
Received January 18, 2021, accepted January 28, 2021, date of publication February 1, 2021, date of current version February 9, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3055939

SS-SF: Piecewise 3D Scene Flow Estimation
With Semantic Segmentation
CHENG FENG 1, LONG MA 1, CONGXUAN ZHANG 1,2, (Member, IEEE),
ZHEN CHEN 1, LIYUE GE 1, AND SHAOFENG JIANG 1
1Key Laboratory of Nondestructive Testing, Ministry of Education, Nanchang Hangkong University, Nanchang 330063, China
2Institute of Automation, Chinese Academy of Sciences, Beijing 100000, China

Corresponding author: Congxuan Zhang (zcxdsg@163.com)

This work was supported in part by the National Key Research and Development Program of China under Grant 2020YFC2003800; in part
by the National Natural Science Foundation of China under Grant 61772255, Grant 61866026, and Grant 61866025; in part by the
Advantage Subject Team Project of Jiangxi Province under Grant 20165BCB19007; in part by the Outstanding Young Talents Program of
Jiangxi Province under Grant 20192BCB23011; in part by the National Natural Science Foundation of Jiangxi Province under
Grant 20202ACB214007; in part by the Aeronautical Science Foundation of China under Grant 2018ZC56008; in part by the China
Postdoctoral Science Foundation under Grant 2019M650894; and in part by the Innovation Fund Designated for Graduate Students of
Nanchang Hangkong University under Grant YC2019038 and Grant YC2020-S525.

ABSTRACT In order to address the issue of edge-blurring and improve the accuracy and robustness of
scene flow estimation under motion occlusions, we in this article propose a piecewise 3D scene flow
estimation approach with semantic segmentation, named SS-SF. First, we utilize the semantic optical flow
to initialize the 3D plane and its rigid motion parameters, and then produce the initial mappings of pixel-
to-segment and segment-to-plane of the input left and right image sequences. Second, we plan a novel energy
function to optimize the initial mappings by using a semantic segmentation constraint term to regularize
the classical scene flow model, which the optimized mappings are employed to update the assignment and
motion parameters of each pixel. Third, we adopt the semantic label to extract the occlusion pixels and
exploit an occlusion handling constraint to enhance the robustness of the scene flow estimation. Finally,
we compare the proposed SS-SF model with several state-of-the-art approaches by using the KITTI and
MPI-Sintel databases. The experimental results demonstrate that the proposed method has the advanced
accuracy and robustness in scene flow estimation, especially owns the capacities of edge-preserving and
occlusion handling.

INDEX TERMS Scene flow, optical flow, piece rigid, semantic segmentation, edge-preserving, occlusion
handling.

I. INTRODUCTION
Dense motion estimation from consecutive frames is a focus
of research in image processing and computer vision, with
broad applications in human posture estimation and recogni-
tion [1], moving target segmentation and tracking [2], obsta-
cle detection and identification [3], foreground prediction
and navigation [4], facial expression recognition [5], video
deblurring and coding [6], and many other fields [7], [8].

As the 3D extension of 2D optical flow, the scene
flow corresponding to a dynamic scene is usually defined
as a dense representation of the 3D motion field and
shape structure [9], [10]. Thus, scene flow estimation can

The associate editor coordinating the review of this manuscript and
approving it for publication was Hongjun Su.

simultaneously recover dense 3D motion and geometry
from stereoscopic image sequences, which generalizes the
disparity and 2D optical flow computation. In spite of the
fact that optical flow estimation has been rapidly advanced
over the years, the progress in scene flow estimation has
lacked significant achievements. The scene flow has many
similarities with optical flow including constant assumptions,
objective function and numerical computation scheme. These
commonalities lead to the difficulties faced by the scene flow
estimation, which are similar with the challenges for optical
flow computation, such as illumination changing [11], large
displacement [12] and motion occlusion [13].

In contrast to the classical scene flow approaches,
the piecewise rigid scene flow method estimates the dense
flow field by modeling the scene as a collection of planar

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 22745

https://orcid.org/0000-0001-5941-1240
https://orcid.org/0000-0001-9211-1549
https://orcid.org/0000-0003-1356-1205
https://orcid.org/0000-0003-1020-0615
https://orcid.org/0000-0003-1102-1053
https://orcid.org/0000-0002-0550-9565


C. Feng et al.: SS-SF: Piecewise 3D Scene Flow Estimation With Semantic Segmentation

regions, which is robust to the motion occlusion [14]–[16].
However, the existing piecewise scene flow approaches
may cause the issue of edge-blurring around image and
motion boundaries because these models only use a random
superpixel segmentation scheme to initialize the motion
parameters and ignore the boundary differences of various
objectives.

To address the abovementioned issue of edge-blurring and
ensure the accuracy and robustness of scene flow estimation
under motion occlusions, we present a piecewise rigid scene
flow estimation with semantic segmentation optimization,
named SS-SF. The experimental results indicate that the
proposed method has high accuracy and good robustness
in scene flow estimation, especially owns the benefits of
edge-preserving and occlusion handling. Our main contribu-
tions are summarized in the following.

• First, we explore a semantic segmentation-based ini-
tialization framework of 3D plane and rigid motion
parameters, which the proposed initialization scheme
with semantic information is able to correct the initial
assignment of pixels near image and motion boundaries.

• Second, we construct a novel energy function to opti-
mize the mappings of pixel-to-segment and segment-
to-plane by incorporating a semantic segmentation
constraint into the classical piecewise scene flowmodel.
The updated mappings are utilized to further optimize
the pixel assignments and motion parameters, which
promote the scene flow estimation to preserve image and
motion boundaries.

• Third, we exploit an occlusion handling constraint by
using the semantic labels of pixels to cope with the
motion occlusions between the consecutive frames,
by which the presented occlusion handling scheme
can effectively develop the robustness of scene flow
estimation in regions of occlusions.

The remainder of this article is organized as in the following.
In section II, we reviewed the progress of optical flow
and scene flow estimation. We then introduced a typical
piecewise rigid scene flow estimation model and discussed
the limitations of the traditional methods in section III.
Section IV is devoted to describe the presented novel method
of piecewise scene flow estimation method via semantic
segmentation. In Section V, the experimental results and
discussions are presented. Finally, we conclude the project
in section VI.

