest∗ ) > LIE(Gbest∗) then
10: Gbest∗← NBDGbest∗
11: break
12: else
13: index ← index + 1
14: return Gbest∗

gbesti with one of the x-hop area neighbours and excludes
the duplicate notes.

To observe the improvement effect of neighbourhood
degree centrality of different hop areas on the local search
strategy, function SumNBDegree() realizes the calculation of
X-hop area degree centrality of seed node set. The pseudo
code of function SumNBDegree() is presented in Algorithm 3.

Algorithm 3 Calculation of Neighbourhood Degree Central-
ity
Input: XStep, //The step areas.
gbesti, //the Global best seed node i.
Output: Nodeset , //The XStep area node set.
1: Neighbors← N (1)

gbesti
2: for each element xnbi ∈ Neighbors do
3: Step← 1
4: repeat:
5: Nodeset ← Neighborsstepxnbi
6: Step← Step+ 1
7: until Step > XStep
8: Nodeset ← RemoveDuplicates(Nodeset)
9: Nodeset ← DifferenceSet(Nodeset,Gbest)

10: return Nodeset

3) THE FRAMEWORK OF DPSO_NDC
From the above analysis, it can be seen that the local search
strategy plays a crucial role in obtaining the optimal solution.
A proper local search operation is helpful to the exploration
of a global optimal solution for the algorithm. The algorithm
DPSO_NDC, which uses the above-defined neighbourhood
centrality to enhance the local search ability, has a framework
as described in the pseudo code of Algorithm 4. In the frame-
work of DPSO_NDC, the velocity vector and position vector

Algorithm 4 Framework of DPSO_NBC for Identifying
Top-k Influence Nodes
Input: G = (V ,E), //Graph.

gmax , //the number of iterations.
c1, c2, //the learn factors.
k , //the size of the seed set.
w, //the inertia weight.

Output: Gbest∗, //The global best position as the seed set.
1: initialize position vector X based on degree centrality.
2: initialize velocity vector V to 0.
3: Select out the interim best solution Gbest based on the

LIE value of vector X.
4: repeat:
5: Update the velocity vector V based on Eq.(5).
6: Update the position vector X based on Eq.(6).
7: Update the Pbest and select out the current global best

particle Gbest.
8: Calculation the X-hop area degree centrality of each

particle in current interim best particle solution set Gbest
based on Eq.(6).

9: Gbest ← LocalSearch(Gbest∗)// Employ the
improved local search operation on Gbest* based on
X-hop area degree centrality.

10: Gbest∗← Max(Gbest) // Update the Gbest*.
11: Next iteration.
12: until Up to the maximum number of iterations.
13: return Gbest∗

of each generation are updated to find the current global
optimal solution firstly, as described in statement on lines 5-7.
Then, the neighbourhood degree centrality of the specified
domain range of each node in the current temporary global
optimal solution is calculated, as described in statement on
line 8. Once the optimal seed node set in current evolution
is obtained, we adopt the improved local search strategy to
explore the current optimal seed node locally and find better
candidate seed nodes for next-generation evolution until the
termination condition is satisfied, as described in statement
on line 9.

4) COMPUTATIONAL COMPLEXITY ANALYSIS
The computational complexity is a considerable metric to
evaluate the performance of the algorithm. Compared with
the initial DPSO algorithm, the computational complexity
of algorithm DPSO_NDC is different mainly in the local
search strategy. For the improved local search operation,
the computation timemainly lies in the computation of degree
centrality of neighbourhood area and the ranking operation of
temporary seed nodes. The computation of x-hop neighbour-
hood degree centrality requires O(k · Dx), and the ordering
operation requires O(k · logk). According to the framework
of DPSO_NDC, the other operating complexity is as follows:
the complexity of updating velocity is O(k · logk · N ); the
complexity of updating position X isO(k ·N ); evaluating LIE
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value needs O(k · D2); the greedy-based replacement needs
O(k ·D). Thus, the computational complexity of DPSO_NBC
requires O(K 2

· logk · N · Dx · gmax). It can be seen that
the computational complexity of this algorithm increases
exponentially with the range of the nearest neighbour domain.
Therefore, it is very important to select an appropriate nearest
neighbour domain between the computational complexity
and the optimal performance.

5) EVALUATION AND COMPARISONS
In this section, the experiments in the six real-world social
networks are carried out to verify the performance of algo-
rithm DPSO_NBC. At the same time, we selected the 5 algo-
rithms in the state of the art as benchmark algorithms and
compared their fitness values. Also, we used the Monte Carlo
(MC) method to simulate the propagation scale of the seed
nodes of these algorithms under the best fitness value, and
the scale of their simulated propagation is compared.

