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ABSTRACT Supervised learning methods have been used to calculate the stereo matching cost in a lot of
literature. These methods need to learn parameters from public datasets with ground truth disparity maps.
Due to the heavy workload used to label the ground truth disparities, the available training data are limited,
making it difficult to apply these supervised learning methods to practical applications. The two-branch
convolutional sparse representation (TCSR) model is proposed in the paper. It learns the convolutional filter
bank from stereo image pairs in an unsupervised manner, which reduces the redundancy of the convolution
kernels. Based on the TCSR model, an unsupervised stereo matching cost (USMC), which does not rely on
the truth ground disparity maps, is designed. A feasible iterative algorithm for the TCSR model is also given
and its convergence is proven. Experimental results on four popular data sets and one monocular video clip
show that the USMC has higher accuracy and good generalization performance.

INDEX TERMS Stereo matching cost, two-branch convolutional sparse representation, alternating direction
method of multipliers, sparse representation.

I. INTRODUCTION
Stereo matching, also known as disparity mapping, is one of
the key techniques in stereo vision research area. The core
idea is to find all corresponding pixels in a stereo image pair.
Stereo matching cost plays an important role in establishing
visual matching relationship. Usually, the accuracy of the
stereomatchingmethod depends on the accuracy of the stereo
matching cost. Commonly used stereo matching costs can
be divided into two large categories, including pixel-wise
andwindow-basedmatching costs. Pixel-wisematching costs
include the absolute difference (AD) and truncated absolute
difference (TAD) [1]. Window-based matching costs include
follows: sum of squared difference (SSD) [2], [3], sum of
absolute difference (SAD) [4], normalized cross correlation
(NCC), zero mean normalized cross correlation (ZNCC) [5],
census (Cen) [6], [7], etc.

To get better matching results, combinations or variations
of the above window-based methods are proposed in the
literature, such as combination of census and gradient based
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measures (Cen+G) [8], combination of sum of absolute
difference and gradient-based measures (SAD+G) [9], and
combination of absolute differences and census measures
(AD+Cen) [10]. These stereo matching costs are used by
some state-of-the-art stereo matching methods, and have
been demonstrated to have very good performance in image
regions with smooth terrain. However, they cannot handle
regions that are lack of information, such as poorly texture
regions, exposure variations, occlusion, depth discontinuities,
etc.

Recently, stereo matching methods based on deep learning
[11]–[19] had made significant pro-gress in the disparity
estimation of stereo images, in which the most prominent and
effective deep learning method is the deep convolutional neu-
ral network (CNN). Due to the powerful representation capa-
bility of deep CNN in poorly texture regions and repetitive
texture regions, it has been employed to improve the accuracy
of stereo matching. Žbontar and LeCun [18] first introduced
CNN to measure the similarity between two image patches,
which used the matching probability between two image
patches as the stereo matching cost. Subsequently, a large
number of stereo matching methods based on CNN were
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proposed. These CNN methods achieved better performance
than conventional methods on challenging public benchmark
data sets (such as KITTI [20] and Middlebury 2014 [2]).
Authors of these methods suggested that it was unreliable
to consider only the difference of photometry in pixels or
hand-crafted image features for stereo matching cost. In con-
trast, CNN can learn more robust and discriminative features
from images so that it can produce an improved stereo match-
ing cost. Most CNN methods [11], [12], [14], [15], [18],
[21]–[23] take stereo matching as a supervised learning task
and are exploited to learn the stereo matching cost of two
image patches. Only a small number of CNN methods [17],
[24], [25] take stereomatching costs as unsupervised learning
task, but their accuracy is significantly lower than that of the
supervised CNN methods.

