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ABSTRACT Multi-robot space exploration involves building a finite map utilizing a cluster of robots in
an obstacle cluttered environment. The uncertainties are minimized by assigning tasks among robots and
computing the optimum action. Such optimal trajectories are traditionally obtained utilizing deterministic or
metaheuristic techniques, with each having peculiar limitations. Recently, limited work with the sub-optimal
result has been done utilizing frameworks that utilize a blend of both techniques. This paper proposes a novel
framework which involves the integration of deterministic Coordinated Multi-Robot Exploration (CME) and
metaheuristic frequency modified Whale Optimization Algorithm (WOA) techniques, to perform search
exploration that imitates the predatory behavior of whales. The frequency is dynamically adjusted utilizing
a statistical objective function to tune exploitation and exploration operators. The proposed framework
involves a) determination of the cost and utility functional values around individual group members utilizing
deterministic CME technique, b) search space exploration to optimize and improve the overall solution
utilizing frequency modified whale metaheuristic approach. The effectiveness of the proposed Frequency
Modified Hybrid Whale Optimization Algorithm (FMH-WOA) is ascertained by training the multi-robotic
framework in different complexity environmental conditions. The results efficacy is then demonstrated by
comparing the results of the proposed methodology with those achieved from three other contemporary
optimization techniques namely CME-WOA, CME-GWO, and CME-SineCosine.

INDEX TERMS Multi robotic path planning, coordinated multi-robot exploration (CME), metaheuristic,
whale optimization algorithm (WOA), hybridization, CME-WOA, CME-GWO,CME-SineCosine.

I. INTRODUCTION

Mobile-robot space exploration utilizing cluster of robots
have a wide spectrum utilization ranging from transporta-
tion [1], healthcare [2], industry [3], rescue [4]-[6], to all
sort of Dull Dirty and Dangerous (DDD) missions [7]-[9].
Similar to Unmanned Aerial Vehicles (UAV) [10]-[14], their
applications on ground is increasing at unprecedented rate.
An important aspect of mobile robotics is the exploration
in an environment where multiple robots build up the finite
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map, without any prior knowledge of map layout or position
of obstacles. Exploration term in mobile robotics is defined
as the search process where the robots surf the entire area to
create a finite map in a minimum amount of time. Mobile
robots need to keep a track of which space/area has been
explored before so that they can create a global map and
coordinate their positions accordingly.

This exploration can be applied to both indoor and out-
door applications for the intended purpose without the aid
of human intervention or any supervision. When compared
to a single robot, a group of robots increases space coverage
and mitigate search and computation time [15]. However,
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the safety of robots and ensuring communication among
the robots, while maneuvering in free space is an important
feature in exploration. There are numerous maps available for
space configuration representation that helps in the selection
of algorithm. In the exploration process, space is represented
by occupancy grids where the cells in grids change the value
after every new position of the robot. The problem related
to uncertainty of grid occupancy is resolved using onboard
sensors. To determine the methodology to perform space
exploration for the generation of optimal trajectory is the most
critical part of such studies.

A. RELEVANT STUDIES

The optimization techniques utilized for the generation of
optimal paths for the multi-robot configuration can be deter-
ministic Coordinated Multi-Robot Exploration (CME) [16],
stochastic [17] or hybrid (utilizing both deterministic and
stochastic) [18] in nature. With each methodology having its
own merits and limitations, different researchers have utilized
either of these approaches intending to optimize the objective
function.

1) DETERMINISTIC CME

Deterministic CME algorithm [19] utilize the coordination
of multiple robots to explore the area employing centralized
[20] technique. In centralized exploration, all robots have a
common map and they all sense the search space simultane-
ously and interact with each other to share their progress. The
cost of traveling distance is computed locally together with
utility values and these values are updated in each iteration.
CME based algorithms have been vastly utilized in path
planning [10], [13], [21], [22] and product design [23], [24].

The search space of uncertainty is explored through sen-
sors, during which robots maximize the knowledge of the
area. It takes steps to reach the desired target by gaining
knowledge from the sensor to differentiate between occupied
and non-occupied spaces. The sensors have a certain range to
detect the area’s surroundings. This edge is called a frontier
and the algorithm is known as a frontier-based methodology
for exploration of autonomous robot [25]. The concept uti-
lizes the cost of utility and frontiers for the divergence of
a robot. The cost of traveling distance is computed locally
together with utility values and these values are updated in
each iteration.

Puig er al. [26] investigated deterministic optimization
for CME utilizing the K-means clustering process. This
allowed the robots to travel simultaneously yielding the
lowest variance of average and regional waiting time dur-
ing the path exploration. Benkrid and Achour [27] con-
figured multi-robot exploration by minimizing the energy
consumed by the robots. Similar work was performed by
Rappaport et al. [28], who investigated the multi-robot explo-
ration recharging process. Verbiest et al. [29] presented the
implementation of frontier-based exploration for building up
the map. The frontier points are defined as border points that
are calculated during navigation and mapping between the
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occupied (known) and non-occupied (unknown) spaces. The
proposed methodology was verified initially through simula-
tions and then configured for real-world scenarios utilizing
Real-Time Operating System (ROS) system.

Francisco et al. [30] proposed a frontier exploration
algorithm for simultaneous localization and mapping, with
an objective to eliminate frontier points from the map.
Clara Gomez et al. [31] proposed integration of frontier based
approach with a behavioral strategy to build a topological
map. Similarly, Gomez et al. [32] developed a frontier-based
exploration technique compatible with the ROS system for
analyzing path length and execution period.

