
Received January 5, 2021, accepted January 20, 2021, date of publication February 1, 2021, date of current version February 8, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3055955

A Multi-Module Based Method for Generating
Natural Language Descriptions of Code Fragments
XUEJIAN GAO , XUE JIANG , QIONG WU , XIAO WANG , LEI LYU , AND CHEN LYU
School of Information Science and Engineering, Shandong Normal University, Jinan 250014, China

Corresponding author: Chen Lyu (lvchen@sdnu.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61602286 and Grant 61976127, in part
by the Shandong Key Research and Development Program under Grant 2018GGX101003, and in part by the Shandong Province Higher
Educational Science and Technology Program under Grant J16LN09.

ABSTRACT Code fragment natural language description generation, also known as code summarization,
refers to obtaining a natural language sequence describing a given code fragment’s functionality. It is broadly
agreed that applying code summarization into production can significantly improve the efficiency of software
development and maintenance. In recent years, syntactic analysis (SA) technology and Latent Dirichlet
Allocation (LDA) has been widely used in code summarization and has achieved good results. However,
most of the existing techniques focus on core code statements, and thus their generated code summarization
lacks a logical description of the code fragment’s holistic information. To this end, we propose a code
summarization method based on multiple modules to generate natural language for each code statement
by constructing a new type of natural language template. Meanwhile, to utilize the code fragment’s holistic
information, we adopt the code statement partition rules and cosine similarity measure to rank and optimize
the weight of the overall information of the code fragment, and finally generate the holistic natural language
description of the code fragment. The experimental results demonstrate that our method can generate more
concise and logical natural language descriptions than existing models.

INDEX TERMS Source code summarization, program comprehension, program description.

I. INTRODUCTION
With the vigorous development of computer technology,
various software and applications are emerging in an end-
less stream. The amount of source code involved and its
dependency libraries have also shown a blowout growth [6].
Compared with natural languages, the semantics of program-
ming languages are more abstract. The code contains a large
number of APIs with complex dependencies, which will sig-
nificantly increase the difficulty for program developers to
understand, modify, and maintain the code [23]. Code sum-
marization technology can automatically analyze code syntax
and semantic structure and generate corresponding program
function descriptions, effectively facilitating programmers to
understand the code.

There has been a lot of studies focused on code summariza-
tion tasks. Haidue et al. [1] divided the code summarization
method into extraction summarization method and abstract
summarization method, and applied text summarization

The associate editor coordinating the review of this manuscript and

approving it for publication was Mario Luca Bernardi .

technology to perform code summarization. Specifically, they
adopt the Vector Space Model (VSM) and Latent Semantic
Index (LSI) to extract code keywords for generating code
summarization. LSI usually analyzes the vector relationship
between words and documents for text mining and improves
information retrieval accuracy. However, this method relies
too much on the extraction of keywords. The keywords
extracted in practical applications belong to code surface
semantic information, which does not reflect the code func-
tion well. For this reason, Brian et al. [2] proposed hierarchi-
cal Pachinko Allocation Model (hPAM) to implement code
summarization tasks. Pachinko Allocation Model (PAM)
is used to express potential relationships between topics
by constructing directed acyclic graphs (DAG). By build-
ing a 4-layer PAM using directed acyclic graph, the code
themes were connected in such a graph, and code sum-
maries are obtained using text retrieval techniques. Com-
pared with previous methods, hPAM can generate code
descriptions more accurately by overcoming the limitation
of extracting only keywords. Different from the above work,
Laura et al. [3] proposed amethod to generate structured code

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 21579

https://orcid.org/0000-0001-6842-3411
https://orcid.org/0000-0002-5317-865X
https://orcid.org/0000-0001-8142-4419
https://orcid.org/0000-0002-8328-9852
https://orcid.org/0000-0001-9521-6039
https://orcid.org/0000-0002-5044-1459
https://orcid.org/0000-0002-3223-7032

X. Gao et al.: Multi-Module Based Method for Generating Natural Language Descriptions of Code Fragments

summarization automatically. This method used heuris-
tic methods to generate program descriptions by analyz-
ing Java class information automatically. This work is the
first to consider and analyze class-related information in
code summarization generation [43]. However, its draw-
back is that the contextual relationships of classes, i.e., the
invocation relationships with other classes, are not con-
sidered in the generation of Java class summarization.
At present, the traditional work lacks global consideration
of the comprehensive information of the code fragment.
Most of the existing methods focus on the strong migra-
tion of text summarization techniques for code interpreta-
tion, with semantic ambiguity problems and keyword weight
distribution [24].

In recent years, the booming development of deep learning
and its huge application potential has opened another door
for code summarization [25]. Nguyen et al. proposed to use
artificial deep neural networks (DNN) for code summariza-
tion. Specifically, Nguyen et al. [4] built a 4-layer neural
network: the input layer, feature layer, concept layer, and
output layer. They utilized identifiers, APIs, and other code
features as vectorized input and abstract these vectorized
code feature into concepts useful for code summarization.
The research demonstrated that DNN is capable of com-
pleting code summarization tasks. Iyer et al. [5] proposed
the CODE-NN model and applied it to the mission of code
summarization. Through the long and short-term memory
network (LSTM) [26] and attention mechanism [27], code
features were extracted as the input, and the natural language
summarization was output. Experiments on C# and SQL
languages demonstrated that this model was suitable for code
summarization tasks and achieved significant performance.
However, the DNN-based models require a large amount of
the same type of massive data for training, and the quality
of the dataset directly affects the performance of the model.
How to construct or select high-quality code summarization
datasets is still a challenging problem to be solved in such
DNN-based models.