II. RELATED WORKS
Optical Flow:After the remarkable contributions of Horn and
Schunck [17] and Lucas and Kanade [18], a large number
of studies led to significant development in improving the
accuracy and robustness of optical flow estimation in the past
decade. Despite massive reports of optical flow estimation in
the recent years, it is beyond the scope of this report to review
all past researches on the topic. To provide a straightforward
presentation, we only discuss the most relevant publications

that focused on the issues of edge-blurring and motion
occlusion.

The original homogeneous regularization proposed by
Horn and Schunck [17] used to blur the image and
motion boundaries. Many past studies have modified the
flow diffusion strategy to preserve the image or motion
edges. For example, some image-driven flow diffusing
models were exploited to reduce flow diffusion near
image edges [19], [20]. In contrast, several reports recom-
mended using flow-driven diffusion strategies to preserve
motion boundaries caused by the over-segmentation of
the image-driven models in textured regions [21], [22].
Moreover, several publications integrated the image- and
flow-driven strategies in regularizing the flow field [23], [24],
because not every image edge was coincided with a motion
boundary. As an effective way to extract the image boundary,
the semantic segmentation model has been utilized in
optical flow estimation to preserve the image and motion
edges [25], [26]. However, the most of current approaches
were only suitable for rigid objectives.

In the past years, variety of studies focused on the
issues of motion discontinuities caused by occlusions. For
instance, the non-local constraint was utilized to remove
the outliers of the flow field [27], in which the non-local
constraint term imposes a particular smoothness assumption
within a specified region of the flow field. Because it is
difficult to directly minimize the total variation model with
non-local constraint term, a common practice to replace
the non-local constraint is by using a weighted median
filter to optimize the flow field during the coarse-to-fine
computing process [28]. Although the median filter can
effectively enhance the robustness of optical flow estimation,
it may generate biases in the occlusion regions because the
occluded pixels are not always observable. To overcome the
potential limitation, some studies utilized the robust optical
flow models by checking the motion discontinuities in a
post-processing scheme. For example, Zhang et al. [29]
presented a dynamic regular triangulation-based occlusion
detection model, and used the occlusion information to mod-
ify the weighted median filtering scheme. On the contrary,
other publications [30], [31] recommended simultaneously
estimating optical flow and occlusion by incorporating an
occlusion constraint term into the optical flow objective
function. For instance, Hur and Roth [32] exploited the
occlusion-disocclusion symmetry in jointing optical flow
and occlusion estimation, and presented a piecewise rigid
formulation for optical flow computation.

Recently, deep learning models have being increasingly
popular in optical flow computation. As a result, various
convolutional neural network (CNN) frameworks were
presented to improve the accuracy and efficiency of flow
fields [33]–[36]. Despite that the CNN-based optical flow
models have performed the superior performance on several
public evaluation databases, there remain two issues for the
CNN-based approaches. The first issue is that the CNN-based
methods usually require a large number of training datasets,
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limiting those models to be applied to real world data where
ground truth is not easily accessible [37]. The other issue
is that the CNN-based models are more prone to fall into
the over-fitting problem, leading to obvious errors in the
estimated flow field [38].
Scene Flow: Vedula et al. [9], [10] proposed the first 3D

scene flow computation framework by utilizing optical flows
of multi-views to estimate the scene motion and structure.
Following their initial works, a large number of reports were
published focusing on estimating scene flow with various
data and systems. The existing scene flow estimation models
can be roughly divided into two types: one type is the
multiple-views-based approach, and the other is the RGBD-
based method.

With the wide application of consumer depth sensors
such as Microsoft Kinect, the RGBD scene flow estimation
approach has been rapidly developed in the past years. For
example, in order to gain a robust computation scheme,
Gottfried et al. [39] investigated a variational framework
for RGB-D scene flow estimation. Their model exploited a
novel channel alignment algorithm to cope with the invalid
and unstable depth regions. Because the depth map usually
contains a large number of noises, Quiroga et al. [40]
employed the combination of local and global constraints to
overcome the influence of image noises. Herbst et al. [41]
incorporated the color consistency into the RGBD scene flow
framework to restore the image edges, because the boundaries
in depth map are usually blurred. To address the issue of
motion occlusion, Sun et al. [42] explored a layered RGBD
scene flow computation scheme. Their method segmented
the depth map using depth information and detected the
occlusion boundaries, which is robust to complex scene
and occlusion. To improve computational efficiency, Jaimez
et al. [43] presented a GPU-based RGBD scene flow
framework, which produced the real-time computation.

Despite that the RGBD-based approach provides a straight-
forward link to scene flow estimation, the low resolution
and confidence of the depth map may limit its further
development. While development in dense binocular stereo
and optical flow has been both steady and significant over
the years, the multiple-views-based scene flow method is
becoming the focus of research. For instance, Huguet and
Devernay [44] presented the first variational model for
stereo scene flow computing. Their method can recover the
scene flow by coupling the optical flow estimation in both
cameras with dense stereo matching between the images.
Because the coupling scene flow estimation may increase
the computing complexity, Wedel et al. [45] recommended
a decoupling variational framework by splitting scene flow
computation into the disparity and optical flow estimation,
and then utilized an optimal technique to solve the two
sub-problems. Their method significantly improved both the
computation accuracy and efficiency. In order to overcome
the negative influence of large displacement, Basha et al. [46]
incorporated the coarse-to-fine computation scheme into
the variational scene flow framework, and improved the

accuracy and reliability of scene flow estimation under large
displacement motion. In order to ensure the computing
efficiency, some publications recommended utilizing GPU
and parallel computing strategies to achieve the real-time
scene flow estimation [47].