C. EXPERIMENTAL NETWORKS AND
BASELINE ALGORITHMS
1) EXPERIMENTAL NETWORKS
Tomake verification and comparisonmore objective, we con-
duct extensive experiments on six real-world undirected
social networks. The statistical characteristics of the six
experimental networks are listed in Table 1.

TABLE 1. Statistical characteristic of the six real-world networks.

Social network PGP [41] is generated by the Pretty Good
Privacy encryption algorithm. It is consisted of 10680 nodes
that represent the people who share confidential information.
Social network GrQc [42] is a collaboration network of the
Arxiv General Relativity category, where the edges represent
co-authored relationships between different authors in the
same article. The all of experimental social network are get
from SNAP1. The node degree distributions of each experi-
mental networks are as shown in Figure.1. The experiments
consist of two parts. First, the comparisons of LIE value
between DPSO and DPSO_NDC are conducted in the six
real-world networks. In addition, the four other state-of-the-
art algorithms are employed as baseline algorithms, and the
influence spread performance of the identified top-k nodes is
simulated for five algorithms, respectively.

2) BASELINE ALGORITHMS AND EXPERIMENTS
The five other state-of-the-art algorithms are employed as
baseline algorithms and the influence spread performance is

FIGURE 1. The degree distribution characteristic chart of six experimental
social networks.(It can be seen from the form of the degree distribution
that the real networks of the six experiments all conform to the typical
power-law distribution.)

TABLE 2. The baseline algorithms and their brief overview.

simulated under the IC diffusion model for six algorithms,
respectively. The five baseline algorithms for comparison are
as described in Table 2.
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The design and process of the experiment are listed
below:
• Experimental software environment. The above bench-
mark algorithms are all re-coded in the C++ language
to eliminate the difference in processing time caused
by the efficiency of the encoding language. In addi-
tion, no other applications are running on the platform
during each experiment to ensure that all experiments
are conducted under consistent software and hardware
conditions.

• Experimental hardware environment. The experiment is
conducted on a Server platform equipped with an intel
Xeon E5 CPU, and 16GB RAM, with Windows Server
2003 (Service Pack 2) OS installed.

• Experimental design. The experimental simulation is
based on the IC model. Experiments were carried out for
seed node sets of different scales.We set seed nodes as 3,
5, 10, 15, 20, 30, 40 and 50 respectively. The maximum
seed node set is set to 50.

• Experimental procedure. All the experiments are
repeated 20 times and the average fitness value is taken
for comparison. Then, the seed node set corresponding
to the optimal LIE value in the 20 experiments was
selected for the MC simulation propagation experiment.
In the MC experiment, we performed 1000 MC simu-
lations on the seed node set, and then took the average
value as the MC propagation range for comparison.

3) COMPARISON OF LIE VALUE
Due to the consideration of computational cost, we only
designed 5 algorithms with 0-hop to 4-hop neighbour-
hood degree centrality to enhance the local search ability
for experiments, where 0-hop is the degree centrality of
the current temporary seed node itself. According to the
definition of Eq.(8), we express the above neighborhood
degree centrality within different hop areas as NDC0, NDC1,
NDC2, NDC3 and NDC4, respectively. The corresponding
algorithms are expressed as DPSO_NDC0, DPSO_NDC1,
DPSO_NDC2, DPSO_NDC3 and DPSO_NDC4, respec-
tively. To verify the improved performance of local search
strategy based on neighbourhood degree centrality of the
different ranges, the experimental comparison is made among
the improved local search ability with different hop domains.
For the parameter setting of these algorithms, we adopted
the most effective parameter value evidenced by the initial
DPSO algorithm in Ref [19], i.e., the learning factors c1 and
c2 are set to 2, and the inertia weight w is set to 0.8. When
the propagation probability p is set to 0.01, the evolutionary
line graph of LIE values is shown in Figure 2. When the
propagation probability p is set to 0.05, the spreading scale
of evolutionary processes is shown in Figure 3.

