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ABSTRACT Tessaratoma papillosa (Drury) first invaded Taiwan in 2009. Every year, T. papillosa causes
severe damage to the longan crops. Novel applications for edge intelligence are applied in this study to
establish an intelligent pest recognition system to manage this pest problem. We used a detecting drone to
photograph the pest and employed a Tiny-YOLOV3 neural network model built on an embedded system
NVIDIA Jetson TX2 to recognize 7. papillosa in the orchard to determine the position of the pests in real-
time. The pests’ positions are then used to plan the optimal pesticide spraying route for the agricultural
drone. Apart from planning the optimized spraying of pesticide for the spraying drone, the TX2 embedded
platform also transmits the position and generation of pests to the cloud to record and analyze the growth
of longan with a computer or mobile device. This study enables farmers to understand the pest distribution
and take appropriate precautions in real-time. The agricultural drone sprays pesticides only where needed,
which reduces pesticide use, decreases damage to the environment, and increases crop yield.

INDEX TERMS Edge intelligence, unmanned aerial vehicles (UAV), real-time embedded systems, slope
land orchard, object detection, agricultural pests damage, precision agriculture, intelligent pest recognition.

I. INTRODUCTION
Since T. papillosa invaded Kaohsiung, Taiwan in 2009, it has
spread quickly throughout Taiwan and severely endangered
the crops of the Sapindus family, such as Dimocarpus
longan, Litchi chinensis, Sapindus saponaria, and Koel-
reuteria elegans. T. papillosa feeds on litchi and longan with
piercing-sucking mouthparts, which suck the buds, shoots,
flower spikes and young fruits of these crops, resulting in
blossom drop, fruit drop, twigs, young fruit withering, skin
blackening, and other injuries. Consequently, the damage
from T. papillosa seriously affects the yield and quality of
litchi and longan.

Taiwan is in a subtropical region with a mostly warm cli-
mate suitable for crop cultivation throughout the entire year.
Many agricultural products are exported worldwide annually.
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However, rapidly spreading diseases and pests cause crop
damage and affect farmers’ incomes. During the crop growth
period, to prevent pest infestations, farmers apply large
dosages of chemical pesticides to reduce crop damage from
diseases and pests, even though the excessive pesticide use
harms the environment. It is usually all-consuming for the
workforce to kill insects and spray pesticides on the entire
field. If pests and diseases can be detected quickly and early
before they spread, UAVs can apply pesticides only where
needed to reduce crop damage and minimize harm to the
overall environment. Therefore, we hope that this research
can help farmers reduce the cost of pesticides and increase
human resource efficiency.

The UAVs have high maneuverability and are often
equipped with the Global Positioning System (GPS),
automatic flight control, real-time image transmission,
wireless communication systems, multiple sensors, and
other functional components. They can obtain extremely
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high-resolution surficial information, making it easier to col-
lect and investigate spatial data, while greatly accelerating
the acquisition of spatial information. They can also conduct
routine patrols and keep track of abnormal conditions.

In recent years, the development of drones in smart agri-
culture has become increasingly prevalent. In spring 2019,
the onset of the rainy season caused severe flooding in many
places in Taiwan. Drones capable of aerial photography were
used to document damage to rice paddies. Through analysis
of the aerial images, the lodging degree, the distribution and
the area of rice were effectively determined, thus significantly
improving the efficiency of disaster investigations.

In recent years, the development of drones in smart agri-
culture has become increasingly prevalent and very suitable
for applying edge intelligence to agriculture. In spring 2019,
the onset of the rainy season caused severe flooding in many
places in Taiwan. Drones capable of aerial photography were
used to document damage to rice paddies. Through analysis
of the aerial images, the lodging degree, the distribution and
the area of rice were effectively determined, thus significantly
improving the efficiency of disaster investigations.

Around the world, German drone companies have used
insecticidal drones to drop Trichogramma, a natural enemy
of the European Corn Borer, into cornfields to control these
pests. The industrial drones are equipped with high-resolution
sensor arrays that perform a variety of applications and they
are robust enough for outdoor operations around the clock.

In this study, we used two types of drones: a small recon-
naissance drone and a large pesticide-spraying drone. The
small size of the reconnaissance drone helps to avoid leaf
disturbance. It is used for treetop inspections to take images
of T. papillosa, which are then transmitted to the edge server
to determine the pest’s life stage and location. The edge com-
puting server is used to plan the optimal pesticide application
route. The pesticide-spraying drone then sprays the precise
pesticide application based on the route.

The remaining sections of this article are arranged as fol-
lows. Section 2 introduces relevant references and inspiring
applications that are used in this work. Section 3 presents the
data set, the hardware environment and the implementation
methods. Section 4 describes the architectural framework of
the study and illustrates the customizations performed for
small object detection. Section 5 describes and discusses the
experimental results before providing a conclusion.