Although the variational computation framework is capa-
ble of producing dense scene flow field, the global smoothing
assumption of the classical model may be sensitive to motion
discontinuities and occlusions. Popham et al. [48] employed
an interconnected patch model to modify the classical scene
flow model, which estimates the accurate scene flow at each
region. Bleyer et al. [49] recommended a soft constraint
by using object-level color models to address the issue of
motion occlusion. Their method can recover the surfaces
which are severely occluded between consecutive frames.
Because the global regularization may blur image and motion
boundaries, Vogel et al. [50] planned a piecewise rigid scene
flow estimation model by assuming the rigid motion to be
consistent over time, and then they utilized multiple frames to
improve the accuracy of scene flow estimation. Furthermore,
Menze et al. [51] exploited a slanted-plane scene flowmethod
by modeling 3D scene as a collection of planar patches.
Their method significantly improves the performance of
scene flow in textureless or ambiguous regions. Afterwards,
Schuster et al. [52] explored a multi-frame based scene flow
estimation method based on pixel-wise matching and sparse-
to-dense interpolation, and the presented method performs
a competitive result in KITTI benchmark. Besides, a large
number of publications had been presented to improve the
accuracy and robustness of scene flow estimation [53]–[56].

In recent years, the CNN-based scene flow methods have
shown the good performance on both computational accuracy
and efficiency [57]–[59]. However, most of these CNN-based
usually approaches require supervised training process and
may have difficulty to be directly applied to real world data
where ground truth is not easily accessible.

FIGURE 1. Illustration of the piecewise moving planes. one plane of a car
is modeled by using a set of rigidly moving planar segments.

III. FORMULATION OF PIECEWISE SCENE FLOW MODEL
A. DEFINITION OF THE PIECEWISE MOVING PLANES
To implement the piecewise 3D scene flow estimation,
Vogel et al. [14] described a dynamic scene as a set of
piecewise planar regions moving rigidly over time. As shown
in Fig. 1, each moving plane π (R, t, n̄) is governed by nine
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FIGURE 2. Schematic of single reference-view model.

parameters including a rotation matrix R, a translation vector
t and a scaled normal n̄, each with three degrees of freedom.
Assuming that the left and right cameras are calibrated;

we use subscripts l and r to denote the pictures of left and
right cameras, and employ superscripts t ∈ T = {0, 1, . . .}
to indicate the photographing time. The stereo camera system
simultaneously records two sequences from the left and right
cameras and therefore provides four views for estimating the
scene flow. In order to simplify the computational program,
a common practice is to utilize a single reference view to
model multiple views. As shown in Fig. 2, let the left view I0l
at time t = 0 denote the reference view, the transformations
from the reference view to other views can be described as
following:

H0
r (π) =

(
M−mn̄T

)
K−1

H1
l (π) = K

(
R− tn̄T

)
K−1

H1
r (π) =

(
MR− (Mt+m) n̄T

)
K−1

(1)

where notations H0
r (π), H1

l (π) and H1
r (π) respectively

denote the homographic transformations between the refer-
ence view and other three views. These definitions lead to
the projection matrices (K|0) for the left camera and (M|m)
for the right camera, where the notation K represents the
calibration matrix of the left camera, the symbols M and
m respectively denote the camera matrix of the right view
and the translation vector between left and right cameras. For
simplicity, the calibration matrixK is used to be identical for
both left and right cameras [14].

B. ENERGY FUNCTION OF PIECEWISE SCENE
FLOW ESTIMATION
To determine the 3D motion and depth of each pixel of the
reference view, Vogel et al. [14] firstly defined two mappings
f and g as following. Mapping f : assigns each pixel p of the
reference view I0l to a segmented region s ∈ S. Mapping
g: gather each segment s to a 3D moving plane π ∈

∏
.

The symbols S and
∏

respectively denote a set of superpixel
segments and a set of moving planes of reference view.

In order to determine the scene flow for each pixel of the
reference view I0l , a global energy function was used to plan
for optimizing the defined two mappings f and g, as shown

in the following:

E (f , g) = ED (f , g)+ λER (f , g) , (2)

where ED (f , g) and ER (f , g) denote the data term and
regularization term, respectively. The notations λ is a weight
of the regularization term.

To implement the piecewise scene flow estimation by
minimizing the Eq. (2), the parameters of a moving 3D plane
n̄ and its rigid motion (R, t) for each superpixel of the initial
segmentation are estimated by using the following equations:∑

p∈s

φ

(∥∥∥T (H0
r (n̄)p

)
− p′

∥∥∥2)→ min
n̄
, (3)

∑
p∈s

φ

(∥∥∥T (H1
l (R, t)p

)
− p′

∥∥∥2)→ min
R,t
, (4)

where T denotes the conventional projection operator. The
notation φ (x) = log

(
1+ x

2σ 2

)
denotes the Lorentzian

penalty function, which is used to remove outliers in the
results of stereo and flow estimation. After minimizing the
Eq. (3) and (4), each 3D pixel p of a segment s ∈ S can
be matched to its 2D pixel p′, and then the rigid motion
parameters (R, t) and normal n̄ of the segment can be
determined.

Given the initial parameters of segment and rigid motion,
a further optimization by minimizing the Eq. (2) is operated
to update the mappings f and g. The optimized motion
parameters of each superpixel are fixed when the mappings
f and g are optimization. Finally, the dense scene flow and
disparity can be derived from the estimated rigid motion
parameters.

C. DISCUSSION ON THE TRADITIONAL
PIECEWISE RIGID MODEL
It is undoubted that the current piecewise rigid scene
flow estimation model has performed a competitive perfor-
mance on real-world datasets such as KITTI benchmark.
However, the traditional piecewise rigid model may pro-
duce edge- blurring around image and motion boundaries.
Fig. 3 respectively displays a reference image and the
estimated flow field, disparity and scene flow error of the
traditional piecewise rigid scene flow model from the KITTI
online test database. For a clear presentation of the issue of
edge- blurring caused by the traditional piecewise model,
the close-up views of the moving vehicle region surrounded
by a yellow square and the corresponding areas in the
estimated results are shown at the bottom of Fig. 3. It is
noticeable that the classical piecewise model yielded the
edge-blurring around the boundaries of themoving car, which
may be raised by motion occlusions.

