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ABSTRACT Traditional histogram equalization may cause degraded results of over-enhanced images under
uneven illuminations. In this paper, a simple and effective image contrast enhancement method is proposed
to achieve high dynamic range imaging. First, the illumination of each pixel is estimated by using an induced
norm of a patch of the image. Second, a pre-gamma correction is proposed to enhance the contrast of
the illumination component appropriately. The parameters of gamma correction are set dynamically based
on the local patch of the image. Third, an automatic Contrast-Limited Adaptive Histogram Equalization
(CLAHE) whose clip point is automatically set is applied to the processed image for further image contrast
enhancement. Fourth, a noise reduction algorithm based on the local patch is developed to reduce image noise
and increase image quality. Finally, a post-gamma correction is applied to slightly enhance the dark regions
of images and not affect the brighter areas. Experimental results show that the proposed method has its
superiority over several state-of-the-art enhancement quality techniques by using qualitative and quantitative
evaluations.

INDEX TERMS Contrast enhancement, contrast-limited adaptive histogram equalization, gamma correc-
tion, high dynamic range, induced norm, noise reduction.

I. INTRODUCTION
Recently, the requirement for digital photography and
multimedia applications has been increasing. One of these
requirements is to obtain as much complete image dynamic
range information as possible, which is called High Dynamic
Range (HDR) imaging. HDR aims to overcome the short-
comings of traditional images and display a wide exposure
dynamic range. Therefore, under the environment of sig-
nificant difference between light and shadow, the details of
the bright and dark areas of a photograph of HDR can still
be retained. HDR digital imaging uses a combination of
contrast ratio and an observer-based color perception model
and multiple exposures of a single scene to improve visual
authenticity.

In addition to using sensors to achieve HDR, image synthe-
sis with multiple exposures is also a feasible solution [1]–[4].
HDR has become one of the main fields of computer graph-
ics so far [5]. Because HDR can show the appearance of
real scenes, it has become more and more popular. In the
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photography world, HDR has attracted many professional
and amateur photographers and has practicality in many
applications such as visual effects production. Although some
specific cameras can be used to capture HDR images directly,
they are still expensive and not popular. Nowadays, mobile
devices with cameras such as smartphones or tablets have
become more and more popular and lead to many pho-
tographs in our daily lives. Some photos produced under
the complicated factors of the lighting environment result in
lower visibility. Many contrast enhancement methods have
been developed to solve this problem, where the mainstream
can be divided into two categories: based on histogram and
based on Retinex.

The former is based on the intensity level distribution
in the input image to explore the ideal dynamic range to
enhance the contrast. For example, Histogram Equalization
(HE) and its modifications are easily combined with several
optimization techniques to adjust the intensity distribution of
the original image effectively. Histogram equalization flat-
tens the intensity histogram and extends the dynamic range of
intensity levels. It is the most well-known method because of
its simplicity and effectiveness. However, the recovery results
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will still be exaggerated under uneven illumination, leading
to excessive enhancement. Therefore, to overcome the short-
comings of HE, different kinds of the modifications such
as contrast limit [6], weight adjustment [7], and brightness
maintenance [8]–[10] have been developed.

Recently, researchers have begun to focus on methods
based on decomposition models. Most of the algorithms are
based on the Retinex theory [11], which assumes that the
human eye scene is the product of the reflectance compo-
nent and the illumination component. It means that the pixel
intensity is the product of illuminance and reflectance. The
traditional Retinex-based enhancement method is designed to
separate the illumination layer from a given scene accurately.
Usually, the estimated reflectance (or enhanced reflectance)
component is used as the result of illumination invariance
enhancement [12]–[16]. Although these algorithms can effec-
tively emphasize the details of the image, the inappropriate
decomposition between the illumination component and the
reflectance component may cause visual discomfort [17].
According to the Retinex theory, it is unreasonable to treat
the reflectance component only as an enhanced image [18].

Since most traditional histogram equalization methods
strongly depend on setting parameters to achieve the optimal
enhancement effect for different images. Also, the conven-
tional decomposition of the reflectance component and the
illumination component based on Retinex theory takes time
for calculation. In this paper, a simple and effective image
enhancement method is proposed. The illumination of each
pixel is estimated by using an induced norm of a patch of the
image. The computation time can be significantly reduced.
A novel pre-gamma correction and a novel noise reduction
method, all based on the local patch of an image, are proposed
to improve the CLAHE processing and better visualize the
input image. A novel post-gamma correction is proposed to
enhance the dark regions of images slightly and not affect the
brighter regions.

Recently, contemporary deep learning-based methods pro-
vide state-of-the-art performance for image enhancement
tasks. Some methods based on neural networks have been
proposed in the field of computer vision. Wang and Hu [19]
proposed a multi-layer convolutional neural network that
includes convolution kernels of different sizes for the three
channels of the original images. The convolution kernel
size is determined by calculating the mean square deviation
of the pixels of the corresponding channel. The proposed
algorithm can enhance weak contrast images with better
details. Guo et al. [20] proposed a low-light image enhance-
ment based on an end-to-end fully convolutional network
and discrete wavelet transformation. The pipeline neural net-
work consists of a denoising network and a low-light image
enhancement network, which learns a function from a pair
of dark and bright images. Guo et al. [21] proposed Zero-
Reference Deep Curve Estimation (Zero-DCE), which trains
a lightweight deep network, DCE-Net, to estimate pixel-wise
and high-order curves for dynamic range adjustment of a
given image. The method does not require any paired or

FIGURE 1. Illustration of Retinex theory.

unpaired data during training and is efficient for low-light
image enhancement.