Il. RELATED WORK

A. APPLYING DEEP LEARNING TO AGRICULTURAL
INSPECTION

The growing popularity of artificial intelligence applications
in various industries has promoted the application of deep
learning in many fields. Among these applications, image
recognition technologies have been widely used in agricul-
tural applications, such as farmland mapping, crop image
segmentation and target detection of pasture animals. Image
recognition is mainly used in training neural network mod-
els to identify categories and to use convolutional neural
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networks (CNN) to extract target areas in images, segment
objects and determine the numbers and types of pests on the
leaves.

Yang et al. [1] have proposed a litchi picking robot which
is an important tool for improving the automation of litchi
harvesting, with a binocular camera to collect the litchi
images. They have also improved the YOLOV3 network in
the YOLO (You only look once) series; YOLOV3 is currently
the most widely used technology for object detection. They
designed the YOLOv3-DenseNet34 litchi detection network.
The Results have shown that the YOLOv3-DenseNet34 has
enhanced the detection accuracy and speed. Based on the
triangulation principle of binocular stereo vision, the average
precision (mAP) of the litchi’s coordinates was calculated.

The binocular stereo vision-based litchi pre-positioning
method has a maximum absolute error of 3.66¢cm, an aver-
age absolute error of 2.30cm and an average relative error
of 0.836% at a detection distance of 3m, which fulfills the
requirement of the picking robot. In a large area, the visual
pre-targeting requirements of the YOLO network perform
regression directly without RPN to detect targets in the
image. Hence, the method is fast and can be implemented for
real-time applications.

The latest version (YOLOv3) [2] not only has higher
detection accuracy and speed but also performs well in the
detection of small targets. However, the YOLOv3 model has
amore complex architecture which requires more processing,
rendering it less suitable for real-time applications such as
the harvesting robots. Conversely, the layer optimization and
parameter reduction in the Tiny-YOLOvV3 [3] model reduces
the computational complexity, making it suitable to incorpo-
rate the edge devices, Jetson and Raspberry Pi, applying the
object detection model for edge intelligence with real-time
pest identification.

With the rapid development of deep learning methods,
the neural networks constructed with these methods require
significant Graphics Processing Unit (GPU) performance.
The GPU is a processor that is specially designed to han-
dle intensive graphics rendering tasks. The deep learning
model has recently been improved so that a lightweight
model can be implemented on the embedded platform for
real-time operation. We compared the most commonly used
YOLOV3 and the Tiny-YOLOVvV3 network models for object
detection, analyzing the recognition accuracy and speed of
these two methods to balance the recognition accuracy and
speed in deep learning.

B. APPLICATION OF EMBEDDED SYSTEMS TO DEEP
LEARNING

Jetson is a potent GPU embedded platform for computing
mass data. Deep learning computations can be performed on
the GPU, and the CPU can compute the benchmarking algo-
rithms. Hulens ef al. [4] have presented a survey of different
embedded processing platforms, regarding their computing
abilities and the influence on the system’s battery life. The
results have shown that the CPU performance of Jetson TK1
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(the predecessor of Jetson TX?2) is lower than the average of
the same rank of embedded systems.

There are two ways to configure the devices for mobile
edge computing and the internet of Things (IoT) on the
Jetson TX2; one is to compress the training model for
deep learning and the other is to train a relatively smaller
model. Examples of model compression include the opti-
mization of convolution or operations [5], the quantiza-
tion of the parameters [6], [7], and the simplification of
the model structure [8]-[11]. These approaches assume
that a pre-trained model already exists and compressing it
would speed up the operation without significantly affect-
ing the accuracy. However, most of these well-trained mod-
els tend to be used for general-purpose applications. For
example, the AlexNet [12], [13] can accurately classify the
1000 classes in ImageNet, which is approximately a 37.5%
top-1 error rate.

To perform the UAV’s object detection and positioning,
we need to classify the different instars of 7. papillosa.
Although the pre-trained model could be used as a feature
extractor, the resultant model would overload the embedded
devices even through fine-tuning and increase the operational
costs. This work proposes a method to reduce the input
images’ recognition rate and increase the model’s convolu-
tional layers to resolve the issues with the embedded devices.

C. THE ROUTE PLANNING FOR THE AGRICULTURE DRONE
FOR SPRAYING PESTICIDE

Distance is an essential factor in our route-planning algo-
rithm for the pesticide-spraying drones, since accurately-
determined GPS coordinates of the detected pests are
required to reduce both the flight distance over the
3D-sloped terrain and the energy requirements of the drones.
Saxena et al. [14] have published a novel approach to con-
struct a 3D depth model from a single image. Chahal et al.
[15] have proposed combining machine learning techniques
to generate a depth image from a single image. However,
the depth image can only indicate whether object A is closer
to or farther from the camera than object B. The distance from
A to the camera cannot be calculated from the depth image
alone.