To plan an accurate and robust scene flow estimation pro-
gram requires a consideration of gaining an edge-preserving
performance near the image and motion boundaries. In the
traditional piecewise rigid model, scene flow optimization
includes two stages, as summarized in the following: First,
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FIGURE 3. Illustration of the issue of edge-blurring caused by the
tradition piecewise rigid scene flow estimation. the top respectively
shows the reference image, optical flow result, disparity result and scene
flow error (the yellow square indicate the moving vehicle region). the
bottom displays the close-up views of the yellow squares.

after an initial superpixel segmentation, the shape and motion
parameters of all segments were estimated by assigning each
pixel to a segment. Second, given the initially estimated
shape and motion parameters of segments, the mappings of
pixel-to-segment and segment-to-plane were updated alter-
nately, and the shape and motion parameters are optimized
accordingly. Because the updated mappings may assign a
pixel near image and motion edges to an incorrect segmented
region or incorporate a segment around image and motion
boundaries into an improper moving plane. The optimized
shape and parameters of the pixels near the image and motion
boundaries may be inaccurate due to the incorrect assignment
of pixels and segments. As a result, the issue of edge-blurring
is likely to appear around image and motion boundaries,
especially under motion occlusion.

To address the issue of edge-blurring in traditional piece-
wise rigid scene flow estimation, the assignment of the pixels
and segments should be determined cautiously. In particular,
the pixels around the image and motion boundaries require
more reliable segmentation, because the motion occlusion
occurs near image and motion discontinuities. In order to
gain accurate scene flow estimation especially at image
and motion boundaries, we propose in this report a novel
piecewise rigid scene flow computation method by using
semantic segmentation. The detailed description of the
proposed model is followed in the next Section.

IV. PIECEWISE RIGID SCENE FLOW ESTIMATION USING
SEMANTIC SEGMENTATION
A. SEMANTIC OPTICAL FLOW BASED SUPERPIXEL
SEGMENTATION AND MOTION PARAMETER
INITIALIZATION
As a requisite input of the piecewise rigid scene flow
model, optical flow plays an important role to access the
superior performance of scene flow estimation because it is
directly employed to compute the superpixel segmentation
and initial motion parameters. The more accurate optical
flow leads to better scene flow computational results.

For a straightforward initialization of scene flow estimation,
the traditional piecewise scene flow approach [16], [53]
utilized the rigidly spatial regularization model to initialize
motion parameters, and then applied the superpixel seg-
mentation to gain initial mappings of pixel-to-segment and
segment-to-plane. However, the rigidly spatial smoothing
and randomized superpixel segmentation may result in
edge-blurring flow field estimation.

To achieve accurate and robust scene flow estimation with
additional benefit of edge-preserving, we in this report rec-
ommend the use of a semantic optical flow (SOF) model [25]
to initialize superpixel segmentation and motion parameters.
Although the SOF model proposed in literature [25] did not
produce the top performance compared with other state-of-
the-art approaches at present, it offers an available route to
gain edge-preserving flow field estimation. Fig. 4 displays
the semantic segmentation and flow field computation results
by using SOF model. With the object segmented from
background, the SOF method acquired the better flow results
around image and motion boundaries compared with those of
traditional piecewise rigid scene flow shown in Fig. 3.

FIGURE 4. Optical flow estimation with semantic segmentation by using
SOF model presented in reference [26].

By using the semantic flow to initialize motion parameters
and superpixel segmentation, we firstly categorize the scene
in the image into three classifications followed the SOF
model, as summarized in the below:
Things: Things are corresponding to objects which are

independent from the background in the scene. This category
includes person, animal, airplane, bicycle, boat, bus, car, and
other independently moving objects.
Planes: Planes are defined as the regions which have a

broad spatial extent and are typical in the background. This
category mainly contains sky, road, water and other elements
with a planar shape.
Stuff: Stuff is generalized as the classes which have

a complicated 3D shape and complex motion representa-
tion. Stuff usually includes building, vegetation, and other
unknown elements that can’t be categorized into the above
two classifications.

Given the definitions of various classifications from an
input image, we utilized a full-fledged semantic segmentation
model by DeepLab [60] to predict the scene semantic
segmentation result, which is able to achieve a satisfactory
performance on image boundary segmentation. To gain the
semantic flow field, we compute an initial dense flow field
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by using the DiscreteFlow model [61], and then construct the
flow fields of various segmented regions as following:

For the Planes region RPlanes, the flow field wPlanes
is modeled as wPlanes (xPlanes, hPlanes). The symbol xPlanes
denotes all pixels located in the Planes region and the notation
hPlanes indicates the parameter of homography [25].

For the Stuff region RStuff , the flow field wStuff is created
by directly using the initial optical flows in the Stuff region.

For the Things region RThings, the flow field wThings can
be computed by minimizing the following global energy
function:

EThings
(
wThings

)
= Edata

(
wThings

)
+ λmotionEmotion(

wThings
)
+ λtimeEtime

(
wThings

)
, (5)

where Edata, Emotion and Etime denote the data term, motion
term and time term, respectively. The symbols λmotion and
λtime are weights of the motion and time terms.

With the estimated flow fields of various segmented
regions, the integrated semantic flow field can be obtained
by compositing the flow fields of different regions [25], [60].
We then utilize the semantic flow fields to initialize super-
pixel segmentation and motion parameters. A description
of the proposed refinement strategy is summarized in the
following:

First, we adopt the semantic segmentation model to
segment the input image into various semantic areas. Second,
we utilize a random superpixel segmenting scheme to gain the
initial superpixel regions in each semantic area of the input
image. Specifically, the superpixel segmenting procedure
is restrictedly implemented in every individual semantic
area, allowing no any superpixel region to cross semantic
boundaries. Third, we compute the initial 3D plane n̄ and its
rigid motion (R, t) of each superpixel region by using Eq. (3)
and (4). Thus, the initial superpixel segmentation and motion
parameters are strictly coincide with the semantic segmented
areas, to preserve the objective boundaries and avoid any
incorrect assignment of segmented superpixel regions.