As pointed out in the literature [25]–[30], the supervised
CNN based stereo matching costs require a large number of
labeled training samples in the training process. There are
following limitations on those methods. Firstly, the super-
vised CNNmethod [30] relies on ground truth disparitymaps,
however, the availability and creation of the ground truth
disparity maps are not an easy job. In practice, although some
dedicated ranging sensors, such as LIDAR and structured
light sensors [31], can be used to generate the ground truth
disparity maps, the former is relatively large and expensive,
and ground truth disparity maps captured by LIDAR are gen-
erally sparse; the later does not work well under strong light
environment. Secondly, existing CNN based stereo matching
methods are usually trained and tested on the commonly used
data sets, such as KITTI and Middlebury 2014, which are of
specific scenes. For example, KITTI data set composes of
many autonomous driving images with street views, while
Middlebury 2014 data set provides image pairs with specific
arranged environment or structured light. In general, there
is few known public data set of general scenes with ground
truth disparitymaps for benchmark purpose, let alone real-life
images. The main reasons are the high cost of the ground
truth disparity maps acquisition (which requires a lot of
manpower and expensive instrument resources) and the prone
to pixel-level annotation errors of manually created ground
truth disparity maps. The performance of the CNN based
stereo matching costs is restricted by the amount of train-
ing data with accurate ground truth disparity maps. Those
methods trained and tested on the commonly used data sets,
such as KITTI and Middlebury 2014, perform poorly in
general scenes or real-life images. Therefore, it is necessary
to develop a new stereo matching cost that is minimally
dependent on the ground truth disparity maps.

In recent years, sparse representation (SR) [32]–[35] and
convolutional sparse representation (CSR) [36]–[39] have
attracted widespread interests in the field of visual recogni-
tion, and have made great success. SR can construct sparse
representation coefficients from the main or essential fea-
tures of the represented object, and these sparse representa-
tion coefficients have good discriminability. CSR can learn
the convolutional filter bank from stereo image pairs in an

unsupervisedmanner, but it requires a large number of convo-
lution kernels to characterize the geometric features of stereo
image pairs when performing convolution sparse decomposi-
tion of stereo image pairs. It can easily lead to the redundancy
of the convolution kernels, which increases the computational
complexity.

Inspired by two-branch CNN, this paper first proposes a
new two-branch convolutional sparse representation (TCSR)
model. This model imposes a `2-norm constraint on the
extracted features, so that the same feature is prevented
from being represented by different convolution kernels,
which reduces the redundancy of the convolution kernels,
thereby reducing the computational complexity. Then, based
on the TCSR model, an unsupervised stereo matching cost
is devised, and it does not rely on the ground truth disparity
maps, and its matching accuracy is higher than that of con-
ventional stereo matching costs.

The main contributions and novelties of this paper are as
follows.
• A new TCSR model is proposed to learn the convolu-

tional filter bank from the left and right images. This model
imposes a `2-norm constraint on the extracted features, so that
the extracted features of the left and right images are as
close as possible, thereby further constraining the global
convolution kernels. In this way, the same feature is prevented
from being represented by different convolution kernels,
which reduces the redundancy of the convolution kernels and
the computational complexity, and achieves higher matching
accuracy.
• A simple and efficient iterative algorithm is devised for

the TCSR model. Due to the proposed TCSR model belongs
to the tri-convex (joint non-convex) optimization problem
(conventional CSR models belong to bi-convex optimization
problem), which is usually difficult to solve. The iterative
algorithm we devised can solve this tri-convex optimization
problem. The convergence is also discussed theoretically to
ensure the effectiveness of the proposed algorithm.
• Based on TCSR model, a new unsupervised stereo

matching cost is proposed. It can not only preserve the geo-
metric details of stereo images and produce smooth disparity
maps, but also achieve very good performance on challenging
regions, such as exposure changes and occlusion regions.
Providing any binocular sceneswithout ground truth disparity
maps, the disparity maps can be generated automatically.

The rest of this paper is organized as follows. Section II
presents the TCSR model, iterative algorithm and corre-
sponding convergence analysis. In addition, this section also
introduces the unsupervised stereo matching cost based on
the TCSR model. Afterward, experimental results are shown
in Section III. Section IV concludes and discusses the whole
work.

II. TCSR FOR STEREO MATCHING
In this section, we build a two-branch convolutional sparse
representation (TCSR) model, and design a iterative algo-
rithm to solve this model. Then, the TCSR is applied to the
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FIGURE 1. The overview of the TCSR model.

stereo matching, and the unsupervised stereo matching cost
is constructed.