To overcome these difficulties, we have navigated the
drones close to the pests’ locations to improve positioning
accuracy and reduce measurement errors. We have used tri-
angulation methods to identify similarities for image depth
measurement and calibrated the optical sensors according
to the distance and scale of a known object. The in-depth
image generates a reference point between the object and the
camera. The following formula describes the method:

P-d
F=— 1)
w

Equation (1) yields the focal length of the system, which is
used to calculate the distance of a detected object, where F is
the focal length of the camera, P is the resolution (in pixels)
of the object, d is the distance from the camera to the object
and w is the width of the object.
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D. APPLYING EDGE COMPUTING TO DEEP LEARNING
The image recognition in deep learning focuses on the effi-
ciency of real-time recognition and timely data acquisition
mechanisms to support delay sensitive. Edge intelligence
processing which is dependent on the hardware performance,
the ability for a quick response, and the availability of ample
storage capacity. Past pest recognition methods used embed-
ded devices to acquire images upon pest detection and trans-
mit the acquired images to the cloud, where the deep learning
architecture was deployed to recognize the pests. The recog-
nition results were then returned to the embedded device.
This study overcomes these problems by incorporating edge
computing with the GPU of the embedded hardware, which
has low power consumption, high performance and quick
transmission time, to provide highly accurate and real-time
recognition of T papillosa.

NVIDIA’s Jetson is a well-known embedded hardware
with small size, light weight, and low power consump-
tion. It is a widely-used accelerator for machine learning
algorithms to speed up complex machine learning com-
putations [17], [18]. However, to fully utilize the Jetson’s
performance in real-time, it is necessary to optimize both the
Jetson hardware and the Neural Network (NN) algorithms.

In recent years, Jetson has developed the TK1, TX1 and
TX2 versions. They all use YOLOv3 for target detec-
tion [19], [20], indicating that the YOLO and SSD have better
accuracy and transmission speed. Among the different ver-
sions, Nvidia TX1 has been applied to tennis ball collecting
robots using deep learning [21]. TX2 is an embedded device
suitable for deep learning training. Luo et al. [22] have used
the Kinect-V2 vision sensors to detect and locate targets using
robots with Tiny-YOLOV3 on the TX2. The Cascaded-CNN
(C-CNN) model has been implemented with the TX2 and
applied to the classification of weeds in multi-spectral images
in intelligent agriculture. These studies [23]-[26] have shown
that the embedded hardware of the Jetson series is effective
in target detection and has the advantages of having high
efficiency and low power consumption.

lll. METHODOLOGY

T. papillosa has one generation per year. The life cycle
includes three stages: eggs, nymphs, and adults. The mat-
ing season is from February to August. Peak egg-laying
by females is from April to May. Nymphs emerge from
April to October; the insect overwinters in the adult stage,
and the overwintering adults appear in January to August the
following year.

In this study, a detecting drone is used for real-time
photography of T. papillosa in the orchard before spray-
ing pesticides from an agricultural drone. The pest images
captured by the detecting drone are sent to the orchard’s
TX2 embedded system via the network. The TX2 recog-
nizes the 7. papillosa life stages and locations in real-time.
It considers each tree’s height on the slope and the pest’s
position, to calculate the 3D flight path for the agricul-
tural drone. The flight sequence and the optimal path’s total
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FIGURE 1. The system architecture flow chart.

distance are transmitted to the agricultural drone for spraying
pesticides.

This study aims that the agricultural drone applies pesti-
cides only where needed and apply novel applications for
edge intelligence to agricultural control. The pesticides can
be applied in a timely fashion, effectively preventing pest
dispersion, reducing pesticide use and minimizing damage
to the environment. Fig. 1 shows a flowchart of the system’s
architecture.

A. YOLOv3 MODEL AND TINY-YOLOv3 MODEL
RECOGNIZE TESSARATOMA PAPILLOSA

The purpose of this study is to provide immediate feedback
when the drone performs pest identification in the orchard.
However, T. papillosa is physically very small and the drones
need to be capable of detecting small targets with high recog-
nition accuracy. To fulfill these requirements, a lightweight
and fast artificial intelligence model is essential. Therefore,
the YOLOV3 [2] model and Tiny-YOLOvV3 [3] model have
been selected as the identification models for this study.

1) SAMPLE COLLECTION AND LABEL

Deep learning models need to have sufficient training sam-
ples to avoid overfitting the training data and negatively
affecting the recognition rate of 7. papillosa. We collected
images of T. papillosa at different instars and different angles
(such as side view, front view, etc.), as well as from the
orchard and the Internet to increase the number of training
samples for the YOLOvV3 model and Tiny-YOLOv3 model
(as shown in Fig. 2).