From the cited papers, it is observed that all CME based
algorithms involve coordination amongst the robots and are
therefore greatly dependent on the relative distance amongst
the robots [33], [34]. If the distance among robots increases,
the communication link breaks up and the robots cannot
communicate instantly with each other. Under such cases,
the centralized CME approach does not guarantee definite
way-points in the map. This will affect the task assigned to
individual robots and will cause coordination break down
in case any of the robot(s) forgets the assignment tasks.
Moreover, CME is not efficient under all map conditions,
so there is no possible way to find an optimal solution except
if the entire map is changed which is not possible every time.

2) STOCHASTIC ALGORITHMS

Stochastic algorithms are bio-inspired algorithms that
have gained immense popularity recently, mainly due
to their computational efficiency for handling complex
problems [35]-[37]. Bio-inspired methodologies utilize dif-
ferent agents that work on nature-inspired behavior that
can be exploited and applied to an optimization problem in
different applications. These are aimed at finding the best
optimal solution until a stopping criterion is achieved, thus
making them a part of a stochastic global optimization group.
They are widely utilized in control theory [38], [39] and are
applied to a research field known as swarm robotics, where
a known number of robots are controlled in a real-world
environment in a coordinated way.

The bio-inspired computing is based on meta-heuristic
methods such as Grey Wolf Optimizer (GWO) [40], Whale
Optimization Algorithm (WOA) [41], Flower Pollination
Algorithm (FPA) [42], Genetic Algorithm (GA) [43],
Ant Colony Optimization (ACO) [44], and Particle Swarm
Optimization (PSO) [45], SineCosine algorithm [46] etc.
A detailed review on such algorithms can be found
in [47], [48].

GWO mimics the leadership hierarchy of grey wolves.
The leadership involves different wolves namely: alpha, beta,
delta, and omega which depends on three steps: hunting,
searching for prey, and attacking prey. FPA is a bio-inspired
technique that imitates the pollination behavior of flow-
ering plants: the process involves keeping alive the fittest
species alive through reproduction. A whale optimization
algorithm is a meta-heuristic optimization method, developed
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by Mirajalili ef al. [41]. A complete comprehensive review
on whale optimization and its applications are discussed
in [49]-[51]. The algorithm is inspired by the hunting behav-
ior of whales and many researchers utilized the WOA for the
single and multi-objective purpose for mobile robot naviga-
tion and exploration.

PSO is commonly used in numerous control systems
due to continuous upgrading of the velocity and position
of a particle swarm. Wang et al. [52] presented the modi-
fied version of the PSO algorithm, such as fractional order
RDPSO (FORDPSO), Darwinian PSO (DPSO), fuzzy adap-
tive (FORDPSO), and robotic DPSO (RDPSO). RDPSO and
FORDPSO are normally used for multi-robot exploration.
Dao et al. [53] utilized WOA to achieve multi-objective (path
smoothness and path distance) function for robot naviga-
tion. The target and start locations are known as the fitness
of WOA. The best global location was selected in each
iteration which creates waypoints for trajectory formation.
Simulation results showed the effectiveness of the proposed
algorithm as it efficiently helped the robot to reach the tar-
get location in minimum time. Chhillar et al. [54] utilizing
WOA proposed an alternative strategy by combining heuristic
and classical approaches. The proposed methodology was
verified through simulations. Nicola et al. [55] presented
the integration of Ant Colony Optimization technique with
Whale Optimization method for finding the optimal path for
a mobile robot by achieving multi objectives of a) finding the
optimal path, b) path smoothness. Kumar et al. [56] propose
the hybridization of advanced sine cosine algorithm (ASCA)
with advanced ant colony optimization algorithm (AACO) for
searching the optimal path. The method was implemented in
real-time with sensors, where the sensors detect the obstacles
and find the global best position and in the next phase,
the ACO algorithm is programmed in such a way that it
evaluates and selects the next best value. By following the
method robot is able to reach the target location. When the
proposed method is compared with contemporary algorithms
it has been found that the method performs exceptionally
well, which proofs the effectiveness of the method. Qingyong
Yang et al. [57] proposed the multigroup multistrategy SCA
algorithm (MMSCA) for capacitated vehicle routing problem
(CVRP). The numerical experimental results proofs the effi-
cacy of the proposed method.

From the literature review and the cited papers, it has been
observed that the conventional stochastic algorithms have rel-
atively low accuracy and convergence rate, which makes them
susceptible to fall into local optima problem easily [58]-[60].
Moreover, these bio-inspired algorithm involves the gener-
ation of non-unique solutions and therefore requires bench-
mark cases which unfortunately most optimization problems
do not have. Reluctantly, randomness in the results is encoun-
tered causing sub-optimal solutions. Although, the exist-
ing meta-heuristic techniques are available for single and
multi-robot exploration, however, they have been utilized
for single robot applications [53], [61], and their impact on
multi-robot configuration is yet to be ascertained. Therefore,
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stochastic based algorithms for multi-robot configurations,
which can generate unique solutions in a near real-time envi-
ronment is a potential area for research.

3) HYBRID ALGORITHMS

Hybrid algorithms for multi-robot involve utilization of both
deterministic CME and stochastic Bio-inspired techniques
to solve modal problems. They facilitate efficient way-point
generation in the map and achieve improvements in the results
that could be achieved from the utilization of individual
approaches.