The rest of this paper is organized as follows. Section II
provides a brief survey of related work. Section III describes
our proposed image enhancement. Section IV shows the
experimental results to compare different methods and
related analysis. Finally, concluding remarks are given in
Section V.

II. RELATED WORKS
In this section, we briefly introduce the image enhancement
methods proposed in the field of computer vision. As men-
tioned earlier, the image contrast enhancement is mainly
divided into twomainstream ideas: based on histogram equal-
ization and based on the Retinex algorithm.

A. RETINEX ALGORITHM
TheRetinex algorithm [22]was first proposed by Edwin Land
(1964). It first introduced human visual characteristics into
the literature in the field of image enhancement research.
When the human eye observes an object, its color is not just
the spectral energy reflected by the object. The color percep-
tion is obtained by comparing the color and lightness value
between this object and surrounding neighboring objects. The
Retina and Cortex process this color perception ability in the
human brain. In human vision, the stimulus value of the image
is obtained by the retina (Retina). Then the color information
obtained by the retina of the cerebral cortex (Cortex) is used to
know the color of the object. In this way of operation, people
can feel the real image. Fig. 1 shows the operation principle
of Retinex.

Retinex is derived from the color constancy model of
the human visual system [23]. Afterward, the model was
extended to decompose the image S into two different images,
namely the reflectivity image R and the illumination image L
as follows.

S (x, y) = R (x, y) · L (x, y) . (1)

When the illumination is uneven, we only need to extract
the illumination image L(x, y) from the observation image
S(x, y), and then subtract L(x, y) from S(x, y). The real
image R(x, y) can be obtained. In the following, we briefly
investigate different image enhancement algorithms based on
the Retinex theory [24].
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TheRetinex theory assumes that the perception of color has
a strong correlation with reflectivity. The amount of visible
light that reaches the observer depends on the product of
reflectivity and illuminance [25]. Most algorithms based on
Retinex can enhance the details by eliminating the illumina-
tion to extract the reflectivity. However, it is impossible to
remove the illumination for unsmooth depth scenes [12], [26].
In practice, the reflectance should be between 0 and 1, which
means that the light reflected by the surface cannot exceed the
light it receives. For example, 50% of the reflectance obtained
by Single Scale Retinex is greater than one and may cause
over-enhancement [27]. Furthermore, it is unreasonable to
simply delete the necessary lighting that represents the envi-
ronment [18].

Since the traditional Single-Scale Retinex (SSR) andmulti-
scale Retinex approaches often yield unnatural result [17],
[28], Some approaches, such as intrinsic image decomposi-
tion [28], [29] and illumination map estimation [30], have
been proposed to adjust the decomposed illumination com-
ponent for image enhancement. However. Most traditional
methods, including intrinsic image decomposition, require
high computation to implement the model procedure and are
hardly applied to mobile.

Kim [17] proposed the principal energy analysis based
on the key observation that the illumination component is
dominant over a small local region. The corresponding energy
can be separated from the scene reflectance by exploiting
the subspace analysis. The Singular Value Decomposition
(SVD), which is useful for factorizing given data and reveal-
ing the underlying structure of their distribution [31], [32],
was applied to estimate the illumination component by defin-
ing the small local patch at each pixel position and conduct
the orthogonal transform for the corresponding region.

The SVD computational procedure is expressed as follows:

B (x, y) = USV T , (2)

where S denotes the diagonal matrix and has the singular
values as its diagonal term, i.e., S = diag (s1, s2, · · · , sN ),
which represent the power of the independent component. U
and V denote orthogonal matrices while satisfyingUTU = I
and V TV = I . Therefore, the largest s1 can be regarded as
the principal energy related to the illumination component in
the current pixel position.

Although the principal energy approach can obtain better
decomposition results, the SVD computation still takes time.
Since the largest s1 obtained from SVD is equivalent to
the Frobenius norm, which is just the norm 2 on a square
matrix B(x, y).

The Frobenius norm ‖‖F is defined so that for every square
n× n matrix A ∈ Mn (C),

‖A‖F =

 n∑
i,j=1

∣∣aij∣∣1/2
 = √tr (AA∗) =

√
tr (A∗A). (3)

In order to reduce the computation time and still obtain a
better decomposition effect, a patch-based induced norm is
proposed to estimate the illumination of images in this paper.

B. NATURALNESS
Naturalness means that the overall atmosphere of the image
should not be severely changed, and the direction of the
light source should not be significantly changed. Recently,
some natural enhancement algorithms [18], [33], [34] based
on Retinex theory have been proposed to retain naturalness,
but these algorithms may not be suitable for non-uniformly
illuminated images [27].

C. GAMMA CORRECTION
Huang et al. [35] employed a Compensated Cumulative
Distribution Function (CDF) as an adaptive parameter, mod-
ifying the intensity with a progressive increment of the orig-
inal trend. The proposed Adaptive Gamma Correction with
Weighting Distribution (AGCWD) is formulated as follows:

TAGCWD (l) = lmax(l/lmax)1−cdf ω(l), (4)

cdf ω (l) =

∑l
l=0 pdf ω (l)∑lmax
l=0 pdf ω (l)

, (5)

pdf ω (l) = pdf max

(
pdf (l)− pdf min

pdf max − pdf min

)α
, (6)

pdf (l) =
nl
MN

, (7)

where nl is the number of pixels in the gray level l,MN is the
total number of pixels of an image.

Several researchers have demonstrated that local correc-
tion can significantly improve image quality relative to a
global correction [36]. Since the Gamma function only allows
for the global contrast, a modified Gamma function based on
local patches is proposed in this paper.