We collected about 700 images of different stages and
instars of T. papillosa from the Internet and the orchards.
We used the image expansion method to expand the data
of these 700 images to more than 5000 as training sam-
ples. An additional 473 untrained images were used as test
samples.

The samples are manually labeled for the training of the
YOLOV3 and Tiny-YOLOvV3 models to avoid negatively
affecting these models’ recognition of 7. papillosa. Before
training the YOLOV3 and Tiny-YOLOvV3 models, it is neces-
sary to label T. papillosa within each image. We used the tool
Labellmg to label the collected sample images to establish the
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FIGURE 2. The different life stages and instars of T. papillosa.

].

FIGURE 3. The interface of Labelimg for target pixel information of label
image.

target pixel information (as shown in Fig. 3). The information
is tagged to the images containing the eggs, nymphs or adults,
and this is stored in XML format.

2) DATA AUGMENTATION

Many studies [27] have found that data augmentation can
increase the accuracy of model recognition. Therefore,
we have collected many samples in this work. After label-
ing the images, we used an Imgaug library for image aug-
mentation in the machine learning experiments for data
augmentation. The operations performed to augment the
images include cutting, rotating, contrast enhancement, noise
addition, edge sharpening and so on. The corresponding
label information is automatically generated to increase the
amount of training data and improve the recognition by the
YOLOv3 and the Tiny-YOLOV3 models.

We refer to the reference [28] to perform image augmenta-
tion with fewer data samples.

The study created five categories of life stages and instars
of T. papillosa (Figure 2). However, the number of sam-
ples of the two categories of eggs and nymphs hatched in
the past 30 mins was only about 50-80, far less than the
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FIGURE 4. Examples of augmented images.

other categories — nymphs hatched more than 30 mins ago,
older nymphal instars, and adults — which had more than
200 samples each. To improve the accuracy of YOLOV3 and
Tiny-YoLov3 models in identifying the five categories of
stages and instars of 7. papillosa, the images of eggs and
nymphs hatched in the past 30 mins were increased by the
image augmentation method [28] to make them equivalent in
number to the other three categories. Then we used the sample
compensation method to reach a total number of training sam-
ples of about 5000 images, which included all five categories.
Finally, we used the YOLOvV3 and Tiny-YoLov3 models,
training the samples to recognize the different categories of
T. papillosa.

The research results show that the average number of
training sets for each recognition category will improve
recognition accuracy.

Imgaug is a Python library. It calls upon Python to per-
form data augmentation, process the sample images, and
revise the label information. The Imgaug library has a total
of 98 image augmentation functions. In this study, we have
used the dropout, rotation, fliplr, edge sharpening, gamma
contrast, additive Gaussian noise, and Gaussian blur (as
shown in Fig. 4) functions to augment the training samples
for both the YOLOV3 and the Tiny-YOLOv3 models.

3) TRAINING YOLOV3 MODEL

The YOLO (You only look once) series are neural network
algorithms for object detection. They are implemented in
the Darknet architecture. Although the author, Joseph Red-
mon, has not used any famous deep learning framework,
the algorithms’ highly effective object detection models are
extremely suitable for industrial applications, such as pedes-
trian detection, industrial image detection and so on. The
basic idea of the YOLO algorithm is as follows. First, use the
feature extraction network to extract features from the input
image to obtain a feature map of a certain size, such as 13 by
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FIGURE 5. YOLOV3 Architecture diagram [2].

13, and divide the input image into 13 * 13 grid cells. The grid
cell is used to predict the object’s coordinates. YOLOV3 uses
multiple scales to make predictions. It uses the upsample and
fusion methods similar to the FPN (where the last three scales
are fused, and the other two scales are 26 * 26 and 52 * 52,
respectively). Detection performed on the feature map obtains
a high recognition rate for small targets, which is suitable
for the detection of T papillosa and the recognition of small
objects of small insects of different stages from the images
taken by the drone.

The darknet-53 network structure is based on full con-
volution and introduces the residual structure at the same
time. Many layered models have descending gradients dur-
ing the training and Darknet-19 has 19 convolutional layers.
ResNet’s residual structure reduces the difficulty in the train-
ing of deep networks and Darknet-53’s 53-layer network can
significantly improve the accuracy. When deeper networks
are required for convergence, they may degrade the coverage
as the network layers become deeper and more complicated,
and the accuracy also suffers. The ResNet is implemented
to avoid the network performance degradation caused by
the deepening of the network. We used the YOLOV3 net-
work architecture [2] for training and recognition, as shown
in Fig. 5.