Wang et al. [62] proposed the frontier-based method with
PSO and A* in two different stages. In the exploration pro-
cess, the frontier points are determined around the robot
and A* computes the shortest distance. The robot navi-
gates through corners and collects exploration information
and the position is updated using the PSO algorithm. The
PSO algorithm is used for different task assignments in a
cluttered environment, as mentioned in [26].

Nunzia Palmieri ez al. [63] presented the two meta-heuristic
approach and exploration process for mine disarming task
carried out by swarm robots. The primary objective of robots
is to work cooperatively to discover mines, disseminate the
information among robots, and cooperatively disarm the
mines. The objective also lies in the distributing regions
among robots to explore the space in a minimum amount
of time and collaboratively disarm the detected mines.
For this purpose author integrated the Firefly algorithm
(FIS-RR) and Ant-colony Optimization (ATS-RR) to achieve
exploration performed by robots. The performance evaluation
in terms of disarming the mines and exploring the space
was checked with Particle Swarm Optimization (PSO). The
obtained results proofs the proposed algorithm works better
in a complex environment.

S. Sharma et al. [64], utilized a nature-inspired algo-
rithm (NIA) and clustering-based distribution factor (CBDF)
to explore the unknown spaces. The entire map is divided
into exploration movements where robots acquire direction
through the CBDF algorithm. Three nature-inspired algo-
rithms (Bat algorithm (BA), PSO, Bacteria foraging (BFO))
were utilized and compared to determine the efficiency.

Faiza et al. [65] worked on the path planning for mobile
robotics utilizing an integration of bio-inspired Grey Wolf
Optimization algorithm with Particle Swarm Optimization
(PSO), together known as HPSO-GWO. Way-points were
generated for formulating a suitable and shortest trajectory
for navigation of mobile robot.

4) CRITICAL OBSERVATION

Based on our review of the work done in regards to space
exploration utilizing multi-robot configuration and the cited
papers, it can be noted that certain areas are not fully cov-
ered in the literature and require further investigation. There
has not been any conclusive study that formulates the CME
algorithm for multi-robot exploration. Moreover, the hybrid
algorithms formulated to date have not been fully optimized
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as certain limitations (area convergence, time complexity) are
yet to be curtailed. Integration of algorithms although resulted
in achieving a portion of intended results, but increased the
computational complexity, which ultimately affected systems
performance [66].

Meta-heuristic techniques such as Grey-wolf utilized in
many existing hybrid algorithms although increase the con-
vergence rate, however, the results might not be always
optimal. This increases the probability to get stuck in the
local/global optima problem. Furthermore, manual tuning
of parameters in a hybrid algorithm makes the objective
function more susceptible to slow convergence rate and low
precision [67]. It, therefore, becomes extremely difficult to
theoretically analyze the random decisions made by algo-
rithms and then to implement on objective functions [60],
[68]. Therefore there remains a need to explore hybrid
algorithms combining CME with meta-heuristic technique
to achieve optimal space convergence utilizing multi-robot
configuration.

B. PAPER CONTRIBUTION

In this paper, an optimal hybrid algorithm namely Fre-
quency Modified Hybrid Whale Optimization Algorithm
(FMH-WOA), comprising of deterministic CME and
meta-heuristic frequency modified WOA is proposed. The
modified WOA has numerous merits when it comes to imple-
mentation. The algorithm has lesser parameter involvement,
lesser memory requirements, a fast convergence rate due to
the continuous reduction of search space, and the involvement
of few judgment variables. Another advantage lies in avoiding
the local optima problem as it requires only 2 parameters to
be adjusted. Another added feature that makes WOA effective
compared to other popular swarm intelligence algorithms is
its hierarchical structure. The dominance hierarchy is formed
according to the goals defined in the objective function. The
objective function is classified into the cost function, evalu-
ated cost, and the fitness function. These factors summarize
how accurate the final result is compared to the given design
solution. Whether the best solution is defined to be optimal
among all available candidates, it should satisfy the fitness
function and the cost function that is regarded as interchange-
able functions of maximization and minimization. Realizing,
WOA as an emerging field with immense potentials and the
fact that no significant work has been done specifically in the
case of multi-robot configuration, the stated algorithm was
selected in this research.

Based upon the literature review and the cited papers,
to the very best of our knowledge, there has not been
any conclusive study that formulates the CME algorithm
for multi-robot exploration. This research presents the first
study to propose a methodology in which WOA and CME
are utilized in an integrated manner for a multi-robot
configuration. The proposed hybrid FMH-WOA algorithm is
further optimized by including a statistical frequency func-
tion. This function dynamically tunes the exploration and
exploitation parameters. CME being a deterministic method
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does not give full coverage of the map. The proposed algo-
rithm in the manuscript (FMH-WOA) is considered as a
variant of WOA because the governing equations utilized in
the proposed methodology are fundamentally the same as the
original WOA. The proposed algorithm in the manuscript
(FMH-WOA) is considered as a variant of WOA, because
the governing equations utilized in the proposed methodology
are fundamentally the same as original WOA. The utility
values of neighboring cells are initially evaluated and then
optimized to find optimal utility values corresponding to the
best fitness for each agent. The essence of maximizing the
utility is that initially, each cell of the whole map had identical
values. While the robots search, the utilities of their frontier
cells decreases (as defined in equation 5 of the article). The
robots are programmed to decline their interest to visit the
cells having low utility values. This is the reason why the
robots try to search for new areas, which they have not yet
explored to maximize utility values. This ensures that the best
fitness for each agent is selected from every iteration when all
robots are coordinating to surf the area. The initially com-
puted guess trajectories achieved through the deterministic
CME technique are refined for evaluating the environment
and successful coordination of robots for space exploration.
Integrating the results with the frequency modified WOA
algorithm, the probabilistic variation bounds on CME are
determined. This provided new values for the desired task
to explore the space for complete coverage. The efficacy
of the results achieved through the proposed algorithm is
then demonstrated by comparing the results with other hybrid
techniques which involved the integration of CME with grey
wolf algorithm, CME with conventional whale algorithm, and
CME with SineCosine algorithm.