From Figure 2, we can observe that the LIE value
does not change much when seed set size k < 30.
However, when the seed set size k > 30, the difference

FIGURE 2. The evolutionary line graph of LIE values in the case of
propagation probability p=0.01.(On the horizontal axis, K represents the
number of seed nodes; on the vertical axis, LIE represents the fitness
value corresponding to the seed node-set.The subgraph embedded in
each network line graph is a partially enlarged view when the seed node
is set to 30-50.)
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FIGURE 3. The evolutionary line graph of LIE values in the case of
propagation probability p=0.05.(On the horizontal axis, K represents the
number of seed nodes; on the vertical axis, LIE represents the fitness
value corresponding to the seed node-set.The subgraph embedded in
each network line graph is a partially enlarged view when the seed node
is set to 30-50.)

between LIE values is relatively large. Among the above-
mentioned six networks, in Condmat and Pgp networks,
the DPSO_NDC3 performs best; For network Email, Grqc
and Netscience, DPSO_NDC2 and DPSO_NDC3 have sim-
ilar performance. In network Hepth, the DPSO_NDC1 per-
form best. However, when the propagation probability p is
set to 0.05, the spreading scale of evolutionary processes
is slightly different, as shown in Figure 3. In Figure 3,
it can be seen that of all the experimental networks, the
DPS_-NDC2 and DPSO_NDC3 have the best performance,
while DPSO_NDC4 has the worst performance.

Another interesting thing is that we discover a saturation
effect in improved local search strategy based on the degree
centrality of neighbourhood nodes. That is, it is not that the
large the hop range, the better the search effectiveness. More
precisely, the best search performance of the algorithm is
concentrated in the range of 3-hop, and the algorithmwith the
NDC area of 4-hop has the worst performance. It can be seen
that the improvement of the DPSO algorithm with the local
search strategy based on neighbourhood degree centrality is
not that the larger the range, the better the performance.

All of the above-observed phenomena illustrate that the
method of the local search approach is very critical for
solving the global optimal solution in the DPSO algorithm.
In addition, the largest spreading scale is the local search
strategy with 3-hop area nodes degree centrality, 2-hop sec-
ond and 4-hop is the worst performer. This phenomenon
illustrates that there exists a saturation effect when consider-
ing seed nodes’ neighborhood degree centrality. Considering
the performance and computational cost of the algorithm,
the DPSO_NDC algorithm adopts the neighbourhood degree
centrality of the 3-hop area to improve the local search
strategy.

D. COMPARISON OF TYPICAL ALGORITHMS
In order to evaluate the effectiveness of DPSO_NDC algo-
rithm, the five state-of-the-art above-mentioned algorithms
are used as baseline solution algorithms. After the above
algorithms obtained the global optimal seed node-set, Mont
Carlo(MC) simulation is used to evaluate the spreading per-
formance of the algorithms under the IC model. The simu-
lated evolutionary performances, as shown in Figure 4 and
Figure 5. Figure 4 is the evolution curvewhen the propagation
probability p = 0.01, and Figure 5 is the evolution curve
when the propagation probability p = 0.05.
From the simulated curves, we can observe that the

DPSO_NDC algorithm achieves comparable performance.
It is worth mentioning that the proposed algorithm is
more effective than the original DPSO algorithm. In Cond-
mat and Pgp networks, the influence diffusion scale of
the DPSO_NDC is even better than that of greedy algo-
rithm, as shown in Figure 4(a) and (f), which illustrates
the DPSO_NDC is rather effective for influential nodes
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FIGURE 4. Line graph of influence diffusion scale in the six experimental
social networks.(The horizontal axis K represents the scale of seed nodes,
and the vertical axis represents the scale of nodes affected by the set of
seed nodes identified by different algorithms in the MC simulation
experiment when the propagation probability P=0.01.)

identification in the large-scale networks. In particular,
the DPSO_NDC algorithm performs more effectively than
the original DPSO and ELDSO algorithms in all six exper-
imental networks. From the influence propagation scale
obtained by simulating the seed node set, we can observe that
the greedy algorithm has the most outstanding performance
when p = 0.05, it is evident in Figure 5(c) and Figure 5(f).
However, the computational complexity is the highest of all
experimental algorithms. Again, the Algorithm DBA is not
stable enough because of its random selection strategy, which
is evident obviously in Figure 5(f). In summary, the algorithm
DPSO_NDC is more effective in large-scale social networks
and the size of seed node set is increasing.

E. WILCOXON RANK SUM TEST RESULTS
To detect the statistical difference between the art algorithm
and the proposed algorithm, we performed the Wilcoxon

FIGURE 5. Line graph of influence diffusion scale in the six experimental
social networks.(The horizontal axis K represents the scale of seed nodes,
and the vertical axis represents the scale of nodes affected by the set of
seed nodes identified by different algorithms in the MC simulation
experiment when the propagation probability P=0.05.)