D. HISTOGRAM EQUALIZATION
Contrast Enhancement (CE) technology has been widely
used in various image enhancement applications. Histogram
Equalization (HE) is one of the most popular and simple CE
technologies [37]. HE uses the Probability Density Function
(PDF) of the gray level of the input image to construct
a cumulative distribution function and performs gray level
mapping to redistribute the brightness histogram evenly so
that the image is evenly distributed. This method can produce
a good contrast enhancement effect on almost all images.
However, there are serious problems, including unnatural
effects or artifacts on images with high peaks in some his-
tograms. Therefore, the degree of enhancement cannot be
accurately controlled, which causes some visual degradation
effects. For example, some areas of color images have a color
shift and excessive enhancement.

Many histogram-based CE algorithms can use vari-
ous methods to improve HE. For example, Bi-HE (BHE)
is an algorithm that divides a histogram into two sub-
histograms and applies HE to each sub-histogram [38].
Brightness-preserving Bi-Histogram Equalization (BBHE)
uses the average intensity value of the input image to seg-
ment its histogram [39]. Brightness Preserving Dynamic
Histogram Equalization (BPDHE) [10] first divides the
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histogram into several sub-histograms, then applies HE to
each sub-histogram separately, and then performs the nor-
malization process. The contrast-enhanced image has the
same average intensity value as the input image. These exist-
ing histogram-based CE methods tend to retain all average
intensity values while improving the contrast of the entire
image. There are other well-known methods to improve
HE [40]–[42]. However, they are susceptible to parameters
and only provide good image quality after careful parameter
tuning.

At the same time, Adaptive Histogram Equalization (AHE)
[43], [44] was developed, which is a CE using local statis-
tical characteristics. AHE successfully considers local sta-
tistical properties, unlike traditional histogram equalization
algorithms. AHE equalizes each pixel through a histogram
of pixels within a rectangular range around it. The method
of equalization is exactly the same as the HE algorithm.
Therefore, the algorithm is more suitable for improving the
local contrast of the image and obtaining more image details.
However, AHE still has the problem of excessively magni-
fying the noise in the same area of the image. When the
pixel values contained in a specific area are very similar, the
histogram will be sharpened. At this time, the transformation
function of the histogramwill map a narrow range of pixels to
the entire pixel range, which causes a small amount of noise
in some flat areas to be excessively amplified. AHE does not
consider the overall appearance of the image and has a high
computation complexity.

Partially Overlapped Sub-block Histogram Equalization
(POSHE) [45] and Cascaded Multistep Binomial Filtering
HE (CMBFHE) [46] enhance AHE as a consideration of the
overall appearance of the image and reduce the computational
complexity. However, thesemethods are still computationally
expensive, making them unusable for commercial use.

In order to solve the problem of excessive magnifica-
tion, the method of Contrast Limited Adaptive Histogram
Equalization (CLAHE) is used [47]. The difference between
CLAHE and AHE is the contrast limiting. CLAHE uses
the threshold value to cut the sharpened histogram and
evenly distributes the cut parts to other histogram parts. This
method improves the disadvantage that histogram equaliza-
tion reduces the contrast in areas with moderate brightness
when processing high-contrast or low-contrast images. It also
improves the noise problem caused by adaptive histogram
equalization for histogram sharpening. However, the disad-
vantage of this method is that it cannot be processed automat-
ically. A threshold must be set for clipping, and this threshold
will affect the quality of image processing.

The clip point is calculated as follows:

β =
M
N

(
1+

α

100
Smax

)
, (8)

where M is the number of pixels in each block, N is the
dynamic range in this block, Smax is the maximum slope, and
α is the clip factor. It is noted that the value of the clip factor
α is to be determined based on the image being processed.

Based on the average gray value and standard deviation,
which represent textures of a block, Chang et al. [48] set the
clip point adaptively as follows:

β =
M
N

(
1+ P

lmax

R
+

α

100

(
σ

Avg+ c

))
, (9)

where σ denotes the standard deviation of the block, Avg
denotes the mean value, and c is a small value to avoid
division by 0, R represents the entire dynamic range of the
image. P and α are parameters to control the weights of the
dynamic range and entropy terms, respectively. It should be
noted that parameters P and α are still to be determined,
and different parameter values may have different image
enhancement. Determining the parameter values will be a
critical issue in getting a better image contrast enhancement
for all types of low dynamic range images. In this paper, since
all types of low dynamic range images are pre-processed by
the pre-gamma correction function based on local patch, the
parameters α for the clip point of CLAHE can be fixedly set
as a small value and still achieve better image enhancement.

III. PROPOSED METHOD
Most state-of-the-art techniques in image contrast enhance-
ment might not be suitable for all types of low dynamic range
images since different types of degraded images may require
different enhancements. Hence, a new image enhancement
method is proposed based on the statistical information of the
respective images. The flowchart of the proposed method is
shown in Fig. 2 and illustrated as follows.

Since the RGB color components are not decoupled, the
RGB color model is not suitable for enhancement. In the HSV
color model, the color content (V) intensity can be used to
enhance the color image. Therefore, color space transforma-
tion is performed to convert the input image from RGB into
HSV. The proposed image enhancement method is applied
to the V component. The new proposed approach is based
on the fact that the illumination component is dominant over
a small region defined at each pixel position. A measure of
the induced norm in the local patch provides a good approx-
imation of the illumination component, which can be easy
to implement in mobile devices. The estimated illumination
is subsequently adjusted by a pre-Gamma function, CLAHE,
noise reduction algorithm, and post-Gamma function, com-
bined with the reflectance layer and H , V components, and
converted back to RGB image for generating the enhanced
image.