Il. PROBLEM FORMULATION AND PROPOSED
ALGORITHM

This research demonstrates the implementation of a unified
framework which integrates deterministic CME and meta-
heuristic frequency modified WOA, together referred to as
Stochastic Exploration. The whole map is divided into dis-
tant grids. The precedence of surrounding cells, their utility,
and cost values around the robots, is initially evaluated utiliz-
ing the CME technique. The path is then optimized utilizing
a frequency modified WOA algorithm, thereby improving
the overall solution. A detailed description and implementa-
tion of both techniques for the exploration of a map for the
multi-robot are elaborated in this section.

A. COORDINATED MULTI-ROBOT EXPLORATION

CME utilizes the occupancy grid mapping to represent the
environment [69], [70]. The sensor view of 360° with the
initial position is known to the robot. The robot is located
in an indoor environment and does not have any information
related to the environment. Each cell of such an occupancy
grid map stores certain numerical values demonstrating the
previous probability that the grid cell is taken by an obstacle.
In real-time, the sensor range is limited to cover the entire area
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for planning an optimal path for the robot. When exploring
the unknown area, the most important task is to know about
Frontier cells [71]. A frontier cell is defined as the explored
cell that is an immediate neighbor of an unexplored cell.
For every robot, the cost of a cell is directly proportional
to the total distance from the robot to that cell. The sensor
view observation of mobile robot covering cells is depicted
in Figure 1. The objective function is formulated as follows:

[

V' vs v7
Cost Cost Cost

V2 vi Ve
Cost Cost e
V3 v4 V5
Cost Cost Cost

FIGURE 1. Demonstration of sensor observation in the occupancy grid
map: a) the sensor shadows eight neighbor cells, b) the neighbor cells
have the name V1, V2, V3, V4, V5, V6, V7, V8, V9 and cost, c) the costs V9,
V2, V3 do not have the intersecting sensor observations.

1) OBJECTIVE FUNCTION

The popular deterministic approach is utilized for reach-
ing the next frontier point by calculating the optimal path
from the current robot position to the next cell is utilized.
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In 2-dimensional occupancy grid map, the tuple (x,y) corre-
sponds to the xy, and yy, cell in the direction of x and y axis.
The cost of these grid cells (x,y) (containing robot position)
is calculated utilizing occupancy probability, Euclidean dis-
tance, and the sensor observation. They can be found out in
two steps, as depicted in equations 1, 2 and 4.

1) Initialization: Initialize O grid cell containing robot

location, otherwise oco.

Vx,y = (1)

0, if (x, y)isrobotcurrentposition
00, otherwise

2) Loop: For the grid cells (x,y), perform

Vx,y = min{vx+Ax,y+Ay + \/ sz =+ Ay2 (2)

P(occyiax.y + Ay)} 3)

Vey = min{\/ Ax2 + Ay2.P(occeinr, y + Ay} (4)

where,Ax, Ay e [—1,0, 1] A P(occx+ax, Y+AY)E[O, ocCrmax]
and occygy 1s the maximum probability value of the grid cell.

According to the above equations, if the grid cell has been
explored before for checking the availability of obstacles,
then the cost of the grid cell in the last step is appended to
the cost in the new position. If the beam is opened to the grid
cell primarily, then the grid cell is designated as a frontier cell
eliminating the backward costs in the previous steps.

The occupancy probability of grid cells are as follows:

o The occupancy probability 1 represents that the grid cell

is occupied by the obstacle.

« The occupancy probability 0.5, shows the uncertainty of

an unknown/unexplored grid cell.

o The occupancy probability 0, shows the certainty of a

grid cell that it is not occupied by an obstacle.

The occupancy values of the grid cells decline when the
sensor beam touches the grid cell at a certain distance (refer
to equation 2 of [34]). For a single robot, searching the
minimum cost for determining the next position is easy,
however, in multi-robot, a coordinated integration is required
for determining the next position because every robot move
is linked with the other robots. For this, CME (Coordinated
Multi-Robot Exploration) with the notion of utility values is
utilized for distributing tasks among robots. The purpose is to
mitigate the cost among neighboring cells to find the optimal
next best position of the robot.

2) MAXIMIZING THE UTILITY

Maximizing the utility values is defined as: in the beginning,
every grid cell has the same utility values in the map. When
the robots surf the map, the utility values of their frontier cell
decreases, refer to equation 5. The robots only visit those grid
cells having higher utility values to explore new positions in
a map to maximize utility values.

U = U, — ZP() occl , — oce 1) )

The grid cell utility value Ujgc is the state of previ-
ous modification UJg_C 1~ This value is modified during the
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FIGURE 2. Coordinated Multi-Robot Exploration.

exploration phase done by the robots and has a value equal
to the probability occupancy of the chosen selected grid cell
minus the robot’s current position. This maximum value is
selected using equation 6.