A. TCSR MODEL
Given a training set including N rectified stereo image pairs
{ILj , I

R
j }
N
j=1, TCSR can learn the shared convolution kernels

{DTk }
K
k=1 from stereo image pairs, Fig.1 provides the overview

of the TCSR model. We view D = [DT1 , . . . ,D
T
K ]

T as
convolutional filter bank, where {DTk }

K
k=1 is a set including K

convolution kernels. In the training phase, convolutional filter
bankD is learned from training set {ILj , I

R
j }
N
j=1 by minimizing

the following objective function:

min
ZLj ,Z

R
j ,D
{C(ZLj ,Z

R
j ,D)

=

N∑
j=1

(
1
2
‖ILj −

K∑
k=1

Dk ⊗ ZLjk‖
2
2︸ ︷︷ ︸

The first term

+ λ

K∑
k=1

‖ZLjk‖1︸ ︷︷ ︸
The second term

+
1
2
‖IRj −

K∑
k=1

Dk ⊗ ZRjk‖
2
2︸ ︷︷ ︸

The third term

+ λ

K∑
k=1

‖ZRjk‖1︸ ︷︷ ︸
The fourth term

+
β

2

K∑
k=1

‖ZLjk − Z
R
jk‖

2
2︸ ︷︷ ︸

The fifth term

)}

s.t. ‖Dk‖22 ≤ 1, ∀k = 1, 2, . . . ,K , (1)

where⊗ denotes two-dimensional discrete convolution oper-
ator. The variables ILj (or IRj ) ∈ RM×1 and ZLjk (or ZRjk ) ∈
RM×1 are vectorized image and feature map, respectively.
Dk ∈ RS×1 represents the vectorized convolution kernel. λ
and β are regularization parameters. The first and the third
term in (1) represent the reconstruction errors. The second
and the fourth term make feature maps sparse enough. The
fifth term can control the feature map ZLjk extracted from the
left image ILj to approximate the feature map ZRjk extracted

from the right image IRj under the same convolution kernel,
so that the same feature is prevented from being represented
by different convolution kernels, which reduces the redun-
dancy of the convolution kernels. Note that here ‖Z‖1 repre-
sents the entry-wise vector `1 norm.

B. ITERATIVE ALGORITHM
For optimization problem (1), any two variables in (1) are
fixed, then (1) is convex with respect to the remaining vari-
able, so that the proposed objective function is tri-convex
optimization (joint non-convex) problem. Using the fixed
point strategy to solve ZLj , Z

R
j and D in (1), it can divide (1)

into the following three sub-problems:

1) ZLj ← argmin
ZLj

C(ZLj ,Z
R
j ,D)

2) ZRj ← argmin
ZRj

C(ZLj ,Z
R
j ,D)

3) D← argmin
D

C(ZLj ,Z
R
j ,D)

Due to each sub-problem is convex, so we can use alter-
nating direction method of multipliers (ADMM) to solve it.
The specific solution process of the three sub-problems will
be introduced in supplementary materials. Only the update
formulas of the three variables ZLj , Z

R
j and D are shown here.

• Updating ZLj : in order to improve computational effi-
ciency, we can update ZLj at the t-th step in the Fourier
domain:

(Ẑ
L
j )t← (D̄

H
D̄+(ρ+β)EKM )−1(D̄

H
Î
L
j +ρX̂

L
j −Û

L
j +βẐ

R
j ),

(2)

where EKM ∈ RKM×KM is the identity matrix. Then ZLj can

be reconstructed back from Ẑ
L
j by taking the inverse Fourier

transform, namely, ZLj = F−1(ẐLj ), in which F−1 is the
inverse Fourier transform.
• Updating ZRj : solving Z

R
j . The solution process of ZRj is

the same as that of ZLj , which can update by

(Ẑ
R
j )t← (D̄

H
D̄+(γ+β)EKM )−1(D̄

H
Î
R
j +γ X̂

R
j −Û

R
j +βẐ

L
j ),

(3)

ZRj can be reconstructed back by taking the inverse Fourier

transform of Ẑ
R
j .

• Updating D: in order to improve computational effi-
ciency, we also update D in the Fourier domain:

D̂t ← ((
N∑
j=1

Ẑ
∗H
j Ẑ

∗

j )+ ηEKM )−1((
N∑
j=1

Ẑ
∗H
j Îj)+ ηĜ− V̂),

(4)

then D = F−1(D̂).
To sum up, the solution procedure for the TCSR model

in (1) is outlined in Algorithm 1.
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Algorithm 1 TCSR Model

Input: Training set I = {ILj , I
R
j }
N
j=1.