4) TRAINING TINY-YOLOV3 MODEL

Although many trained Tiny-YOLOv3 models are available
on the Internet, the models are not trained to recognize
T. papillosa. Therefore, we have redesigned the Tiny-
YOLOvV3 model and readjusted the parameters of the model
during training to set 7. papillosa as the recognition tar-
get. The hardware equipment used in this work includes a
GIGABYTE Z370M motherboard, an Intel i7-8700 3.2GHz
CPU, a NVIDIA GeForce RTX 2070-8G GPU with 16G
DDR4-2666 internal memory, and the Docker container envi-
ronment, which is established on Ubuntu. TensorFlow (with
CUDA support) is used in the container to train the Tiny-
YOLOV3 model. The Docker container is a typical virtual
machine. It utilizes a virtualization technology and does not
require a separate operating system to execute programs. The
programs and operating systems can be executed without
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affecting each other when the device is running. Docker
containers can be used to avoid damage to the core of the
operating system due to manual errors during experiments
and can be quickly used to establish the environment required
for testing on different operating systems.

In this work, we utilized the Tiny-YOLOvV3 network
architecture for training and recognition, as shown in Fig. 6.

B. THE POSITIONING OF AERIAL IMAGES

We have stitched multiple aerial images into a large aerial
view as an informative map for positioning. The error of
the coordinates will be calculated when the drone detects 7.
papillosa. We used the ground features’ relative coordinates
to stitch the image and utilized the ground control points to
correct the absolute coordinates of all the surveyed areas. In
this work, the orchard’s Digital Surface Model (DSM) data
(as shown in Fig. 7) and aerial images acquired by the drone
are used to calculate the absolute coordinates of T. papillosa’s
locations, to plan the agricultural spray paths.

Fig. 7 shows the UAV hovering over the orchard. From the
figure, we can see that there is a difference in the height of
the trees. The pests to be detected are not directly underneath
the UAV and need to be located using the proposed methods.
Fig. 8 shows the 3D model reconstructed from the aerial
images acquired by the UAV. The model is used later to
determine the absolute coordinates of 7. papillosa.

C. ROUTE PLANNING OF AGRICULTURE DRONE FOR
SPRAYING PESTICIDES

T. papillosa is currently the most important pest in the longan
industry. Since most of the longan trees are planted on hill-
sides and hilltops, these trees are difficult to prune, so they can
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FIGURE 7. DSM data with a resolution of 1.42cm/pixel generated from
the aerial images acquired by the UAV.

FIGURE 8. UAV hovering over the orchard.

grow to more than 13 meters in height. As a result, farmers
have to spray pesticides by hand to control pests and dis-
eases. With the aging of the rural workforce and shortage of
farmers, the number of abandoned longan orchards increases.
Therefore, if drones are used to detect where 7. papillosa
occurs and agricultural drones are then employed to spray
pesticides to prevent and control T. papillosa infestations,
the aforementioned problems could be alleviated.

In this work, it is proposed that the drone plans the pesticide
spraying route on the slopes after identifying the pests in the
orchards. The planning involves three steps: 1. defining the
target area, 2. setting the takeoff and landing points, and 3.
optimizing the route.

1) Defining the target area: The locations of the pests

identified by the drone and the effective spray radius
of the agricultural spraying drone are used to plan a
complete route. The target area is then divided based
on the time required by each pesticide spraying drone.

2) Setting the takeoff and landing points: After the target
area has been set, the takeoff and landing positions in
the orchard are determined to estimate the UAV’s flight
time, which includes the takeoff and landing positions
in the planned route.

3) Optimize the route: An ant algorithm is used to accom-
modate the UAV’s limited range when optimizing the
pesticide spraying route.

We recognize the pests’ locations through the reconnais-

sance aircraft, in which the positions are recorded to plan
the shortest path. Figure 9 shows the area that needs to be
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FIGURE 9. Locations where pesticide treatments are needed. The
yellow-dashed circles represent the agricultural drone’s range for
spraying pesticides; the red stars are the positioning points for
calibration before each drone flight.

sprayed with pesticides based on a radius of 5 meters from the
pests’ location, as indicated by the yellow dotted circles. The
positions and sequence of where pesticide sprays are needed
are transmitted to the flight controller of the plant protection
machine. The red stars in Fig. 9 are used as coordinate points
for positioning and calibration during each flight.

D. EMBEDDED PLATFORM

Since the Tiny-YOLOv3 model needs to be implemented
with the CUDA kit, a GPU computing platform is required.
However, the weight, size, and power of the current GPU
embedded devices are limited. For example, the NVIDIA
GTX 1080Ti has a TDP of 250W and 1.3TFLOPS. Although
the GPU is able to perform the training smoothly in offline
situations, it is not suitable for a drone due to the GPU’s
power requirements. We need to find a system with low power
requirements, efficient processing and lightweight features to
enable the drones to fly safely and take clear images of the
pest locations in real-time. Equation (2) is used to determine
whether the weight or power is suitable for the embedded
platform on a UAV. In Equation (2), r is the radius of the
drone propellers (meters), m is the weight of the aircraft
(kilograms), P is the power (watts), g is the acceleration of
gravity (9.80665 m/s?), and K is the air density Q. K can
be obtained from Equ2tion (3), where at 20°C and at pressure
of Latham, 1 is 0.363562254.