(i, g¢) = max(US* — Vi) (6)

Towards the collaborative cooperation, all the robots start
their journey earliest for their sensors scan reach the first
iteration Figure 2. This allows the divergence in search space
by decreasing the utilities of chosen targets. In Figure 2,
the search space is 20m x 20m in size with ray length equals
to 1.5m. The primarily presented research on CME demon-
strates fast exploration for a multi-robot system. Nonethe-
less, some room for improvement was found, firstly, the cost
parameters are mitigated if there is more than one identical
value, then the last value is selected, secondly, if the utility
and cost values are the same, then the robot gets stuck at one
position. To avoid this problem, a solution is needed for the
robot to search unexplored areas.

B. FREQUENCY MODIFIED WHALE OPTIMIZATION
ALGORITHM (FMH-WOA)
The conceptual framework of WOA is as follows:-

D =|C.X*(1)—X(1)| )
X(t+1)=|X(t) — A.D| ®)
A=C =2%rand() )

where t is nu{nber of current iterations, C = [2; rand ()]
and A = [2a * rand() — a] are coefficient vectors, X* is the
position vector of best solution of the prey, X is the position
vector, the values of a linearly decreased from 2 to 0 during
iteration, and rand() are random numbers in the range [0,1].
By adjusting the values of A and C vectors, suitable places
around the best agent can be found out using the current
position.

The humpback whales swim around the prey within the
shrinking circle in a spiral shape. For modeling this simul-
taneous behavior, there is a probability of 50% to choose
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Itern = 18
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between either spiral shape model or either shrinking encir-
cling model for updating the position of whales during the
optimization problem. The mathematical model can be writ-
ten as:

- X*(t) — A.D,

ifp<0.5
Xit1 P

R 7 . (10)
D'e” cos2nl) + X*(t), ifp>0.5

where p is a random number defining the shape of a log-
arithmic circle. A are the coefficient vectors with random
values between 1 and -1, forcing search agents to move away
from prey and a linearly decrease from 2 to 0 to enforce
exploitation and exploration. If | A > 1 | enforces the
exploitation and perform global search, mathematically can
be found using equations 11 & 12, and if | A<1 | than half
of the iterations are dedicated to exploitation. So A is utilized
for a transition between exploration and exploitation.

D=|Crand — X | (11)
X(t + 1) = rand — AD (12)

The objective of attacking and killing prey for whales in
nature has high-efficient optimization. The WOA has numer-
ous merits when it comes to its implementation. The only
disadvantage this algorithm has, that in unimodal problems,
in the beginning, it hasten towards finding the optimal solu-
tion but eventually slows down mainly due to the extensive
diversity issue. For speedy convenience of the audience,
the conventional WOA technique is depicted in Algorithm 1.

WOA’s performance is compared to different population-
based algorithms utilizing benchmark functions on Table 2,
Table 3, Table 4 in the original paper [41]. The fundamental
aim lies in killing the prey, which is related to its life reduction
fmin by whales attacking the prey. Table 2 depicts a scenario
where 30 whales individually attack the prey one after the
other. The finin will be zero when the last whale kills the prey.
In Tables 3 and 4, whales attack the prey collectively, and any
injury dealt by the whales on the prey varies. The negative
values depict the energy/power is wasted for killing the prey
and a value greater than zero indicates that the prey is still
alive.
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We tested the WOA on unimodal function fl from
Table 2 [41] (sphere function). The convergence rate is
fast during initial iterations, depicted in simulation run,
(refer Figure 3(a),(b),(c)). The 2-d space is considered with
5 x 5 bounds, 20 iterations are required for 10 population size
to reach the optimal zero solution. The leader whale trend is
shown in Figure 3(d).

Algorithm 1 Pseudo Code for WOA
1: Initialize whale population X; (i=1,2,3...n)
2: Calculate fitness value of each search agent and find best
search agent X*

3: while t < maximum number of iterations do
4. for each search agent do

5 if p<0.5 then

6: if | A < 1|then

7 X(t+1)=C*X* —AD

8 elseif | A > 1 | then

9 X(t+ 1) = Xyana — A.D
10 end if
11: else if p>0.5 then
12: Xt+1) =5>x<epr'l * cos2ml) + X*(¢)
13: end if

14:  end for
Evaluate fitness of X (¢ 4+ 1) and update X*
15: end while

C. INTEGRATION OF CME WITH FREQUENCY

MODIFIED WOA

In this subsection, the hierarchy of Frequency Modified WOA
integrated with CME is presented. The conventional whale
algorithm is modified to include a frequency-based parameter
for efficient map exploration. Instead of using constant values
for the parameters A & C, they are configured as a statistical
function. Frequency as a parameter is added for optimum tun-
ing of the function values for the exploration and exploitation
phase. Depending on the control parameters involved, the best
position of all robots is defined. The algorithm generates
certain random parameters for determining the maximum
positions of the robot that alters the order. This stochastic
approach works without a priori information about space that
needs to be surfed to find the solutions.

Algorithm 2 explains the proposed hybrid exploration. The
utility value is kept as 1. The robot surrounding sensory
window is divided into eight vector cells, V., where V. is
Vigysoonnn. , V8. These cells are the new candidate’s
positions for the robot. The stochastic technique computes
the cost and minuses the utilities from the cost for the eight
cells using equation 6. The meta-heuristic optimizer then
calculates the utility value for leader whale after vetting the
candidates with priorities. These priorities changes due to
f1 and f2, refer to step 8 and the occupancy probability values
of the dominated grid cells. fj,.x is a dynamic parametric
value assigned to the whales when they have to attack the prey
while whales will get f,,,;, value when they kill all the preys.
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FIGURE 3. WOA performance that calculates the cost using sphere
function in iteration 1 (a), in iteration 1 (b), and in iteration 2 (c). and in
iteration 20, (d) The leader whale trajectory in the search of the optimal
solution. Population = 10. The leader whale in iteration 1 is 2.6349,
iteration 2 is 1.7958, and iteration 20 is 0.093259. The runtime

of 20 iterations is 2369.618595 sec.