Output: convolutional filter bank D = F−1(D̂).
1: Initialize: D0,ULj ,U

R
j ∼ N (0, 1), ZLj = 0, γ = β = 1,

ρ = 1, η = 1, XLj = 0; ZRj = 0, XRj = 0;
2: Precompute Fourier transforms Î = F(I), D̂0 = F(D0),
Û
L
j = F(ULj ), X̂

L
j = F(XLj ), Ĝ0 = D̂0, V̂0 = Ĝ0, Ẑ

L
j =

F(ZLj ); Û
R
j = F(URj ), X̂

R
j = F(XRj ), Ẑ

R
j = F(ZRj );

3: repeat
4: for j = 1, 2, . . . ,N
5: Update Ẑ

L
j by (2), compute ZLj = F−1(ẐLj );

6: Solve XLj by the soft thresholding operator;
7: Update ULj := ULj + ρ(Z

L
j − X

L
j );

8: Update Ẑ
R
j by (3), compute ZRj = F−1(ẐRj );

9: Update XRj , U
R
j ;

10: end for
11: Update D̂ by (4), compute D = F−1(D̂);
12: Update G, V;
13: until convergence (maximum iterations T reached or

objective function ≤ threshold)

C. CONVERGENCE ANALYSIS
The proposed objective function in (1) belongs to the
non-convex optimization problem, which is usually difficult
to solve. In the previous section, we devise an iterative algo-
rithm to solve (1). Next, it is proved by Theorem 1 that
this iterative algorithm is locally convergent, the rigorous
mathematical proof is given in the supplementary materials.
Theorem 1: The sequence {Wt ,ULt ,U

R
t ,Vt } generated

by Algorithm 1 has at least one accumulation point
{W∗, (UL)∗, (UR)∗,V∗}. ThenW∗ is a stationary point of (1)
under the condition that the Lagrangian multiplier sequence
{ULt ,U

R
t ,Vt } is bounded and satisfies

∞∑
t=0

(‖ULt+1−U
L
t ‖

2
2+‖U

R
t+1−U

R
t ‖

2
2+‖Vt+1 − Vt‖

2
2) <∞.

(5)

D. COMPLEXITY ANALYSIS
The computational complexity of the algorithm is discussed
in this subsection. We can obtain the total computational
complexity of TCSR for each pair image by analyzing the
computational complexity of each step in (1). In fact, themost
expensive part in (1) is updatingZLj ,Z

R
j andD in one iteration,

whose computational complexity can be analyzed as follows.
(I) Updating ZLj . The computational complexity of updat-

ing ZLj is

O(KM log2M )︸ ︷︷ ︸
Fast Fourier Transforms

+ O(MK 3)︸ ︷︷ ︸
Linear Systems

, (6)

whereO(KM log2M ) is the computational complexity of fast
Fourier transforms (FFTs), and the computational complexity
of the linear systems is O(MK 3).

(II) Updating ZRj . The computational complexity of updat-
ing ZRj is the same as updating ZLj , which isO(KM log2M )+
O(MK 3).

(III) Updating D. The computational complexity of updat-
ing D is

O(KM log2M )︸ ︷︷ ︸
Inverse Fourier Transforms

+ O(MK 3)︸ ︷︷ ︸
Linear Systems

, (7)

where computational complexity of inverse Fourier trans-
forms is O(KM log2M ).

Therefore, we can conclude that the total computational
complexity of TCSR for each pair image is estimated to be
O(3KM log2M )+O(3MK 3) by summing (I), (II) and (III).
Remark 1: Given N image pairs {ILj , I

R
j }
N
j=1, we can con-

clude that the total computational complexity of TCSR is
O(3NKM log2M ) + O(3NMK 3), and the computational
complexity of each branch in TCSR is O(2NKM log2M ) +
O(2NMK 3) in the worst case. Compared with the
computational complexity of conventional CSR models
O(4NKM log2M ) + O(4NMK 3), the total computational
complexity of TCSR and the computational complexity of
each branch in TCSR are lower. In terms of the computational
complexity of the two methods, the number K of convolution
kernels directly affects the computational complexity, so the
redundancy of convolution kernels will increase the compu-
tational complexity. From this perspective, our algorithm has
more advantages due to less redundancy.