(m - )*

P=K. —% )
r

1
K = /m 3

A computing platform for embedded applications typically
has a payload of less than 15W (for example, the Inte]l NUC
board NUCSI3MYBE is 15W, and the Raspberry Pi 3 is about
6.7W). In this work, we consider embedded systems that are
lightweight with multiple CUDA and low power consumption
to assemble the embedded platform for the UAV. We have
selected the NVIDIA Jetson Tx2 with a weight of 85 grams,
256 CUDA cores (1.5TFLOPS), 7.5W (peak efficiency) and
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FIGURE 11. APD-616X Agricultural spray drone.

15W (peak performance) as the embedded system to be used
on the drones for edge computing and the recognition of
T. papillosa.

NVIDIA Jetson TX2 is an ARM-based, high-performance
and energy-efficient embedded computing device, which is
built around a NVIDIA Pascal™-family GPU and loaded
with 8GB of memory and 59.7GB/s of memory bandwidth.
It has dedicated units for accelerating neural network calcu-
lations for image processing and can be operated on Ubuntu
16.04 LTS [29]-[32]. We have installed the NVIDIA Jetson
TX2 on areconnaissance drone (shown in Fig. 10) and experi-
mented on the longan trees on the slopes of Nanhua in Tainan,
Taiwan.

The deep learning model of Tiny-YOLOV3 built on TX2 is
used to perform 7. papillosa recognition and locate the pest.
TX2 will plan an optimized pesticide spraying path for the
agricultural drone according to the pest position, while con-
sidering the tree heights on the sloping land. The optimized
path is transmitted to the flight controller (Pixhawk 4) of
the APD-616X agricultural spray drone through a wireless
connection. We flew the entire path before spraying pes-
ticides to verify the optimized path’s correctness with a
pesticide-spraying drone (as shown in Fig.11) under full
water conditions.

E. CNN OPTIMIZATION ON THE EMBEDDED PLATFORM
1) REDUCING IMAGE RESOLUTION

A disparity map computes the horizontal displacement
between each pair of corresponding pixels in two images.
Wang et al. [33] have presented a technique for disparity
estimation, which achieves a balance between accuracy and
speed. The technique passes the input image pair through a
feature extractor, which computes feature maps at different
resolutions (for example, at scales of 1/16, 1/8 and 1/4).
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Their technique improves accuracy through the following
steps: using an image size of 1024*1024 pixels as an exam-
ple, to ensure the image transmission speed, the first step
uses 1/16 of the image size, that is, 64*64 pixels for fea-
ture recognition; the second step increases the image size to
128*128 pixels, to improve and correct the accuracy of the
recognition from the first step; the third step is to increase
the image size to 256*256 pixels and perform similar actions
as the second step; and finally in step four, to use a spatial
propagation model to simplify all used parameters obtained to
reduce the storage space of the model, to achieve the effect of
recognition in TX2 real-time. The detailed operational steps
are as follows:

1) Compute the features at 1/16 of the original scale and
generate a low-resolution disparity map from the dis-
parity network. The first stage has low latency since
low-resolution features are used.

2) If enough time is available, the technique enters step 2,
where features at 1/8 of the original scale are obtained.
In this step, only a correction of the map from step 1 is
computed since these errors can be detected at a higher
resolution.

3) If time is still available, step 3 is conducted, which
is similar to step 2 except that the scale is 1/4, which
doubles the resolution.

4) The map of step 3 is refined using a spatial propagation
model. This technique reduces the number of param-
eters by several orders of magnitude and achieves a
frame rate between 10 and 35 frames per second on
TX2.

2) INCREASING THE NUMBER OF NEURAL NETWORK
LAYERS

We have experimented on a computer with an Intel i17-6700K
CPU and a NVIDIA GTX 1080Ti GPU (11.3TFLOPS).
When processing a single video stream, the frame rate is
40FPS and the GPU load is about 42%. If two parallel
video streams are processed at the same time, the frame
rate exceeds 35FPS and the GPU load is about 65%. For
successful pest recognition using the Tiny-YOLOv3 model
on the drone, we have increased the number of layers in the
Tiny-YOLOv3 model to reduce the number of parameters in
each layer of convolution, however, the overall number of
parameters is doubled and the memory required by CUDA
is maintained at less than 11Gb.

IV. EXPERIMENTAL RESULTS

This section describes the process and results of the exper-
iment. First, we have implemented different models of
YOLOV3 and Tiny-YOLOv3 with the embedded computer
Jetson TX2 to compare their speed and accuracy in the recog-
nition of 7. papillosa. Data augmentation is performed on
the T. papillosa data sets and the parameters are adjusted to
improve the models’ learning rates. Finally, based on the pest
recognition results from the TX2 embedded on the drone,
the route for the pesticide-spraying drone is planned by the
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FIGURE 12. Comparison of YOLOv3 and Tiny-YOLOV3.