A. ILLUMINATION ESTIMATION VIA INDUCED NORM
The illumination component is estimated by defining a small
local patch at each pixel position. The small local patch
denoted as B(x, y) of size N × N pixels is centered at (x, y)
pixel position, where N is set to be 5. The procedure of
estimating the illumination component is as follows:

The L-1 norm of B(x, y) is defined as:∥∥B(bij)∥∥1 = max
j

∑N

i=1

∣∣bij∣∣ , (10)
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FIGURE 2. The flowchart of the proposed contrast enhancement method.

FIGURE 3. (a) Intensity channel of the original input image. (b) Estimated
illumination map. (c) Estimated reflectance map.

The L-∞ norm of B(x, y) is defined as:∥∥B(bij)∥∥∞ = max
i

∑N

j=1

∣∣bij∣∣ , (11)

where bij denotes the intensity of the pixel at location (i, j).
Similar to the principal energy related to the illumination

component, the illumination component in the current pixel
position is estimated as:

i (x, y) = max
(∥∥B(bij)∥∥1 , ∥∥B(bij)∥∥∞) . (12)

Compared with the principal energy approach, the pro-
posed method can achieve better low computational costs.

An image can be defined as a two-dimensional function
f (x, y), where x and y are spatial coordinates, and the ampli-
tude of f is the intensity of the image at the point (x, y). The
intensity of the image f (x, y) is a product of the illumination
and reflectance components:

f (x, y) = i(x, y)·r(x, y), (13)

where r(x, y) denotes the reflectance component.
The reflectance component r(x, y) at each pixel position

can be written as:

r (x, y) = f (x, y)/(i (x, y)+ ε), (14)

where ε is a small positive number to avoid zero-division.
Fig. 3 shows the results of the illumination component

and the reflectance component of an image. It is noteworthy

that edges and textures, i.e., reflectance components, are well
revealed even under unevenly lighted regions, for example,
the dark window of the right side (see Fig. 3 (c)).

B. IMAGE ENHANCEMENT BY PRE-GAMMA CORRECTION
An adaptive gamma correction based on local patch is pro-
posed to pre-process all types of low dynamic range images
enhance as follows:

Iout = Iγin, (15)

γ (x, y)=
(1−(µ+σ))×e(−cdf WD(I (x,y))) + (µ+σ)

A(x, y)
, (16)

A (x, y) =
I (x, y)

1
N×N

∑
(x,y)∈B I (x, y)

, (17)

where Iout , Iin, µ and σ denote the input, the output, the mean
value, and standard deviation of the image, respectively. The
small local patch B(x, y) of size N × N pixels is centered
at (x, y) pixel position, where N is set to be 5. Since the
image is processed based on a local patch, the local feature
and naturalness can be preserved.

C. IMAGE ENHANCEMENT BY CLAHE
The CLAHE limits the amplification by clipping the his-
togram at a predefined value before computing the CDF.
The clip limit of CLAHE is the key parameter to adjust
the contrast enhancement. Since the pre-gamma correction is
applied to pre-process the images based on the local patch,
the parameters α in (8) for the clip point of CLAHE can be
set as a small value for all types of images. In this paper, each
image is divide into 8 × 8 blocks. The proposed clip point
for all types of low dynamic range images is calculated as
follows:

β =
M
N
(1+ 0.004Smax) . (18)
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FIGURE 4. (a) Without pre-processing noise before image enhancement.
(b) With pre-processing noise before image enhancement.

D. NOISE REDUCTION METHOD
Although CLAHE can improve the noise problem caused by
adaptive histogram equalization for histogram sharpening,
more or less noise may still exist in the image. A noise
reduction algorithm is proposed to reduce noise from the
image as follows:

Iout = Iγin, (19)

γ (x, y) =
e(

µ
0.5−1)

A (x, y)
for µ > 0.5, (20)

γ (x, y) = 1 for µ ≤ 0.5, (21)

where Iout , Iin, and µ denote the input, the output, and the
mean of the image intensity, respectively. Similarly, A(x, y) is
the same as that of (17), and the local noise of the image can
be magnified.

After magnifying the noise, and the noise can be separated
as follows:

Inoise = Iout − Iin. (22)

The extracted noise is enhanced by noise characteristics,
and the noise characteristics are adaptively enhanced accord-
ing to the standard deviation σ of the image, and the noise is
removed by:

Iout = Iin − (Inoise · (1+ σ )). (23)

It can be seen from Fig. 4(a) that noise appears after apply-
ing gamma correction without noise reduction processing.
The noise of the image can be effectively reduced by using the
proposed noise reduction processing, as shown in Fig. 4(b).

E. IMAGE ENHANCEMENT BY POST-GAMMA
CORRECTION
After applying CLAHE, the intensities of the image are scat-
tered over the entire dynamic range, and brightness correction
may becomemore critical than contrast enhancement. A post-
gamma correction is proposed to adjust the brightness of the
image as follows.

The final illumination adjustment based on the meanµ and
standard deviation σ of the image is shown as follows:

Iout = Iγin, (24)

γ (x, y) = 1−
(
Iin (x, y)− Iin (x, y)ω

)σ
, (25)

ω = e(
µ
0.5−1), (26)

FIGURE 5. (a) Transformation curve for test images. (b) Image before
post-gamma. (c) Image after post-gamma. (d)–(e) Detailed image
information from enlarging (b) red block. (f)–(g) Detailed image
information from enlarging (c) red block.

where ω is affected by µ. Fig. 5(a) shows the transformation
curves for different values ofµandσ . It is noted that the values
of µ of images after pre-gamma correction and CLAHE
are mostly around 0.5∼0.6. It can be seen that the post-
gamma correction only slightly enhances the dark regions of
images and does not affect the brighter regions. Figs. 5(b)–(e)
demonstrate that the dark regions become more visible after
the post-gamma correction.