E. STEREO MATCHING
1) UNSUPERVISED STEREO MATCHING COST
The TCSR is applied to the stereo matching, and the unsuper-
vised stereo matching cost is constructed. Given the image
patch PL(q) is indicated a patch from the left image YL ,
centered at q = (x, y), and PR(q − d) is denoted as a patch
from the right imageYR, centered at q−d = (x−d, y), we can
construct the unsupervised stereo matching cost (USMC) as
follows:

C(q, d) = ‖wL(q)− wR(q− d)‖1. (8)

Here,wL(q) andwR(q−d) can be calculated by the following
formula:

argmin
w

1
2
‖P̄− D̃w‖22 + α‖w‖1, (9)

where P̄ ∈ {P̄
L
(q), P̄

R
(q − d)}, w ∈ {wL(q),wR(q − d)},

wL(q), wR(q − d) ∈ RK×1. The image patches PL(q) and
PR(q− d) are expanded into column vectors, and denoted as
P̄
L
(q) ∈ RS×1 and P̄

R
(q − d) ∈ RS×1, respectively. Since

D is the vectorized convolutional filter bank obtained by the
TCSRmodel, we need to rewriteD so that each of its columns
is a filter, i.e., D̃ ∈RS×K . We can solve sparse representation
coefficients in (9) by using least angle regression.
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FIGURE 2. Parameters analysis. (a) The objective function value varies with different T on different data sets. (b) Error rates of the USMC
and the costCSC vary along with the number of convolution kernels K on different data sets. The sub-figure shows that error rates of the
USMC and the costCSC vary along with the number of convolution kernels K∈{410, 415, . . . , 450}. (c) Error rates of the USMC vary along
with the convolution kernel size S on different data sets.

III. EXPERIMENTS
A. DATASETS DESCRIPTION
TheMiddlebury 2014 data set [2], [40] consists of 15 training
images and 15 test images without ground truth disparity
maps. These images are acquired by different stereo systems
and contain different artificial indoor scenes. They are avail-
able in three resolutions, namely, full (F), half (H), and quarter
(Q), herewe use half-resolution images to do the experiments.

KITTI data set [20], [41] contains two sub-datasets (i.e.
KITTI 2012 and KITTI 2015), where KITTI 2012 data set
contains 194 training images and 195 test images without
ground truth disparity maps; KITTI 2015 data set contains
200 training images and 200 test images without ground truth
disparity maps. These images are captured from real world
dataset with street views.

The Scene Flow data set [42] contains more than 39000
stereo frames in 960 × 540 pixel resolution, rendered
from various synthetic sequences. It has three sub-datasets,
i.e., FlyingThings3D, Driving, and Monkaa. The monocular
video clip is taken from real road navigation, which contains
141 images without ground truth disparity map.

B. PARAMETER ANALYSIS
Before doing the experiment, we need to initialize the model
parameters. The parameters involved in this paper mainly
include: the maximum iteration T , the convolution kernel
size S, and number of convolution kernels K .
For convolutional filter bank learning, we attempt to keep

the same settings as in the paper [37] except for the maxi-
mum iteration T , the convolution kernel size S and number
of convolution kernels K . In order to select initial param-
eter T , we conduct experiments using different data sets.

The value of T is selected within the range of {1, 2, . . . , 10}.
The objective function value in (1) with different values of T
are shown in Fig. 2(a).

In Fig. 2(a), it can be seen that the objective function value
in (1) first decreases with increasing of T and then keeps
unchanged. The optimal iterations’ number of the proposed
method on five data sets is almost 8. It suggests the good
convergence performance of the proposed algorithm. Taking
into account the computational cost of the TCSR model,
a moderate value of T can be chosen in practice.

For the convolution kernel size S, it directly affects the
quality of the extracted features. In order to analyze the role of
parameter S in the performance of the stereomatching cost on
different data sets, we traverse the range of the patch size from
{3, 5, . . . , 29}. The error rates of the USMC with different
values of S are shown in Fig. 2(c).
In Fig. 2(c), we can see that the error rates of the USMC

first decrease with increasing of S and then increase with
increasing of S. This is because small value of S means the
image information cannot be sufficiently expressed, resulting
in poor extracted features. When using large convolution
kernel, information expression becomes redundant, resulting
in an increase in error rate. Moreover, the size of the con-
volution kernel is zero-padded to M before applying the fast
Fourier transform (FFT). From Remark 1, we know that a
small S means less computational cost. In order to control the
amount of calculation and obtain a higher matching accuracy,
a moderate value of S can be selected in practice.