TX2 to compare the flight distances of the ant algorithm and
the top-down sequential algorithm.

A. COMPARING THE PERFORMANCE OF YOLOv3 AND
TINY-YOLOv3 MODELS

This experiment used TensorFlow as the environment for
the TX2. The mean average precision (mAP) is calculated
to evaluate the performance of the YOLOv3 and Tiny-
YOLOvV3 models from 473 images of T. papillosa taken by
the drone with a resolution of 416*416 pixels. Fig. 11 shows
the frames per second (FPS), and the mean average precision
(mAP) of the YOLOvV3 and Tiny-YOLOv3 models.

The results in Fig. 12 show the accuracy and performance
of the YOLOV3 and Tiny-YOLOvV3 models. The recognition
speed of the Tiny-YOLOV3 model is more than three times
faster than that of the YOLOv3 model. Therefore, this work
uses the Tiny-YOLOv3 model based on the TX2 embedded
device for the effective recognition of 7. papillosa in the
orchard.

The value of Intersection over Union (IoU) has a great
influence on target detection. If the IoU value is too high,
it will cause the test results to show that the marked ones are
correct, but many correct ones will be lost and not marked.
If the IoU value is too low, the test results will show that
all correct and many incorrect ones will be marked. Based
on the above reasons, in this study we experimented with the
influence of the IoU value on the recognition of T. papillosa,
as shown in Fig. 13-15, We used the 473 images as the test
samples, and each image contains more than one 7. papillosa
individual. The Tiny-YOLOv3 model was trained with T.
papillosa image samples to recognize the five categories of
stages and instars. The red parts in Figures 13-15 are the
numbers of target identification errors, and the green parts
are the numbers of correct identifications.

In addition, the IoU settings also affect pest recognition
accuracy in the images. If the IoU is set too high, the pest
recognition accuracy is affected, resulting in lower accuracy.
If the IoU is set too low, a pest may be labeled by many
bounding boxes and the precision will be higher, but the
recall rate will be low. Based on the experimental results
in Fig. 15, IoU = 0.5% has been selected as the IoU for this
work.
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FIGURE 13. Predicted objects when loU = 0.3%.
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FIGURE 14. Predicted objects when loU = 0.45%.
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FIGURE 15. Predicted objects when loU = 0.5%.

B. RESOLUTION AND RECOGNITION ACCURACY OF THE
INPUT IMAGS

The input image resolution of the Tiny-YOLOv3 model is
416 * 416 pixels. To improve the pest recognition accuracy
from the drone, we revised the resolution of the input image
to 512 * 512 pixels and 640 * 640 pixels for the experiments.
We have found that as the resolution increases, the frame
rate (frames per second) decreases, but the accuracy of pest
recognition increases. Fig. 16 shows the recognition results
of different input image resolutions. Figs. 16 (a) and (c) have
resolutions of 416 * 416 pixels, and the mAP for these fig-
ures are 50.12% and 38.12%, respectively. Figs. 16 (b) and (d)
have resolutions of 640 * 640 pixels, and the mAP for these
figures are 95.33% and 89.72%, respectively. These results
show that when the image resolution is low, the identification
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FIGURE 16. Comparison between different detectors.

(b)
FIGURE 17. (a) The path planning from high to low based on the altitude.
(b) The path planning based on the ant algorithm.

accuracy is also low, and the system is unable to distinguish
between some pests and non-pests.

C. COMPARISON PATH ALGORITHMS

This study compares the route-optimizing method based on
the identified pest positions to a traditional method, in which
the entire orchard is sprayed. The route-optimizing method
not only shortens flight time by 19% but also reduces pes-
ticide use. In this study, we improved the ant algorithm by
considering the earth’s ellipse phenomenon, and used the
Haversine formula, Equation (4) to calculate any two task
points’ distance in the ant algorithm. We compared two pes-
ticide spraying routes for the drones; one route is performed
by spraying from high to low based on altitude, as shown in
Fig. 17 (a), and the other is the shortest distance based on the
ant algorithm, as shown in Fig. 17 (b). Results show that for
the agricultural drone to spray pesticides in a sloped area, the
path based on the ant algorithm is shorter than the path based
on high to low altitude.

hav <§> — hav (92— p1)+cos (1) cos (¢2) hav (A1)
4

We adopted the Deep Q-Learning algorithm (DQN) of
enhanced learning to improve the optimization pesticide
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FIGURE 18. Comparison of accumulated flight distances between the
original flight path and the ant algorithm, DQN path algorithm.

application route and set the environmental parameters
through the edge computing server, including the orchard’s
terrain height and the pests’ location. Then we used DQN
to plan the optimal pesticide application route automatically.
Figure 18 compared three path planning methods the DQN
algorithm, the ant algorithm, and high to low based on the alti-
tude. The figure showed that the DQN algorithm is better than
the other two methods and the pesticide application route can
be intelligently planned through the edge server. In the future,
we will continue to research to consider more environmen-
tal variables to achieve an intelligent pesticide application
route algorithm for pesticide-spraying drone tailored to local
conditions.