The numeric ranges for this parameter is f min = 0 &fmax =
2. In the proposed algorithm, when the entire space has been
surfed the frequency function tries to converge due to the
presence of exponential function.

The hunting operators for the surrounding environment are
defined by equation 13 and 14.

Dleaa’,i = lfl(i)-Pleaa’,i(OCCx+Ax,y+Ay) - Pi(occx+Ax,y+Ay)|
(13)
X1,i = Pleaa,i(occyiax,y+ay) — F2().Dieaa,i (14)

The next best robot position X(t+1) is automatically fed to
the best whale, designated as leader whale and the maximum
value is assigned to that whale. So the utility values of neigh-
bor cells are reduced by equation 5. For the next iteration,
new random values through modified frequency parameters
are generated.

The value of P decides the model shape. Humpback whales
encircle their prey based on two strategies: (i) they make a
spiral shape, (ii) they make shrinking encircle. There is a 50%
probability for a whale to choose either a spiral shape model
or a shrinking encircling model for updating its position dur-
ing the optimization problem. The parameter A in the original
WOA is changed with statistical frequency function (refer to
algorithm 2, step 8, the description can be found in section III,
subsection C, para 2). The FMH-WOA continuously updates
the next best whale value during the iteration. The costs and
utilities of cells around a robot provides knowledge over each
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Algorithm 2 Coordinated Multi-Robot Exploration With
WO
1: Initialize the total number of robots nRbt, initial posi-
tion (Sp) and iterations (iter), sensor range (SR), fmin=0,
fmax=2
Utility value = 1
while t < iter do
for all nRbt do
Set coordinates of Vc
Calculate cost of V¢
Perform subtraction, UJ{:’C and Vc

NN RN

8: Adjust the frequency function (f 1 = fimin+-(fmax —

fmin) x exp(t * rand())), (f2 = (fmax — fmin) %
exp(t % rand () —fmax), T =0.01

9: Find best whale using step 7 (refer to, algo 1)
10: Find leader whale from step 9(refer to, algo 1)
11: Find X(t+1) i.e. distance to leader whale
12: Change robot position X(t+1)

13: Reduce the utility value U

14:  end for
Evaluate Frequency function ’f’
15: end while

robot step. The statistical frequency function of FMH-WOA
selects the best whales. Then, this function obliges the robot
to move according to the best cell value that is formulated
from the occupancy probability. For the next best solution and
to determine the next move of the robot, FMH-WOA is used.

It remains to mention that the control parameter utilized
in CME-WOA and CME-GWO algorithms are A & C and
they drive the algorithm. Based on these values the algorithms
search for their prey. These parameters linearly decrease
from 2 to 0, which demonstrates when to stop the hunting.
In the proposed algorithm FMH-WOA both these control
parameters are modified and a statistical frequency-based
function is introduced to dynamically cater to the changing
requirements. The tuned value of these statistical function
giving the most optimal values are mentioned in Algorithm 2
(step 8).

The unexplored areas in the map have greater utility value,
those areas than those of explored cells. When the cost of
explored cells is subtracted from the utility values of unex-
plored cells, the maximum value becomes more attractive
for the next robot position. In the proposed hybrid stochastic
method the hierarchical order of whales is set by the statistical
frequency parameter.

Ill. RESULTS AND DISCUSSION

In this section, we present the results for the proposed hybrid
multi-coordinated exploration based on frequency modified
WOA. Different complexity area maps are utilized to assess
the algorithm performance. The map complexity is varied by
adding obstacles and their relative orientation.
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For comparison purposes, the dimensions of all the maps
are kept constant at 20 x 20m. In the maps, the black
occupied area shows the presence of an obstacle and the
white area shows the explored area. Furthermore, the maps
are divided into sections namely 0-40%, 40-75% and
75-100%, according to the area explored by the robots.
The efficacy of Frequency modified hybrid WOA
(FMH-WOA) is subsequently validated on different com-
plexity areas ranging from normal to highly dense & cluttered
conditions. To demonstrate the improvements achieved, three
other hybrid algorithms namely a) deterministic CME com-
bined with meta-heuristic conventional WOA (CME-WOA)
and b) deterministic CME combined with meta-heuristic
Grey Wolf Optimization (CME-GWO) and c¢) deterministic
CME combined with meta-heuristic conventional SineCo-
sine (CME-SineCosine) is then implemented under similar
conditions. The results of FMH-WOA are then compared to
those of CME-WOA, CME-GWO, and CME-SineCosine to
analyze the potential benefits.

The robot’s position on the map is considered arbitrary.
So the primary principle is to take care of the full map to be
fully explored. Equation 15 is used for computing the total
explored grid cells (T) in percentage form:

Tomlunexplored - Tomlexplored x
Tomlunexplored

oc = 100 (15)

Based on this parameter, an assessment of the area being
explored by the multi-robot configuration is being made.
It can have the best value of 1 which represents 100% area
being explored and the minimum value of zero which corre-
sponds to no area being explored. Also, Total,pexpiorea is the
total unexplored area having some utility value that depicts
the area free from obstacles, while Totalexpioreq is the total
explored area. Comparison between different methods is done
by computing the T, value at the end of the simulation.
The parameters set include; the number of iterations, map
size, obstacles, sensor range, number of robots, and the start
position of the robot.