As for K , the error rates of USMC and the error rates of
costCSC with different values of K on different data sets are
shown in Fig. 2(b), where costCSC in Fig. 2(b) represents
the stereo matching cost based on conventional convolutional
sparse representation models. It can be seen that they are
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fluctuating, but error rates have a tendency to decrease all
the time. It can also be seen in the sub-figure (Fig. 2(b)) that
error rates of the USMC and the costCSC on different data
sets are minimized and remain almost unchanged when K
(K ∈ {410, 415, . . . , 450}) is large. Finally, K = 440 is
selected in terms of matching accuracy and computational
efficiency.

Based on the above parameter analysis, we initialize the
parameters as follows: T = 8, S = 5 and K = 440.

C. ABLATION STUDIES
1) ABLATION STUDIES FOR TSCR MODEL
Weuse the following notations: costCSC represents the stereo
matching cost based on conventional convolutional sparse
representation models; the TCFB is for the convolutional
filter bank learned by the TCSR model; CCFB represents
the convolutional filter bank learned by the conventional
convolutional sparse representation models.

In order to verify the effectiveness of the proposed TCSR,
we compare TCSR and CSR from two aspects: error rate and
the convolution kernels.

Comparison of error rate of TCSR and CSR: the TCSR
model can effectively characterize the geometric features of
stereo images with fewer convolution kernels K , while con-
ventional CSR models require more convolution kernels K .
In order to analyze the role of parameterK in the precision of
stereo matching cost and verify the effectiveness of the TCSR
model, we conduct the first set of comparison experiment
using different data sets.

The error rates of USMC and costCSC with different val-
ues of K are shown in Table 1. Overall, the error rates of
USMC is lower than those of costCSC under the same number
of convolution kernels. It shows that the convolutional filter
bank learned by the TCSR model has stronger representation
ability than that learned by the conventional CSR models.
Note that no cost aggregation and disparity refinement step
are applied in this experiment, because we hope that the
original results will provide a more direct assessment for the
different stereo matching costs.

From Table 1, it can be observed that the error rates of the
stereo matching cost are directly affected by the number of
convolution kernels and the error rates of USMC are lower
than that of costCSC. Moreover, when K = 13, the error
rates of USMC is even lower than the error rates of costCSC
when K = 19. It shows that the error rates of the USMC
with fewer convolution kernels are lower than that of the
costCSC with more convolution kernels. In Table 1, it can
also be observed that the proposed TCSR takes less time than
the conventional CSR, and the conventional CSR takes about
2.5 times as much time as the TCSR.

Comparison of convolution kernels trained by TCSR
and CSR: for visual comparison, Fig. 3 shows TCFB and
CCFB with the same number of convolution kernels, respec-
tively. To find the difference between TCFB and CCFB,
the following Bhattacharyya distance formula is used to

TABLE 1. The comparisons of the number of convolution kernels and
error rates, the number of convolution kernels and GPU runtime
(s) between USMC and costCSC performed on different data sets. The best
results are shown in bold.

measure the similarity between convolution kernel Di and Dj
(i, j ∈{1, 2, . . . ,K }) in TCFB or CCFB.

similarity(Di,Dj) = 1−

√√√√√1−

∑
g
√
HDi (g)HDj (g)√∑

g HDi (g)
∑

gHDj (g)
,

(10)

where HDi (g) and HDj (g) represent the number of pixels with
gray value g in convolution kernel Di and Dj, respectively.
Equation (10) can be used to calculate the similarity measure-
ment matrices of TCFB and CCFB, as shown in the matrix on
the right of Fig. 3(a) and Fig. 3(b).

Quantitatively, the similarity between the convolution ker-
nels in CCFB is greater than that between the convolution ker-
nels in TCFB. This shows that the TCSR model can decrease
the redundancy of convolution kernel, thus reduce the compu-
tational complexity. Due to the limitation of the length of the
paper, we only analyzed the properties of convolution kernels
learned by the two CSR models on Middlebury 2014 in this
paper, and the same conclusion can be drawn on other data
sets.