IV. EXPERIMENTAL RESULTS
In this section, the test samples were taken from the NASA
database [49], Hasinoff et al. [50], Guo et al. [30], and a
small part of the images were searched by Google Images,
which included backlight, cast shadows, uneven illumination,
and low light. The proposed image enhancement method
is evaluated based on 2,000 images obtained under various
lighting conditions. The sizes of the test images are from
640× 449 pixels to 8, 670 × 5.526 pixels. The traditional
methods were implemented by using the codes with default
parameters provided by the authors. The computer used
in this experiment includes Intel Core i9-9900X CPU at
3.60GHz, 64GBRAM, andMatlab version 2020a. The details
of the experimental results are explained in the following
subsections.

A. SUBJECTIVE COMPARISONS
In order to show the effectiveness of the proposed method,
we use common images for comparison. Due to space
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FIGURE 6. The visual comparison between image contrast enhancement results. (a) Original (b) HE (c) CLAHE (d) CVC (e) LDR (f) AGCWD (g) HMF (h) LIME
(i) NPEA (j) WVM (k) Zero-DCE (l) ICEBIN. (m)–(x) Detailed image information from enlarging (a)–(l) red block.

limitations, the experiment in this section uses six images
for experiment and image evaluation. Figs. 6–11 show
some experimental results obtained by the proposed method
and other state-of-the-art methods, which include HE,
CLAHE, Contextual and Variational Contrast enhancement
(CVC) [51], Layered Difference Representation (LDR)
[52], AGCWD [35], Histogram Modification Framework
(HMF) [53], Low-light image enhancement via Illumina-
tion Map Estimation (LIME) [30], Naturalness Preserved
Enhancement Algorithm (NPEA) [27], histogram modifi-
cation framework (WVM) [54], and Zero-Reference Deep
Curve Estimation (Zero-DCE) [21], respectively.

Fig. 6(a) is an original photograph taken by the photog-
raphy technique of sidelight. The light on the scene is very
complex and produces uneven lighting. Because the light-
ness and darkness exist side by side and are overlapped, the
subject will produce a more obvious shadow. It makes the
outline of the subject more prominent and looks more three-
dimensional, as shown in the statue on the right. As shown
in Fig. 6(b), although the method of HE is simple, some of
the details are lost (e.g., the details in the right area of the
statue are less visible). It can be seen that CLAHE has better
image enhancement effects than HE, as shown in Figs. 6(b)
and 6(c). In Fig. 6(o), the dark area is less visible compared
with the proposed method, as shown in Fig. 6(x). In Fig. 6(d),
CVC shows some conservative results that cannot accurately
enhance the clarity of content that belongs to dark areas. LDR
is based on the traditional histogram method. The effect of
image enhancement is not obvious, and there is not much

difference in spatial light distribution from the original image,
as indicated in Fig. 6(e). As shown in Fig. 6(f), although
AGCWD can perform the effect of image enhancement,
the effect of enhancement in dark areas is insufficient. The
brightness of the statue is too high, making the outline of
the statue inconspicuous. In Fig. 6(g), the effect of HMF
in dark places is less visible. In Fig. 6(h), LIME shows the
effect of excessive image enhancement. The overall image is
overexposed, and the color saturation is very high, making the
image unnatural. NPEA improves the low contrast displayed
in the corresponding area, where the area of detail in the
dark is less conspicuous, as indicated in Fig. 6(i). As shown
in Fig. 6(j), WVM obtains better results in dark areas, but
it still suffers from low contrast. In Fig. 6(k), Zero-DCE
also obtains better results in dark areas, but the entire image
is excessively enhanced. Fig. 6(l) shows that ICEBIN suc-
cessfully prevents excessive enhancement of bright areas.
ICEBIN can restore the texture details in dark areas and
retain the color attributes and contrast of the original image.
Figs. 6(m)–(x) respectively show the details of the dark areas
which are obtained from enlarging the red block in the upper
left corner of Fig. 6(a). It is worth noting that the sharpness
of the shadow in the Figs. 6(n)–(s) cannot be shown. Fig. 6(t)
shows that LIME can show the details in the shadows, but
the entire image is excessively enhanced. The details in the
shadow of Figs. 6(u)–(v) are not clear enough together with
the loss of other details in the bright area. Fig. 6 (w) shows
that Zero-DCE can show the details in the shadows, but
the color saturation is insufficient (e.g., the tree on the left
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FIGURE 7. The visual comparison between image contrast enhancement results. (a) Original (b) HE (c) CLAHE (d) CVC (e) LDR (f) AGCWD (g) HMF (h) LIME
(i) NPEA (j) WVM (k) Zero-DCE (l) ICEBIN. (m)–(x) Detailed image information from enlarging (a)–(l) red block.

in Fig. 6(k)). Compared with the state-of-arts method, the
proposed method greatly restores the edges and texture of the
dark area, as shown in Fig. 6(x). At the same time, the color
attributes of the original input are maintained without greatly
exaggerating the contrast.