A. NOMINAL COMPLEXITY MAP

Figure 4 depicts implementation of FMH-WOA in an area
with relatively less number of obstacles. Firstly, the algo-
rithm is implemented with no obstacle (as referenced
in Figure 4(a), 4(b), 4(c)), 4(d)) and then obstacles are intro-
duced (refer Figure 4(e), 4(f), 4(g)), 4(h)).

Use of a hybrid strategy in which the addition of random
weights in utility value forces the robots to predict the next
position often leads to obstacle collision. This problem arises
when the robot is occupied by the same utility values or/and
occupied by the obstacle from the neighboring cell. Figure 4
demonstrate a similar situation, however, the random param-
eters A and C of the FMH-WOA algorithm helps in finding
the new position for the robot due to producing continuously
random values. In our proposed methodology, the introduced
statistical function for tuning modal parameters fastened the
search process for identifying the new position for the robot.
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(a) Implementation of FMH-
WOA algorithm in obstacle
free environment

(¢) Implementation of CME-
GWO algorithmin obstacle

free environment

(b)  Implementation  of
CME-WOA algorithm in
obstacle free environment

XX KKK KK Ay
XK KX KKK XXX
KK KR KK KA KK
KK XK K HH KX
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- Ea¥ x
KRR % )% %
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(d)  Implementation  of
CME-SineCosine algorithm
in obstacle free environment

(e) Implementation of FMH-
WOA algorithm in obstacle
environment

(g) Implementation of CME-
GWO algorithm in obstacle

environment

(f) Implementation of CME-
WOA algorithm in obstacle

environment

(h)  Implementation  of
CME-SineCosine in obstacle
environment

FIGURE 4. Environment exploration by FMH-WOA and its comparison
with CME-WOA, CME-GWO and CME-SineCosine algorithms: Nominal

complexity map.

It is evident that a total of 98.3% and 97.1% area has been

surfed 4 (a) & (d) for the two cases respectively.

The obtained results from FMH-WOA depicts the model
effectivity and viability. It is also observed that if the number
of iterations is increased to 120 or 150, then the proposed
method produces even better results. The efficacy of the
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results are then compared with those achieved from CME-
WOA (refer Figure 4)(b) & 4(f) and CME-GWO (refer
Figure 4)(c) & 4(g) and CME-SineCosine (refer Figure 4)(d)
& 4(h). It is evident from the referred figures that the
proposed methodology Figure (4)(a) & (e) produces better
results than all contemporary methodologies. The algorithm
is more efficient in exploring the area, consumes less energy,
and requires the least amount of time for space exploration.

The trade-off is often observed in such scenarios where the
computational time of the algorithm gets affected by one or
more parameters when we balance two objectives together but
this trade-off can be neglected when certain/desired objec-
tives are fulfilled.

B. MID-RANGE COMPLEXITY MAP

Figure 5 depicts moderately cluttered obstacle environment
in which the performance of the proposed FMH-WOA algo-
rithm is evaluated. The efficacy of these results obtained from
proposed algorithm are then compared with CME-WOA
(refer Figure 6) and CME-GWO (refer Figure 7) and
CME-SineCosie (refer Figure 8).

(c) Map 3= 92.724%

(d) Map 4 = 98.97%

FIGURE 5. Implementation of FMH-WOA algorithm: Mid range complexity
map.

It is evident from the referred figures that the FMH-WOA
produces results that are better than all the contemporary
techniques. The algorithm is more efficient in exploring the
area, consumes less energy, and requires the least amount of
time for space exploration. It can be seen that the proposed
methodology fasten the search process for identifying the
new position for the robot. FMH-WOA surfs Map 1 having
2 barriers and a tunnel obstacle (at lower left corner) with the
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(a) Map 1= 72.56%

(c) Map 3= 53.48% (d) Map 4 = 67.89%

FIGURE 6. Implementation of CME-WOA algorithm: Mid range complexity
map.

o
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o
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(c) Map 3= 91.45% (d) Map 4 = 90.06%

FIGURE 7. Implementation of CME-GWO algorithm: Mid range complexity
map.

efficacy of 98.72%. Similarly, for Maps 2,3, and 4, the area
coverage is 98.95%, 92.72%, and 98.97% respectively.

The proposed algorithm demonstrated an inherent capabil-
ity to move around corners without getting stuck. When the
same scenario was applied on CME-WOA, CME-GWO, and
CME-SineCosine, all the algorithms did not surf the corner.
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(c) Map 3= 69.41% (d) Map 4= 58.23%

FIGURE 8. Implementation of CME-SineCosine algorithm: Mid range
complexity map.

Moreover, they also got stuck for which multiple simulation
runs have to be performed (refer map 1 of Figure 6 & 7). The
time complexity for the proposed algorithm and contempo-
rary algorithms are also considered (refer to Table 1). The
longer period does not affect the efficiency of the algorithm
because the primary objective of the proposed algorithm
involves map coverage utilizing the coordination of robots.

C. DENSE AND CLUTTERED ENVIRONMENT

The attractive feature of a robot is its maneuverability in
a highly crowded environment. For single robot configu-
ration, it is relatively easy as compared to multiple robot
configurations especially when their motion is coordinated
with each other. The chances to get stuck at any point and
being hit by the obstacle or inability to avoid obstacle makes
this whole task much challenging. When the proposed algo-
rithm is tested in a highly dense and crowded environment,
the obtained results are astonishing. This can be easily visu-
alized from Figure 9. The area coverage of Maps 5 and 6
are 94.56% and 98.79% respectively, which elucidates the
effectiveness of the proposed algorithm.