B. PIECEWISE RIGID ENERGY FUNCTION USING
SEMANTIC SEGMENTATION CONSTRAINT
Despite that the dense scene flow can be directly calculated by
using initial superpixel motion parameters (R, t) and scaled
normal n̄ of each 3D plane, the solution would often fall
into a local optimum because the initial random superpixel
segmentation regions are usually not well aligned with depth
and motion discontinuities of various objectives in the input
images. As shown in Fig. 5, the subgraph (b) shows an initial
superpixel segmenting result, in which the superpixel seg-
mentation procedure separates a rigid plane into several trivial
regions. As a result, the flow field of one rigid plane may be
composed of several disparate scene flows of the superpixel
segmenting regions. Although the classic piecewise rigid
scene flow scheme is able to improve accuracy and robustness
by using a global energy function to optimize the mappings
of pixels-to-segments and segments-to-planes, the issue of

FIGURE 5. Illustration of the segmentation results of different
optimization strategies. (a) reference image, (b) initial superpixel
segmentation result, (c) segmentation result of traditional piecewise rigid
model, (d) segmentation result of our SS-SF model.

edge-blurring may arise because the traditional optimization
program ignores boundary differences of various objectives.
As shown in subgraph (c) of Fig. 5, despite that the trivial
superpixel segments have been aggregated to larger planes
in the areas of car and bus, there are evident errors at
object boundaries because some planes contain different
objective areas. To achieve an accurate scene flow estimation,
we exploit an improved energy function by incorporating a
semantic segmentation constraint term to the classic model.

The two major components of the optimization energy
function shown in Eq. (2), the data term ED (f , g) and
regularization term ER (f , g), are usually defined upon
geometry and motion-based assumptions. For the data term,
it is usually represented using the stereo and optical flow
constraints as following:

ED (f , g) = Ds
0 + D

s
1 + D

f
l + D

f
r , (6)

where Ds
0&Ds

1 and D
f
l &Df

r represent respectively the stereo
and optical flow constraints, as defined in Eq. (7).

Ds
i =

∑
p∈I0l

ρ
(
H i
l
(
πp
)
p,H i

r
(
πp
)
p
)
, i ∈ {0, 1}

Df
i =

∑
p∈I0l

ρ
(
H0
j
(
πp
)
p,H1

j
(
πp
)
p
)
, j ∈ {l, r}

, (7)

where πp = g (f (p)) denotes the 3D moving plane at a
pixel p. The notation ρ indicates the census transform over
a specific neighboring region, which enables the stereo and
optical flow constraints to be robust.

By assuming that the 3D geometry and motion are
piecewise smoothing, the regularization term is usually
constituted by a geometric term EGR (f , g) and a motion term
EMR (f , g) as following:

ER (f , g) = EGR (f , g)+ E
M
R (f , g) , (8)

where:

EGR (f , g) =
∑

(p,q)∈N

ωp,qψ

(∥∥∥dG1 ∥∥∥2 + ∥∥∥dG2 ∥∥∥2
+

〈
dG1 ,d

G
2

〉
+ γ

∥∥∥dGn ∥∥∥2) . (9)
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EMR (f , g) =
∑

(p,q)∈N

ωp,qψ

(∥∥∥dM1 ∥∥∥2 + ∥∥∥dM2 ∥∥∥2
+

〈
dM1 ,d

M
2

〉
+ γ

∥∥∥dMn ∥∥∥2) . (10)

In Eq. (9) and (10), the pixels p and q are adjacent in a
specific region N, however they are assigned to independent
segmented planes πp = g (f (p)) and πq = g (f (q)). The
symbol ωp,q indicates a weight for determining the length of
the common edge of adjacent pixels p and q in the region N,
and the notations

(
dG1 ,d

G
2

)
&
(
dM1 ,d

M
2

)
represent the endpoint

distances of the 3D geometry and motion between adjacent
pixels p and q.
In order to address the issue of over-smoothing at image

and motion boundaries, we present a semantic segmentation
term to regularize the data and regularization terms, as shown
in the following:

ES (f ) =
∑

(p,q)∈Nse,Nse∈I0l
f (p)6=f (q)

exp

(
−δ

∣∣I0l (p)− I0l (q)∣∣
σ (p,q)+ ε

)

+

∑
p∈I0l

{
0, ∃e ∈ ξ (i) : ‖e− p‖∞ < NS
∞, else.

, (11)

In Eq. (11), the first item is the semantic segmentation
constraint which is employed to optimize the mapping of
pixels-to-segments in a common semantic area. The notation
p and q denote the adjacent pixels in a common semantic
area Nse, but located in different superpixel segments. The
notation σ indicates standard deviation, and symbols δ& ε
are adjustment coefficients. To prevent superpixel segments
from becoming overly large, we utilize a spatial segmentation
constraint as a supplement item for the semantic segmentation
constraint, as shown in Eq. (11). The spatial segmentation
constraint offers a link between a segment and its seed point
e ∈ ξ (i), which can restrict the number of candidate segments
for a pixel and limit the maximum size of a segment.

To make an overview presentation, we combine the
presented semantic segmentation term with basic data and
regularization terms to construct an optimization energy
function as following:

E (f , g) = ED (f , g)+ λER (f , g)+ µES (f ) , (12)

where ED (f , g), ER (f , g) and ES (f ) respectively denote
the data, regularization and semantic segmentation terms.
The symbols λ and µ are weights of the regularization and
semantic segmentation terms. To illustrate the benefit of our
model in segmenting optimization, Fig. 5(d) displays the
output segmentation results. The presented model presents
an accurate segmentation result that the segmented rigid
planes are well coincident with the objective areas, especially
a superior performance of edge-preserving at objective
boundaries.

C. SEMANTIC SCENE FLOW ESTIMATION WITH
OCCLUSION-AWARE CONSTRAINT
It is undoubted that occlusion is an awful challenge for most
existing scene flow computational models, because most of
basic geometry and motion constant assumptions will be
invalid under occlusions. In order to ensure the robustness
of scene flow estimation, we present in this section an
occlusion-aware constraint term to cope with the occlusions
by using the semantic segmentation information.

To simplify the presentation of the occlusion-aware
constraint for scene flow, we redefine the basic data term of
Eq. (12) by using the form of pseudo-Boolean function [62],
as shown in the following:

D (x) =
∑
p∈I0l

u0p
(
1− xp

)
+u1pxp, (13)

where xp ∈ {0, 1} indicates the segment assignment of pixel
p, and the symbol x denotes all segment assignments of
the reference frame I0l . When xp = 0, the pixel p retains
the previous segment assignment; In contrast, the pixel p
switches to another segment assignment. The notation u0p and
u1p respectively represent data penalties if the pixel p belongs
to the previous segment or switches to another segment.