The image in Fig. 7(a) is from the NASA database. The
light in a given scene in the image is very complicated.
Compared with Fig. 6(a), the image of Fig. 7(a) suffers
more sidelight. Therefore, this uneven illuminationwill easily
lead to the unbalanced image enhancement processed by
the previous models such as HE, CLAHE, CVC, and LDR.
In Fig. 7(b), HE is a traditional histogram-based method,
suitable for uniformly dark or bright images. However, for
uneven illumination images, satisfactory results will not be
produced. Figs. 7(c)–(e) show that the contrast enhancement
performance of CLAHE, CVC, and LDR in low-light envi-
ronments is limited. Fig. 7(f) shows that although AGCWD
can achieve better image enhancement, the details reflected
on the window are not visible. Fig. 7(g) shows that HMF
cannot increase the brightness properly, and the original color
of the image is also decreased. Fig. 7(h) shows that LIME
successfully reveals the underlying structure reflected on the
window. However, there is an excessive enhancement in the
bright areas of the image, such as the image of the tree on the
left of the picture. Fig. 7(i) shows that NPEA over-enhances

the image, where some details of the image are lost, and noise
and color deviation are increased. Fig. 7(j) shows that WVM
is good at preserving the naturalness of the image. However,
the dark area is not clear enough. For example, the area
reflected on the window is less visible. Fig. 7(k) shows that
the Zero-DCE image enhancement is unbalanced, resulting in
a white appearance. The original color attribute of the image
cannot be maintained. In Fig. 7(l), the proposed method
provides almost the same quality in the bright areas as the
original image. For example, the tree on the left of the picture
is not over-enhanced. The entire image is not overexposed,
and the outline of the object is clear, making the image look
natural. Figs. 7(m)–(x) respectively show the details of the
shadows reflected on the window, which are obtained from
enlarging the red block on the right side of Figs. 7(a)–(l).
Figs. 7(n)–(s) cannot accurately restore the brightness and
sharpness of the shaded area within the red block. Fig. 7(t)
LIME can restore the contents of the dark place but enhances
the image too much such that details cannot be presented. In
Fig. 7(u), NPEA results in an image with low color saturation.
Also, it can be seen from the enlarged image that there is too
much image noise. Fig. 7(v) shows that the details of the dark
area of WVM are not clear enough from the enlarged image.
Fig. 7(w) shows that although Zero-DCE has enhanced the
brightness of the dark area, the color properties are different
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FIGURE 8. The visual comparison between image contrast enhancement results. (a) Original (b) HE (c) CLAHE (d) CVC (e) LDR (f) AGCWD (g) HMF
(h) LIME (i) NPEA (j) WVM (k) Zero-DCE (l) ICEBIN. (m)–(x) Detailed image information from enlarging (a)–(l) red block.

from those of the original image. As shown in Fig. 7(x),
the proposed method shows that the overall image is not
overexposed, and the image is obviously more natural. Also,
dark areas have less noise than those of NPEA, and the edges
and texture details in dark areas are clearer than those of
WVM. Overall, ICEBIN achieves a good balance between
detail enhancement and noise suppression.

Similar to the above description about
Figs. 6(b)–(g) and 7(b)–(g), Figs. 8(b)–(g) and 9(b)–(g)
show that the image enhancement effects are not obvious
by using state-of-the-art methods. From the zoomed images
in Figs. 8 (n)–(s) and 9(n)–(s), It is more obvious that the
proposed method can achieve better enhancement results
than the state-of-the-art methods. For example, it can be
seen from Figs. 8(b) and 9(b) that HE causes some of
the detail loss. CLAHE, CVC, and LDR cannot effectively
enhance dark areas, as shown in Figs. 8(c)–(e) and 9(c)–(e),
respectively. AGCWD converts most of the intensity to the
white range ([128, 255]), where the image brightness exceeds
expectations. For example, the details of the skirt in Fig. 9(r)
disappear. HMF cannot properly increase the brightness, and
the original tone of the image is also decreased, as shown in
Fig. 9(g). Although the image enhancement effects, as shown
in Figs. 8(h)–(k) and 9(h)–(k) are obvious, the quality of the
results is still insufficient, which can be seen from the zoomed
image in Figs. 8(t)–(w) and 9(t)–(w). For example, LIME

shows an impressive performance in dark areas. However,
it makes the brightness too saturated because it tends to over-
enhance the relatively high-intensity area, such as the pillar
in the middle of Fig. 8(h) and the skirt of Fig. 9(t). In contrast,
ICEBIN produces more natural results while successfully
enhancing the visibility of low-light images. NPEA is very
effective when dealing with smaller size images. However, as
the image size increases, the smoothness of the illumination
deteriorates. This drawback causes the blurred appearance
of the enhanced image in Figs. 8(i) and 8(u), especially in
Fig. 9(i). WVM obtains good results in dark areas, but this
method still encounters insufficient image enhancement. It
can be seen that ICEBIN has a better image enhancement
effect in Fig. 8(l) by comparing with Fig. 8(j). Zero-DCE
attempts to stretch the narrow histogram of the dark image
to enhance the contrast but makes the image over-enhanced
and unnatural, as shown in Figs. 8(k) and 9(k). In general,
ICEBIN can achieve a better image enhancement effect either
for the full image shown in Figs. 8(l) and 9(l) or for the
enlarged image in Figs. 8(x) and 9(x), but the state-of-the-
art methods cannot.

Figs. 10–11 show the enhancement results of underlit
indoor images with strong noise. It can be seen that the hidden
noise is high under very weak lighting conditions, as shown
in Figs. 10(a) and 11(a). In Figs. 10(c)–(g), the background of
roses is less visible, and only Figs. 10(b) and 10(h)–(k) can
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FIGURE 9. The visual comparison between image contrast enhancement results. (a) Original (b) HE (c) CLAHE (d) CVC (e) LDR (f) AGCWD (g) HMF (h) LIME
(i) NPEA (j) WVM (k) Zero-DCE (l) ICEBIN. (m)–(x) Detailed image information from enlarging (a)–(l) red block.