D. RECOGNITION OF T. PAPILLOSA IN ORCHARDS BY
DRONE

Fig. 19 shows the results of T. papillosa recognition in a lon-
gan orchard in Nanhua by a drone and TX2. When TX2 rec-
ognizes the pest, it records the life cycle stage and the position
of the pest and plans the optimized route for the pesticide
spraying drone. Figure 19 shows that the implemented system
on the drone is able to recognize the different stages of
T. papillosa even under different lighting and background
conditions.

E. ASSESSING THE EFFECTIVENESS OF AGRICULTURAL
SPRAY DRONES AGAINST T. PAPILLOSA
We overcame the difficulties with agricultural drones fly-
ing on sloped terrain by using a drone equipped with
high-resolution optical cameras to take orthophotos, thereby
creating 3D terrain data. We used the reconnaissance drone
to photograph T. papillosa, and these data were provided to
the TX2 embedded system that planned the optimal flight
route based on the pests’ positions and the variable heights
of longan trees on slopes. In turn, all this information was
provided to the agricultural drone spraying pesticides. The
drone adjusted its flight height according to tree heights, as it
followed the optimized path to precisely perform pesticide
spraying.

Results show that use of the drone to prevent damage from
T. papillosa can provide over 95% control of this pest T.
papillosa, reduce water volume use by 12.5% for spraying
pesticides, save more than 50% of farmers’ labor, and reduce
pesticide usage by 70%. Fig. 20 shows the variations in the
numbers of T. papillosa in the sloping orchard of Nanhua,
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FIGURE 19. Recognition results by the Tiny-YOLOv3 model in the TX2 for
the images acquired by the drone’s camera.
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FIGURE 20. Variations in the numbers of T. papillosa in the experimental
field.

Tainan, Taiwan, to confirm that this study is effective for
controlling this pest T. papillosa.

V. CONCLUSION

This study uses edge intelligence applications to detect T.
papillosa and plans routes for the pesticide spraying drone
in real time. It shows that the combination of the drone with
the TX2 is able to provide real-time pest detection in the
orchard. The FPS and mAP values suitable for practical field
applications are initialized on the embedded device TX2.
Edge computing is performed with the Tiny-YOLOV3 to plan
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the optimized route to reduce pesticide use and provide the
shortest flight route for the agricultural spraying drone. This
work has proposed a feasible method for edge operations
on embedded systems to recognize 7. papillosa in real-time.
We have found that the Tiny-YOLOv3 algorithm based on
neural networks has excellent performance about the FPS and
mAP. In this study, we have used input images of different
sizes and IoU values to adjust the parameters of the Tiny-
YOLOV3 model. We have also used the disparity map to
optimize the image detection time by the TX2, resulting in
increasing the frame rate and reducing the RAM requirement,
and an overall improvement of the Tiny-YOLOv3 model’s
recognition performance.

Once the TX2 has identified the pests, it uses DQN path
algorithm to plan an optimal route based on the pests’ posi-
tions and tree heights. We compared two routes for the pesti-
cide spraying drone. We have demonstrated that the planned
path based on the ant algorithm is 19% shorter than the
high to low path based on the altitude. Through this work,
edge computing has been successfully applied to smart farm-
ing, and farmers can reduce pesticide use while effectively
controlling pest dispersal. This research cooperates with the
Tainan District Agricultural Research and Extension Station,
Council of Agriculture (COA) of Taiwan government unit.
Experts have determined that the research results used edge
intelligence to automatic precision spraying.

This study uses the APD-616X agricultural spray drone,
which can be sprayed pesticides for an area of 1000m2 when
fully loaded about 25-35L. It reduces the consumption
of water by 87.5% compared with the traditional manual
spraying of pesticides. The pesticide-spraying drone takes an
average spraying time of 5.3 minutes/1000m2. The manual
pesticide sprayer is 11.4 minutes/1000m2. The pesticide-
spraying drone’s operating time is 53% less than the manual
method. Besides, manual knapsack spraying requires two
people operators to pull the tube and one to drive the sprayer,
which differs from a pesticide-spraying drone that requires
only one person to operate, pesticide-spraying drone reduces
50% of the workforce. The research that reduces workforce
consumption, lower pesticide costs and decreased environ-
mental damage has achieved precision agriculture.

In the future, we will use environmental sensors to analyze
and predict whether climatic factors, such as temperature,
humidity and light intensity, influence the occurrence of
pests, and to help farmers take timely preventive actions.
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