Because the semantic segmentation result provides a
semantic label for each pixel, it prompts us to check whether a
pixel is occluded or not between the input frames. By utilizing
the semantic labels of pixels, the occlusion-aware constraint
term can be expressed as following:

D (x) =
∑
p∈I0l

(
θocc0

(
gp0 6= gp1

)
+[

u0p
(
1− xp

)
+ u1pxp

]
0
(
gp0 = gp1

)), (14)
where θocc ∈ (0, 1) denotes a constant penalty [63], and the
notations gp0 and gp1 respectively indicate the semantic labels
of pixel p at the reference and next frames. Since the semantic
label of a pixel should be constant between the input frames
if the pixel is non-occluded, an indicator function 0 (·) with
binary outputs is employed to denote the status of the pixel
p. When gp0 = gp1 , the pixel p is non-occluded, the indicator
function 0

(
gp0 = gp1

)
= 1 and 0

(
gp0 6= gp1

)
= 0; Otherwise,

the pixel p is occluded, the indicator function 0
(
gp0 = gp1

)
=

0 and 0
(
gp0 6= gp1

)
= 1.

To implement the semantic scene flow estimation with
occlusion-aware constraint, we replace the basic data term
of Eq. (12) by the presented occlusion-aware constraint
term of Eq. (14). As a result, the scene flow estimation
of the non-occluded pixel still relies on the geometry and
motion constant assumptions because the indicator function
of non-occluded pixel leads the occlusion-aware constraint
term to return to the basic data term. On the contrary,
the scene flow of the occluded pixels will be generated
by flow diffusion from the neighboring pixels, because the
indicator function of occluded pixel guides the occlusion-
aware constraint term to a penalty constant.

VOLUME 9, 2021 22751



C. Feng et al.: SS-SF: Piecewise 3D Scene Flow Estimation With Semantic Segmentation

For a clear presentation of the proposed piecewise scene
flow estimation with semantic segmentation, we briefly
summarize implementation steps as following:
Step.1 Segment input frames into variously semantic image

areas using the semantic segmentation model [60].
Step.2 Compute an initially semantic flow field by using

the DiscreteFlow model [61], and estimate an initial disparity
result via a semiglobal matching model [64].
Step.3 Apply a random superpixel segmenting to the input

reference frame to produce an initial superpixel segmentation
field.
Step.4 Initialize the rigid motion parameters (R, t), normal

n̄ of superpixel segments, and mapping of pixel-to-segment
by using the initial semantic flow field and stereo disparity to
minimize the Eq. (3) and (4).
Step.5 Determine the occluded and non-occluded pixels in

the input frames by checking the semantic label of each pixel.
Step.6Minimize the energy function in Eq. (12) to optimize

mappings of pixel-to-segment and segment-to- plane.
Step.6.1Update themapping of segment-to-plane by fixing

the mapping f of pixel-to-segment.
Step.6.2 Update the mapping f of pixel-to-segment by

fixing the mapping g of segment-to-plane.
Step.7 Update the rigid motion parameters (R, t), normal

n̄ of each pixel by using optimized mappings f and g.
Step.8 Output the piecewise scene flow result using the

refined rigid motion parameters (R, t) and normal n̄.

V. EXPERIMENTAL RESULTS AND DISCUSSIONS
A. ERROR MEASUREMENTS
Because a scene flow connects directly with optical flow and
disparity, a better performance on optical flow and disparity
indicates a superior scene flow result. The KITTI benchmark
recommends primarily using the metrics of optical flow
and stereo matching to indicate performance of scene flow,
as shown in the following:

Fl − all =
P1
all
× 100%, (15)

D1− all =
P2
all
× 100%, (16)

where P1 and P2 respectively denote the number of outlier
pixels (EPE>3) in the flow field and disparity map,
the symbol all represents the entire image. Thus, the metrics
of Fl − all and D1− all indicate the percent of outlier pixels
in the flow field and disparity maps, respectively.

Additionally, for a straightforward online evaluation of
scene flow, the KITTI benchmark counts the outliers in either
optical flow or disparity results to indicate the performance of
scene flow as following:

SF − all =
P1 ∪ P2
all

× 100%, (17)

where metric of SF−all indicates the percent of outlier pixels
in scene flow field.

FIGURE 6. The variation of the percent of outlier pixels in optical flow
and disparity with different values of free parameters.

B. DISCUSSION OF FREE PARAMETERS
In the presented piecewise scene flow estimationmethodwith
semantic segmentation, there are several free parameters that
deserve a careful consideration including the weight λ of the
regularization term, weight µ of the semantic segmentation
term and constant penalty θocc of the occlusion-aware con-
straint term. Because the regularization is used to blur image
and motion edges, we set the weight λ = 0.1 to produce a
slight smoothing diffusion by referring reference [14].

To choose reasonable values for the other two parameters,
we run our model on the KITTI training sets including
000030 and 000145 with different values of µ(0.05, 0.1,
0.2, 0.5, 0.7 and 0.9) or θocc(0.01, 0.03, 0.05, 0.07, 0.1 and
0.2), and recorded results of percent of outlier pixels in the
estimated optical flows and disparities for each value of µ
or θocc (Fig. 6 (a) and (b)). As shown in Fig. 6, different
choices of the free parameters can influence the accuracy
of scene flow estimation significantly. In the following
experiments, we set weight µ = 0.7 to ensure the effect
of semantic segmentation constraint, and fixed the constant
penalty θocc = 0.05 to apply strict penalty to occluded pixels.

22752 VOLUME 9, 2021



C. Feng et al.: SS-SF: Piecewise 3D Scene Flow Estimation With Semantic Segmentation

FIGURE 7. The quantitative comparison results between the SS-SF and
PR-Sceneflow methods on KITTI training datasets. (A) The error of optical
flow over entire image. (B) The error of optical flow over non-occlusion
area. (C) The error of stereo matching over entire image. (B) The error of
stereo matching over non-occlusion area.