2) ABLATION STUDIES FOR THE PROPOSED STEREO
MATCHING COST
In this section, the USMC is compared with popular
window-based stereo matching costs (i.e., Cen, SAD+G,
SSD, NCC, AD+Cen, ZNCC and Cen+G) on different data
sets. Among these selected methods, AD+Cen [10], Cen+G
[8] and SAD+G [9] are employed by some state-of-the-art
stereo matching methods on the Middlebury 2014 dataset
[2], and Cen+G is used by one of the state-of-the-art stereo
matching methods on the outdoor KITTI data sets. In addi-
tion, in order to analyze the effect of filter banks obtained
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TABLE 2. Ablation studies for the different stereo matching costs with or without cost aggregation and post-processing.

FIGURE 3. TCFB and CCFB are learned by the TCSR model and
conventional CSR models on training data set from the Middlebury 2014,
respectively. (a) Left: CCFB is learned by the conventional CSR models.
Right: the similarity measurement matrix of CCFB. (b) Left: TCFB is
learned by the TCSR model. Right: the similarity measurement matrix of
TCFB. Note that the larger values in the similarity measurement matrix are
marked with green rectangles.

by different training methods on the error of the proposed
USMC, we conducted two sets of experiments: (1) for each
data set ofMiddlebury 2014, KITTI and Scene Flow, the filter
banks are trained, respectively, and the experimental results
are shown in the penultimate column (Ours (each)) in Table 3.
(2) The data sets of Middlebury 2014, KITTI and Scene Flow
are combined into one dataset to train a single filter bank, and
the experimental results are shown in the last column (Ours)
in Table 3. From the results of the last two columns in Table 3,
the error rate of the USMC by training a single filter bank
on the Middlebury 2014, KITTI, and Scene Flow datasets is
lower than that of the USMC by training the filter bank on
each dataset separately. Therefore, subsequent experiments
in the following sections will use the experimental method of
group (2) above.

For a fair comparison, the window size is chosen to be
5 × 5. We compare error rates of different window-based
stereo matching costs on Middlebury 2014, KITTI 2012,

TABLE 3. Quantitative evaluation (average error rates) of the different
window based stereo matching costs on different data sets.

KITTI 2015 and Scene Flow data set (including FlyingTh-
ings3D, Driving and Monkaa). The quantitative results are
shown in Table 3.
It can be seen that average error rate (see the last two

column of Table 3) of our method is significantly lower than
that of conventional window-based stereo matching costs on
different data sets. Note that all the results in Table 3 are
not processed by the cost aggregation and post-processing,
which can provide a more direct assessment of different
stereo matching costs.

3) ABLATION STUDIES FOR COST AGGREGATION AND
POST-PROCESSING
By comparing the error rate of the proposed USMC and
the conventional stereo matching costs on different datasets,
we analyze the impact of cost aggregation [43], [44]
and post-processing [9], [45] on the performance of the
stereo matching costs, and the results are shown in Table 2.
As listed in Table 2, the USMC with cost aggregation and
post-processing improves the disparity results, which shows
that the USMCwith cost aggregation and post-processing has
achieved a lower error rate than that without cost aggregation
and post-processing. In addition, we observe that utilizing
the cost aggregation to encourage local smoothness further
helps to improve the results. This is due to the fact that
such techniques eliminate small isolated noisy areas. While
the post-processing focuses on occlusions and sub-pixel
enhancement, which adds extra robustness to non-textured
areas by fitting slanted planes. Our method with combination
of the cost aggregation and post-processing achieves a lower
error rate.

Fig. 4 shows the qualitative comparison results on different
datasets (seen first six columns). It can be seen that the

21916 VOLUME 9, 2021



C. Cheng et al.: TCSR for Stereo Matching

FIGURE 4. Qualitative comparison results on different datasets. From first to second column: input color images from Middlebury 2014; third to fourth
column: input color images from KITTI; fifth to sixth column: input color images from Scene Flow; and seventh to eighth column: input color images
from monocular video clip without ground truth disparity map; last column: input plain color image from Middlebury datasets. From second row to sixth
row: the results achieved by our method, [2], [4], [8] and [6], respectively.

TABLE 4. Quantitative evaluation (error tolerance: 3 pixel) of different
methods on KITTI 2012 test dataset and KITTI 2015 test dataset.

proposed method produces smooth and dense disparity maps.
Our method not only preserves geometry details near depth
discontinuities, but also performs well on challenging regions
such as exposure variations and occlusion regions.