FIGURE 10. The visual comparison between image contrast enhancement results. (a) Original (b) HE (c) CLAHE (d) CVC (e) LDR (f) AGCWD (g) HMF (h)
LIME (i) NPEA (j) WVM (k) Zero-DCE (l) ICEBIN. (m)–(x) Detailed image information from enlarging (a)–(l) red block.

FIGURE 11. The visual comparison between image contrast enhancement results. (a) Original (b) HE (c) CLAHE (d) CVC (e) LDR (f) AGCWD (g) HMF (h)
LIME (i) NPEA (j) WVM (k) Zero-DCE (l) ICEBIN. (m)–(x) Detailed image information from enlarging (a)–(l) red block.

show it. Moreover, the flower pot located in the middle of
the enlarged Figs. 10(o)–(s) and 10(v) are invisible, and only

Figs. 10(n), 10(t)–(u) and 10(w) –(x) can show it. Although
HE and LIME can enhance the visibility of low-light images,
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they cause the cup too high brightness, as shown in themiddle
of Figs. 10(b) and 10(h). NPEA results in the amplified noise
in Fig. 10(u), and Zero-DCE has the loss of the original color
in Fig. 10(w). The result of WVM is shown in Fig. 10(j).
It can be seen that the content in the background has been
successfully restored, but the color of the rose is still very
dark. ICEBIN has satisfactory performance and can handle
low-light images with strong noise, as shown in Fig. 10(l).

Similarly, Figs. 11(c) and 11(e)–(g) are unable to clearly
show the painting of the dog on the right of the figure, but it
can be clearly seen in Figs. 11(b), 11(d), and 11(h)–(l). From
the enlarged images, the paintings of the dog are less visible
in Figs. 11(o) and 11(q)–(s). Figs. 11(n), 11(p), and 11(t)–(x)
show the pattern of the dog clearly. However, HE and NPEA
tend to enhance noise and produce many false minute details
as shown in Figs. 11(n) and 11(u). LIME over-enhances the
input image in Fig. 11(t), especially in areas with higher illu-
mination. Zero-DCE can enhance low-light and high-noise
images in more detail than state-of-the-art methods, but the
original color attribute cannot be maintained in the enhanced
image (e.g., the lamp in the middle of Fig. 11 (k)). Although
WVM can restore most of the content of the image in
Fig. 11(j), ICEBIN can restore the details more clearly than
the WVM by comparing Figs. 11(x) with 11(v). Overall,
ICEBIN achieves a good balance between detail enhance-
ment and noise suppression.

B. OBJECTIVE QUALITY ASSESSMENTS
In addition to subjective assessment, we also objectively
compare the proposed method with the state-of-the-art meth-
ods mentioned above. Since there is no objective standard
like the human visual system, seven objective indicators
widely used in visual quality metric are adopted, includ-
ing Blind/Referenceless Image Spatial Quality Evaluator
(BRISQUE) [55], Feature SIMilarity index (FSIM) [56],
Measure of Enhancement (EME) [57], Colorfulness-based
Patch-based Contrast Quality Index (CPCQI) [58], Natural-
ness Image Quality Evaluator (NIQE) [59], and Peak Signal-
to-Noise Ratio (PSNR) to evaluate the special characteristics
of enhanced images. BRISQUE measures the naturalness
of the image based on the measurement deviation from the
natural image model, which is based on natural scene sta-
tistical data. BRISQUE indicates the loss of naturalness of
the image that may be caused by distortion. The higher the
score is, the worse the image quality is. FSIM compares the
structural and feature similarity between the enhanced result
and the original image. EME is an image quality indicator
that is more in line with the human visual system. The larger
EME value corresponds to better image quality. The image
is divided into multiple sub-image blocks. The average ratio
of the maximum and minimum intensities in the image block
evaluates the effect of image enhancement. The higher the
enhancement is, the more obvious the enhancement effect
is. CPCQI is an extended version of PCQI, taking the influ-
ence of color into consideration. CPCQI evaluates the degree
of color distortion after enhancement by calculating the

TABLE 1. Objective quality assessments of enhanced results based on
different methods.

average intensity, gray level change and structural distortion
between the original image and the enhanced result. NIQE
evaluates image quality by measuring the distance between
model statistics extracted from natural images and statistics
of deformed images. NIQE works based on the quality per-
ception set of the Natural Scene Statistics model, which can
provide the perceived quality of a given image. PSNR is a
ratio between the maximum possible power of a signal and
the power of destructive noise that affects its accuracy. The
high PSNR score represents the effective reconstruction of
the image; the low the score represents the more serious of
the distortion after reconstruction.

Table 1 shows the results of the objective quality assess-
ment of seven objective indicators for the original image and
the images generated by nine contrast enhancement methods.
In the table, the result of objective analysis for each method
uses a number in brackets to indicate the ranking in the
objective analysis. The number 1 stands for the highest score
and number 11 for the lowest score. The final ranking score
for each method in the rightmost column is the sum of all
rankings.