C. COMPARISON WITH THE BASELINE METHOD
Because the PR-Sceneflow model [14] is a representative
of the piecewise scene flow estimation method that uses
the superpixel segmentation and traditional energy function
to optimize piecewise scene flow. In order to demonstrate
benefits of the proposed SS-SF model in edge-preserving
and occlusion handling, we conduct a comparison experiment
between the proposed SS-SF method and PR-Sceneflow
approach, which is taken as a baseline method, by using the
KITTI training datasets.

For a detailed evaluation, we respectively summarize
results of the percent of outlier pixels in the entire image and
non-occlusion areas of estimated optical flow and disparity
with various outlier thresholds of 2, 3, 4, and 5 pixels. The
quantitative comparison between the proposed SS-SF model
and PR-Sceneflow method on KITTI training datasets are
reported in Fig. 7. It is undisputed that the proposed SS-SF
model performed superior results on scene flow estimation,
as shown in the significantly decreased statistical errors
compared with those of the PR-Sceneflow method.

For a visual comparison, we respectively display the
ground truths, estimated optical flows and disparity maps of
the SS-SF and PR-Sceneflowmethods in Fig. 8. The proposed
SS-SF model evidently produced the better performance on
both optical flows and disparity maps because its estimated
flow fields and disparities are more coincident with the
ground truths, especially gain the satisfied results in the
regions of motion boundaries and occlusions.

The quantitative results and visual comparison of KITTI
training datasets between the two methods demonstrate that
the proposed SS-SF method achieved more accurate and
robust performance on scene flow computation, probably due
to its better edge -preserving and occlusion handling.

D. ABLATION EXPERIMENT
In order to validate the benefit of eachmodule of the proposed
SS-SF method, we utilize the KITTI training sets to conduct
an ablation experiment. Table 1 summarizes the results of the
percent of outlier pixels (EPE > 3pixels) in the entire image
(all) and non-occlusion areas (noc) of the estimated optical
flow and disparity of SS-SF method with different modeling
choices, where SS-SF-OA model denotes the SS-SF method
without the occlusion-aware constraint and SS-SF-SS model
represents that replacing the original semantic segmentation
DeepLab model [60] used in the proposed SS-SF method by
an improved segmentation DeepLabV3+ model [65].

TABLE 1. Comparison results of optical flow and disparity errors of SS-SF
method with different modeling choices.

As shown in Table 1, the comparison results between
different modeling choices indicate that SS-SF method
without occlusion aware constraint leads to significant
degradation in performance of scene flow estimation, because
the optical flow errors of SS-SF-OA model are significantly
increased compared with those of SS-SF method. Although
the improved DeepLabV3+ model performs a better perfor-
mance compared with the original DeepLab model on some
specialized benchmarks of semantic segmentation, the optical
flow and disparity errors of SS-SF-SS model are slightly
increased compared with the SS-SF method. This is because
the DeepLabV3+ model classifies the small objects into
the background regions, which may lead to an inaccurate
optimization in piecewise scene flow estimation.

For a visual comparison and discussion, we display the
flow field and disparity results of SS-SF method with
different modeling choices in Fig. 9, where the red and white
squares respectively indicate some areas of motion bound-
aries and occlusions in flow fields and disparities. As can
be seen from Fig. 9, either removing the occlusion-aware
constraint or replacing the original semantic segmentation
model by an improved method leads to the issue of edge-
blurring. The comparison results between the SS-SF method
and the different modeling choices indicate that the pro-
posed occlusion-aware constraint and semantic segmentation
scheme are beneficial for improving the performance of
scene flow estimation, especially in regions of occlusions and
motion boundaries.

E. COMPARISON RESULTS FROM KITTI TEST DATASETS
In recent years, the KITTI benchmark has being increasingly
popular in evaluating accuracy and robustness of various
vision related tasks such as stereo matching, optical flow
and scene flow, because it was produced using a moving
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FIGURE 8. The visual comparison between the SS-SF and PR-Sceneflow methods on KITTI training datasets. From top to bottom: the datasets
of 000041, 000044, 000096 and 000112.

FIGURE 9. Optical flow and disparity results of SS-SF method with different modeling choices. From top to bottom: the datasets of 000011,
000036 and 000089. The red and white squares respectively indicate some areas of motion boundaries and occlusions in flow fields and disparities.

vehicle. In order to examine the accuracy and robustness
of the proposed SS-SF approach, we run our SS-SF model
on KITTI online test datasets to conduct a comprehen-
sive comparison with several state-of-the-art scene flow
methods including PCOF-LDOF [47], PR-Sceneflow [14],
PRSM [50], DWBSF [54], CSF [55], SceneFFields [56],
FSF+MS [53], OSF [51], SFF++ [52], PWOC-3D [57],
Self-Mono-SF-ft [59] and Stereo expansion [66], in which the
PCOF-LDOF, PR-Sceneflow, DWBSF, CSF, SceneFFields,
and OSF methods are the dual-frame-based classical scene
flow approach, the PRSM, FSF+MS and SFF++ methods
are themulti-frame-based classical approach, and the PWOC-
3D, Self-Mono-SF-ft and Stereo expansion methods are the
CNN-based scene flow approach.

TABLE 2 respectively lists the quantitative comparison
results of the various methods evaluated on KITTI 2015 test
datasets, where the error metrics include disparity errors for
two frames (D1, D2), optical flow error (Fl) for the reference
frame and scene flow error (SF) for foreground pixels (fg),

background pixels (bg), and all pixels (all). Based on the
evaluation criteria of the KITTI benchmark, we rank various
evaluatedmodels in TABLE 2 according to the result of SF-all
measurement. As can be seen from Table 2, the proposed
SS-SF approach performs the fourth-best results among all
the evaluated approaches and it achieves the second-best
performance in the dual-frame-based classical methods. The
comparison results demonstrate that the proposed SS-SF
method performs a competitive performance on the KITTI
2015 test datasets.