D. EVALUATION ON THE REAL WORLD SCENES WITHOUT
GROUND TRUTH DISPARITY MAPS
To test generalization ability of the proposed method, we fur-
ther evaluate it on a monocular video clip without ground
truth disparity map, and use the model trained on KITTI.
The results are shown in Fig. 4 (seen last two columns).
From Fig. 4, it can be seen that: the method of [2], [8]
and [6] produce disparity maps with poor visual effects and

lose geometric details; although the method of [4] can keep
geometry details well, it cannot get a smooth disparity map
(it has too much noise). By comparison, our method produces
smooth disparity maps and preserves geometry details better
than other methods. This shows that the proposed method has
good generalization performance. The success of our method
can be attributed to the fact that the convolutional filter
bank learned by the TCSR model has a strong representation
capability for geometric features of stereo images. It can
also be seen from Fig. 4 that the proposed method performs
better than othermethods on the low texture, repetitive pattern
and discontinuity regions. [2], [4], [8] and [6] not only do
not produce smooth disparity maps on the low texture and
discontinuity regions, but also produce a lot of noise. The
proposed method performs best on the repetitive pattern. The
proposed method not only produces a smooth disparity map,
but also well describes the grid gaps on the repetitive pattern.
[4] and [6] produce disparity maps with a lot of noise, [8]
and [2] produce smooth disparity maps, but they cannot well
describe the grid gaps on the repetitive pattern. In addition,
the proposed method also performs better than other methods
on plain color image (the last column of Fig. 4). The proposed
method produces smooth disparity maps, while [2], [4], [8]
and [6] produce a lot of noise on plain color image. It should
be pointed out here that after training on the KITTI data set,
it was directly tested on the monocular video clip without any
parameter adjustment and training.

E. COMPARISON WITH OTHER STATE-OF-THE-ART
METHODS
In this section, the proposed method is compared with
other methods (including unsupervised methods and several
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TABLE 5. Comparison of our method and some selected state-of-the-art supervised methods and existing unsupervised methods on
Middlebury 2014 test dataset.

state-of-the-art supervised methods) on Middlebury 2014
data set and KITTI data set. The results are shown in Table 5
and Table 4, respectively. It can be seen from the table that our
method achieves the smallest error among all unsupervised
methods and supervised methods in Table 5 and Table 4.
Here, Out-noc, Avg-all, D1-bg, and D1-all are used as eval-

uation metrics for different methods, in which ‘‘Out-noc’’ is
percentage of erroneous pixels in non-occluded, ‘‘Avg-all’’ is
average disparity (end-point error) in total areas, ‘‘D1-bg’’ is
percentage of outliers averaged only over background regions
in first frame, and ‘‘D1-all’’ is percentage of outliers averaged
over all ground truth pixels in first frame, respectively.

In terms of runtime, it can be observed from Table 5 that
most of the other methods use GPU/CUDA accelerations,
except for our method, LAMC_DSM [60] and LPS [57].
The running time of our method is significantly lower than
that of LAMC_DSM, but higher than that of LPS. Besides,
we achieve a lower computational expense, even when it is
compared with supervised learning methods CBMV [14] and
LW-CNN [12] which work on Nvidia GTX Titan with CUDA
acceleration and unsupervised learning method MDP [56]
which works on Nvidia GTX Titan X. Our method is done on
the CPU and an accelerated version of the proposed method
on the GPU will be considered in the future.

IV. CONCLUSION
This paper introduces the two-branch technique into the con-
volutional sparse representation first time in the paper and
builds the TCSRmodel. An efficient iterative algorithm using
the augmented Lagranian multiplier framework is provided
to solve this tri-convex problem, and the convergence of
the algorithm is discussed theoretically. Based on TCSR

model, a new unsupervised stereo matching cost (USMC)
is proposed in this paper. Experimental results on four pop-
ular data sets and one monocular video clip demonstrate
that the USMC has higher accuracy and good generalization
performance.

We would like to mention that the accuracy of proposed
method is lower than those top supervised learning method.
In the future, we plan to further improve the matching accu-
racy by adopting a multi-layer TCSR model. GPU version of
the proposed method will also be considered.
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