To compare the results, the same map was explored
employing the other three techniques CME-WOA (refer
Figure 10) and CME-GWO (refer Figure 11) and CME-
SineCosine (refer Figure 12). The efficacy of the map in all
these cases greatly depended on the simulation runs. It is
also observed that for the proposed FMH-WOA, the sim-
ulation runs were minimum as compared to CME-WOA,
CME-GWO, and CME-SineCosine. e.g to fully explore Map
No 5, FMH-WOA needed a maximum of 2 runs, whereas
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TABLE 1. Summary of Simulation runs required for successful implementation of all algorithms.

Map No FMH—WOA . CME—WOA _ CME—GWO . CME—SiI}eCosine .
Explored Failed Time Explored Failed Time Explored Failed Time Explored  Failed Time
Area% Run Con- Area%  Run Con- Area%  Run Con- Area% Run Con-
sumed sumed sumed sumed
(m) (m) (m) (m)
Map1l 98.72% O 2.023 72.56% 6 3.539 82.08% 7 2.804 65.31% 6 4.589
Map 2 98.95% O 2.876 85.79% 2 3.945 95.65% 9 2.765 57.73% 5 3.689
Map3 92.72% 0 2.839 53.48% 2 2.924 91.45% 3 2.486 69.41% 8 4.214
Map 4 98.97% 1 2.392 67.89% 5 2.758 90.06% 6 2.559 58.23% 8 3.011
Map 5 94.56% 2 2.536 59.65% 8 2.755 88.43% 1 4.002 45.75% 9 4.586
Map 6 98.79% 1 2.878 66.5% 4 2.527 92.89% 6 3.838 55.36% 7 4.998

(a) Map 5= 94.56% (b) Map 6= 98.79%

FIGURE 9. Implementation of FMH-WOA algorithm: Dense & cluttered
environment.

Iteration = 100

[\ elole sleleleloleletols]

X [meters]

(b) Map 6: 66.5%

(a) Map 5: 59.65%

FIGURE 10. Implementation of CME-WOA algorithm: Dense & cluttered
environment.

CME-WOA, CME-GWO, and CME-SineCosine needed 8,
11, and 9 runs respectively.

D. SUMMARY OF RESULTS

The entire results of section III are summarized and collected
in Table 1 for the speedy reference of the audience. In Table 1,
all conducted comparisons among the proposed FMH-WOA
algorithm and the referenced algorithms CME-WOA,
CME-GWO and CME-SineCosine are presented. Also,
the table references the figures, where the simulations have
been depicted. It is noticeable, that FMH-WOA results
for space exploration show greater space coverage as com-
pared to the other algorithms. Moreover proposed algo-
rithm requires a lesser number of trial runs for simulation
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(a) Map 5= 88.43% (b) Map 6= 92.89%

FIGURE 11. Implementation of CME-GWO algorithm: Dense & cluttered
environment.

(a) Map 5= 45.75%

(b) Map 6= 55.36%

FIGURE 12. Implementation of CME-Sine-Cosine algorithm: Dense &
cluttered environment.

whereas the CME-WOA, CME-GWO and CME-SineCosine
require numerous attempts for space exploration. Remark-
ably, the proposed FMH-WOA is superior, when compared
to all the other algorithms in every single result.

Time complexity is another measuring parameter of such
algorithms that defines their efficiency. The primary objective
of any algorithm is to complete the desired task fully in
minimum time. An algorithm, therefore, taking lesser time
is considered energy efficient. To evaluate the same aspect,
the time complexity for the proposed algorithm and three
contemporary algorithms is computed and the results are
summarized in Table 1. As evident from the results, the pro-
posed algorithm is computationally effective as it takes lesser
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time to maximally surf the entire area. All three contemporary
algorithms take a much longer time for area exploration and
additionally do not fully explore the space. Another promi-
nent characteristic of the proposed FMH-WOA is that it takes
lesser simulation runs for execution in comparison with the
other three algorithms which need much more simulation
runs for the complete execution.

IV. CONCLUSION

The study formulates the exploration of unknown spaces
in an environment by robot motion with sensor coverage.
An integrated approach of FMH-WOA for multi-robot
exploration was presented which combines the deterministic
CME and bio-inspired WOA techniques. To further opti-
mize the results, the random parameters involved in WOA
were modified by adding the Frequency modified function.
This statistical parameter facilitated in speedy convergence
rate. Through simulations, it was demonstrated that the
proposed algorithm works efficiently in all environmental
conditions.

The results achieved were then compared with three
contemporary techniques CME-WOA, CME-GWO and
CME-SineCosine. As demonstrated in Table 1, the proposed
FMH-WOA algorithm depicted promising results, which
were superior to the contemporary techniques in every single
aspect. Space exploration showed enhanced area coverage
with a lesser number of trial runs for simulation with the
least time required for execution. From application perspec-
tive, the proposed algorithm will have widespread utility in
operations where human presence is considered dangerous or
undesirable.

It is imperative that the investigation performed in this
study for multi-robot utilization will serve as a baseline that
supports the idea of integration of deterministic CME based
approach with powerful bio-inspired WOA technique. This
shall open a new era for research, as the distinct advantages
of both deterministic and bio-inspired techniques can now
be integrated into a single framework. Studies can then be
performed to integrate other bio-inspired techniques with
deterministic CME based algorithm.
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