Because KITTI 2015 test datasets contain 195 image
sequences which have the different motion scenes, we run
our SS-SF method and several state-of-the-art approaches on
some test sequences including complex scenes and occlusions
to make a further comparison. Table 3 summarizes the
comparison results of scene flow errors of the various
methods tested on image 1 and image 11. It is noticeable
that the proposed SS-SF method respectively achieves the
second-best result and the third-best result of metric SF-fg
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TABLE 2. The quantitative comparison results of KITTI test datasets.

FIGURE 10. Scene flow error maps of PRSM OSF, PWOC-3D, Stereo expansion and SS-SF approaches tested on the image 1 and image 11.

TABLE 3. The comparison results of scene flow errors on some KITTI
datasets.

on test image 1 and image 11. This demonstrates that
the SS-SF method performs a good performance in the
foreground areas. Because the objects are usually classified
into the foreground regions, a good result on metric SF-fg
indicates a good performance of scene flow estimation in
object areas. Fig. 10 respectively displays the scene flow
error maps of PRSM, OSF, PWOC-3D, Stereo expansion
and SS-SF approaches tested on the image 1 and image 11,
which indicates the proposed SS-SF method performs a good
performance in the object areas.

To show the benefit of the proposed SS-SF method
in coping with edge-blurring under motion occlusions,
Fig. 11 lists the optical flow and disparity results of the
various comparison approaches evaluated on test image
1 and image 11, where the black boxes indicate some
regions including objects and occlusions. For a specific visual
comparison, we display the close-up views within the black
squares in Fig. 12. As can be seen from Fig. 12, the OSF and
stereo expansion methods result in the over-segmentation and
the PWOC-3D approach causes the over-smoothing around
the object edges and motion boundaries. The PRSM method
performs better results compared with the OSF and PWOC-
3D approaches, however it blurs some edges and boundaries
in the textureless and occluded areas. The proposed SS-SF
method achieves a good performance because the object
edges and motion boundaries are undamaged and distinct in
both optical flow and disparity results, due to its significant
benefit of edge-preserving.

F. COMPARISON RESULTS FROM MPI-SINTEL DATASETS
To further examine its capability in dealingwith edge-blurring
and occlusions, we evaluate our SS-SF model on the MPI-
Sintel database because the MPI-Sintel datasets include large
displacements, non-rigid deformation, motion occlusions,
atmospheric effects and complex scenes.

For a quantitative evaluation, we measure the percentage
of outlier pixels (EPE > 3) for optical flow and
disparity according to the KITTI benchmark. Because the
MPI-Sintel database has not published the estimated results
and ranks for any scene flow methods, we compare the
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FIGURE 11. Optical flow and disparity results of the SS-SF and several comparison methods tested on image 1 and image 11.

FIGURE 12. The close-up views within the black squares in the optical flow and disparity results.

optical flow errors of SS-SF models on MPI-Sintel datasets
with those of some state-of-the-art methods, including PR-
Sceneflow [14], FSF+MS [53], SceneFFields [56], OSF [51]
and Stereo expansion [66] by using the results published
in reference [53] and the published open-source code.
TABLE 4 summarizes the comparison results, indicating that
the proposed SS-SF method achieved the best performance
among the evaluated models on average value of optical flow
indicators. Although the OSF and Stereo expansion methods
produced better results on KITTI test database, the presented
SS-SFmodel won the competition onMPI-Sintel benchmark.
Since the optical flow is a direct indicator for scene flow,
the comparison results of optical flow on MPI-Sintel datasets
indicate that the proposed SS-SF method has the advanced
accuracy and robustness in scene flow estimating, particularly
is capable of edge-preserving and occlusion handling.

G. RUNTIMES
To make a comprehensive comparison between the proposed
SS-SF and the other state-of-the-art methods, Table 5
summarizes the average runtimes of the various evaluated
approaches tested on the KITTI 2015 test datasets.

As can be seen from Table 5, the PWOC-3D,
Self-Mono-SF-ft and Stereo expansion methods achieve
the best performance on computational efficiency because
the CNN-based approaches have the significant benefit

TABLE 4. Comparison results of optical flow from MPI-Sintel datasets.

of real-time computation. However these CNN-based
methods usually require a large number of datasets to
train the network parameters and may have difficulty to
be directly applied to real world data. Though the PRSM
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TABLE 5. The quantitative comparison results of KITTI Test datasets.

and OSF methods performed the better performance on
the metrics of scene flow error compared with those of
the proposed SS-SF method, they cost much more time
consumption. The proposed SS-SF method is implemented
by MATLAB2010 using a Lenovo computer equipped with
an Intel Core I7-6700K CPU. Because we use a large
number of iterations to optimize the energy function of
piecewise mapping, the proposed SS-SF method requires
more time consumption than that of some dual-frame based
approaches including CSF, SceneFFields, PR-Sceneflow and
PCOF-LDOF. Nevertheless, the proposed SS-SF performs
the significantly better results in computation accuracy than
those of the abovementioned dual-frame approaches, espe-
cially gains the capacity of edge-preserving and occlusion
handling.

VI. CONCLUSION
In this report, we started by reviewing the progress and several
previous approaches in the fields of scene flow and optical
flow estimation. Then we presented the traditional piecewise
scene flow computation model and discussed its limitations
in edge-preserving and occlusion handling.

To deal with the issues of edge-blurring and motion occlu-
sions, we proposed a novel piecewise rigid scene flow esti-
mation method by using the semantic segmentation, named
SS-SF. We first adopted the semantic flow field to initialize
the 3D plane, motion parameters and mappings of pixel-
to-segment and segment-to-plane. Second, we exploited
an improved energy function for optimizing the mappings
by incorporating a semantic segmentation constraint term,
in which the assignment and motion parameters of each
pixel can be optimized by using updated mappings. Third,
we explored an occlusion handling constraint to cope with the
motion occlusion, in which the presented occlusion handling
scheme was able to improve the robustness of scene flow
estimation. At last, we tested the proposed SS-SF method
on KITTI and MPI-Sintel databases to conduct convinc-
ing comparisons with some of state-of-the-art approaches.

The evaluation results indicate that the presented SS-SF
method presented the excellent performance on both accuracy
and robustness, especially showed significant benefits of
edge-preserving and occlusion handling.
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