rank-sum test with the significance level being 5% and 10%,
respectively. The test uses the experimental values of seed
node sets of different sizes under the ICmodel, TheWilcoxon
sum-test results in different experimental networks between
DPSO_NDC and other state-of-the-art algorithms are sum-
marized in Table 3. In the test results in Table 3, the p−value
is a two-sided Wilcoxon rank-sum test, h− value is a logical
value indicating the test decision. If h = 1 then reject the
null hypothesis and accept the alternative hypothesis. The
result h = 0 indicates a failure to reject the null hypothesis at
the specified significance level. For example, if p=0.058 in
the test result, h=0 in the case of significance level α=0.05,
indicating that there is no significant performance differ-
ence between the two algorithms. If the significance level
α=0.1 then h=1, indicating that there is a significant dif-
ference in the performance of the two algorithms. From the
statistical results in Table 3, we can observe that when the
significance level is 10%, there is a significant difference
between DPSO_NDC algorithm and all algorithms except
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TABLE 3. Statistical results of the wilcoxon rank sum test for DPSO_NDC and other baseline algorithms at α=5% and α=10% significance level.

FIGURE 6. When the seed-node set size k=30 and the propagation
probability p=0.01, the running time comparison diagram of the six
algorithms on the six experimental social networks, respectively.

Greedy algorithm in all experimental networks. When the
significance level is set to 5%, DPSO_NDC algorithm is
significantly different from other experimental algorithms
except for Greedy and DPSO algorithm.

F. COMPARISONS OF THE RUNNING TIME
In this section, the comparison of processing time (the case
of 50 seed nodes) under the propagation probability p = 0.01
is conducted and as shown in Figure 6. We can observe that
the Greedy algorithm is the most time-consuming. It takes
42K seconds, 13K seconds, 15K seconds, 29K seconds,
1.7K seconds and 39.5K seconds in the six experimental
networks, respectively. Furthermore, as shown in Figure 6,
we can observe that the computing time of DPSO_NDC
is higher than that of the initial DPSO. This is because
the DPSO_NDC algorithm takes considerable time to cal-
culate the nearest neighborhood degree centrality of the
3-hop range, while initial DPSO algorithm only calculates
the degree value of the temporary seed node itself. However,
compared to the EDPSO algorithm, their running time is
roughly the same. We remark that the running time of the

proposed algorithm DPSO_NDC has a significant advantage
over the greedy algorithm. For what concerns the running
time, the SD algorithm has the best performance. However,
the SD cannot provide the global optimal seed nodes. This
is because the SD algorithm simply filters the influence of
nodes from large to small without considering the overall
influence of the top-k seed node-set.

V. CONCLUSION AND FUTURE WORK
Identifying top-k influential nodes in the social network
remains a challenging task, especially as the network grows in
size. It is another kind of effective exploration to solve such a
problem by discretizing the appropriate swarm intelligence
algorithm according to the structural characteristics of the
network. The proposal of the DPSO algorithm is one of the
important explorations. The original DPSO algorithm adopts
the greedy mechanism of the local search strategy. This local
search strategy can make the algorithm converge to the global
optimal solution to a certain extent. However, this greedy
local search strategy based on degree value does not consider
the local network structure characteristics of candidate seed
nodes, so it is very easy to fall into the global suboptimal
solution. In order to make full use of the local structure of the
network to enhance the local search ability of the algorithm,
we propose a local search strategy based on the nearest neigh-
bourhood degree centrality to avoid prematurity of the algo-
rithm.We designed different algorithms based on the 0-hop to
the 4-hop range of neighbourhood nodes to enhance the local
search ability and conducted experiments in the six real social
networks. The simulated results show that the neighbour node
domain is most effective for the global optimal solution in the
two-hop to the three-hop area. Whereas, the performance of
the local search strategy based on the four-hop neighborhood
degree centrality is significantly reduced. The above findings
fully demonstrate that the nearest neighborhood degree cen-
trality based on the 3-hop range has a significant effect on the
performance improvement of the initial DPSO algorithm and
2-hop second. Meanwhile, the neighborhood degree central-
ity has a saturation effect in searching global optimal solution
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of top-k influence nodes identification. The experimental
results under the IC model illustrate that the performance of
the proposedDPSO_NDC algorithm outperforms the original
DPSO and ELDPSO, and its performance is better than the
greedy-based algorithm in some scenarios.

There are several directions for future investigations. First,
the literature of swarm intelligence algorithm is very rich,
and each kind of swarm intelligence algorithm has its unique
characteristics and advantages, such as chaos-based firefly
algorithm (CFA) [45], crow search algorithm (CSA) [46],
and so on. Therefore, in the following research, we will
carefully study other related swarm intelligence algorithms
to solve the problem of identifying the top-k influential nodes
in the super-large-scale network. Furthermore, there are more
realistic and complex influence propagation models than the
IC model. Therefore, it is efficient and realistic to apply a
discrete swarm intelligence algorithm to top-k influence node
identification under other information propagation models.
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