It can be observed that, in terms of BRISQUE, the score
of ICEBIN is only slightly larger than that of LIME, but the
LIME result is excessively enhanced. For example, the color
of the toy on the left side of Fig. 10(t) is over-enhanced,
causing the color to become less visible. For NIQE, the
score of ICEBIN is slightly larger than those of LIME and
WVM, but the score is nearly similar. Also, ICEBIN has
better scores than WVM in all other objective quality assess-
ments. Moreover, it can be seen that the detailed processing
of ICEBIN is more obvious than that of WVM in compar-
ison with Figs. 6(v) and 6(x). EME divides the image into
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multiple blocks, calculates the score based on the minimum
andmaximum gray levels in each block, and takes the average
score to approximate the average contrast in the image. It
can be seen that HE, CLAHE, CVC, and LDR provide better
scores of EME. Unfortunately, compared with the original
image, the enhanced colors look unnatural, as illustrated in
the above section. It is worth noting that CPCQI will measure
the perceived distortion based on the average strength of
the local area, signal strength, signal structure, and color
saturation. ICEBIN achieves the highest CPCQI score, which
shows that ICEBIN achieves a good balance between detail
enhancement and artifact suppression compared with other
contrast enhancement methods. Among the evaluation meth-
ods of FSIM, the scores of LDR and HMF are relatively high.
However, the performance of the proposed method in CPCQI
is much higher than those of LDR and HMF, which means
that LDR and HMF have higher color distortion. Although
in PSNR, HE, CLAHE, LDR, HMF scores are higher than
ICEBIN. But from a subjective view, the image enhancement
effect of these four methods is not as good as ICEBIN.

BRISQUE and NIQE emphasize the naturalness of the
image; CPCQI emphasizes the color distortion of the image;
FSIM emphasizes the similarity of structure and feature of the
image; and so on. The results of the subjective and objective
experiments show that ICEBIN can effectively obtain the
visual characteristics of the target image of the natural scene,
suppress the interference and influence of useless informa-
tion, and map the visual characteristics information more
realistically. It should be noted that CLAHE has better image
enhancement effects than HE when processing low-contrast
images. It is worth noting that compared with the neural net-
work enhancement algorithm (Zero-DCE), ICEBIN in overall
performance (including subjective and objective comparison)
is better than Zero-DCE. The results show that although the
use of neural networks for image enhancement is popular
recently, ICEBIN performance is superior. While complet-
ing feature mapping, ICEBIN can effectively maintain the
original structure of the scene and achieve better subjective
and objective effects than the state-of-the-art feature map-
ping algorithms. It can be seen that our method (ICEBIN)
has a total score of 18, which is the highest-ranking among
all methods. However, objective evaluation methods do not
necessarily represent the quality of the image. Sometimes the
human eye must be used to assist in judging the quality of the
image.

C. TIME ASSESSMENTS
We also evaluate the average processing time of all meth-
ods mentioned above. The source code of state-of-the-art
methods can be found on the website of authors (provided
as Matlab code) and can be directly used for performance
comparison without any modification.

Matlab is used to evaluate processing time for fair perfor-
mance comparison. Since the conventional Retinex method
requires SVD calculation at each pixel position, it requires

TABLE 2. Compare the processing time (second) of traditional SVD and
ICEBIN induced norm.

TABLE 3. Compare the calculation time (second) of different methods.

more processing time than CVC, LDR, and LIME. In order to
improve the computation speed of the proposed algorithm and
to speed up the calculation, the induced norm approach is pro-
posed in this paper. In Table 2, we compare the performance
by using various common image sizes 8K (7, 680×4.320), 4K
(3, 840×2.160), Full HD (1, 920×1.080), HD (1, 280×720),
SD (720×480 pixels).

It can be seen from Table 2 that the proposed induced norm
can effectively shorten the calculation time. Among them,
the 8K image is used as the test image for the computation
time. The proposed method using the induced norm is about
339 times faster than the SVD and can effectively save the
calculation time.

Table 3 shows the average computing time for different
image sizes. The state-of-the-art methods, including HE,
CLAHE, CVC, LDR, AGCWD, HMF, LIME, NPEA,WVM,
and ICEBIN are listed in the horizontal row. It is noted that
since Zero-DCE is executed in a Python environment, it is
different from the execution environment of the other ten
methods. For a fair comparison, the execution time of Zero-
DCE is not listed in Table 3 for comparison. Different image
sizes and the average computation time of each method are
listed in the vertical columns. It can be seen from Table 3
that although the computation times of HE, LDR, AGCWD,
and HMF are shorter than that of ICEBIN, because their
algorithms are simple and the effects are limited. Overall,
both experiments of Subjective Comparisons or Objective
Quality Assessments show that the effects of the image con-
trast enhancement of the proposed method can achieve better
performance. NPEA not only tends to generate noise in the
image but also takes a long time for calculation. WVM has
the longest computation time in Table 3. In comparison,
the proposed method is approximately 118 times faster than
WVM. The proposed method not only obtains better results
in image enhancement but also has a better advantage under
the computation speed consideration.
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V. CONCLUSION
In this paper, a simple and effective image enhancement
method is proposed. The illumination of each pixel is esti-
mated by using an induced norm of a patch of the image.
The computation time can be significantly reduced. A novel
pre-gamma correction and a novel noise reduction method,
which are all based on the local patch of an image, are
proposed to improve the CLAHE processing and achieve a
better visual quality of the input image. A novel post-gamma
correction is proposed to slightly enhance the dark regions
of images and not to affect the brighter regions. With the
novel pre-gamma correction and the novel noise reduction
method, which are all based on the local patch of an image,
the local feature and naturalness of images can be preserved.
ICEBIN can automatically perform image enhancement for
all types of low dynamic range mages without presetting its
processing parameter values. Experimental image enhance-
ment results demonstrate that ICEBIN performs well com-
pared with other state-of-the-art methods. According to the
analysis of time consumption, ICEBIN can be implemented
in a mobile device with limited resources. ICEBIN is cur-
rently suitable to solve the problem of images with backlight,
cast shadows, uneven illumination, or low light but unable to
resolve haze images. Since de-haze algorithms are different
from our ICEBIN, we will study de-haze algorithms in future
work.
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