To overcome the limitation of the traditional code summa-
rization method that lacks global consideration.We propose a
code summarization method based on multiple modules. This
method does not depend on deep learningmodels and specific
training datasets. It mainly includes three algorithm function
modules: the preprocessing module, the internal process-
ing module, and the external processing module. According
to the established division rules, the preprocessing module
divides the source code fragments into various source code
statements, which are described in detail in Section III-A.
The internal processing module processes various source
code statements and combines natural language templates to
generate natural language descriptions for each source code
statement. The external processingmodule fully considers the
global information of the code fragments. It uses the sorting
optimization strategy to optimize and fuses each source code
statement’s natural language description. Finally, the global
natural language description of the source code fragment

can be generated. To verify the superiority of this method,
we conduct experiments on two different types of datasets.
The experimental results show that our method performs
better than existing approaches.

The main contributions of this paper are summarized as
follows.

1) We propose a code summarization method for the over-
all source code fragment, which divides, optimizes,
and sorts the code statements through a multi-module
processing mechanism to consider the code fragment’s
global information and reduce the redundant informa-
tion in the generated results.

2) We propose a weight calculation mechanism to pri-
oritize the generated program description sentences to
ensure that the generated natural language has high
logic.

II. PROBLEM STATEMENT
To improve the quality of the software, program maintain-
ers need to regularly maintain the software and understand
the meaning or usage of each identifier in code. In reality,
the probability for the human to choose the same core key-
words for the same concept is less than 20% [22]. If program
maintainers and developers have different ways to understand
the same concept, then program maintenance probably devi-
ates from the original track [41]. Therefore, there is an urgent
need to generate a short description for the code to describe
the code function accurately and effectively avoid errors
caused by differences in conceptual understanding between
maintainers and developers [28].

Studies have shown that programmers prefer to read
the concise natural language in software development
and maintenance compared to source code [29]. In this
section, we explore the problem of how to generate easy-
to-understand natural language descriptions for source code
automatically.

The fundamental goal is that the natural language descrip-
tion should contain the most critical information in the source
code to describe the code’s functionality fully. The pro-
grammer should read the code description with the same
effect as reading the source code, but with different reading
efficiency [30].

There are many challenges in realizing the program
description of the source code: 1) Logic: it is necessary
to ensure that the generated natural language description
conforms to the natural language logic and human reading
habits. In this way, programmers can clearly understand the
meaning of the source code when reading these descrip-
tions [31]. 2) Conciseness: the natural language description
should be concise since too long natural language description
will increase the reader’s reading burden and reduce the
effectiveness of the code summarization work [32]. 3) Com-
pleteness: part of the information is probably lost during
the conversion from code to text description. The premise is
that this information is irrelevant; the information that affects
understanding the method cannot be lost [33].

21580 VOLUME 9, 2021

X. Gao et al.: Multi-Module Based Method for Generating Natural Language Descriptions of Code Fragments

III. APPROACH
As illustrated in Fig. 1, we propose a code summariza-
tion method based on multiple modules: 1) Preprocessing
module, which divides a given code fragment into various
statements according to division rules; 2) Internal processing
module, which utilizes CamelCase and SoftwareWord Usage
Model (SWUM) to split identifiers of various statements
to mine source code characteristics, and combines natural
language templates to generate natural language descriptions
of source code statements; 3) External processing module,
which sorts the natural language descriptions generated in the
internal processingmodule. According to the sentence weight
value algorithm, we adopt the cosine similarity measurement
method to optimize the sorted natural language description.
Finally, the natural language description of the source code
fragment is generated.

Note that, the goal of Module 1 is to classify each code
statement. Module 2 aims to mine the information in the
source code to generate a natural language description of
source code statements. The objective ofModule 3 is to delete
redundant information and optimize the text information to
generate natural language descriptions of the source code
fragments that conform to human reading habits.

A. PREPROCESSING MODULE
The preprocessingmodule’s input is a given source code frag-
ment, and the output is the type of the recognized statement,
including direct statements, indirect statements, and special
statements. Fig. 2 shows the framework of the preprocessing
module. The concepts and division rules of each type of
statement are provided in this section.

This module quickly distinguishes statement types based
on common formats defined by statement division rules.
The purpose of distinguishing various types of statements
is to process the source code fragments’ statements hier-
archically to determine their priority. Since each statement
contains different contents, the focus of processing the three
types of statements is also different. The analysis of direct
statements gives the program maintainer a general idea of
the behavior of the code fragment. Although these direct
statements do not contain all the code information, they
describe the main behavior of the code fragment. Compared
to the other two types of statements, indirect statements are
the most numerous in code fragments and contain a lot of
important information, such as the context and calling logic
of a code fragment. There are fewer types of special state-
ments, but they usually have a higher weight in the Java
language.

A standard Java program is used as an example to expand
the discussion of various types of statements.

1. Type variable/ = X;
Meaning: (Declaration/assignment of types to variables)
2. variable.method;
Meaning: (Method call to a variable)
3. execution variable(e.g., Operation);
Meaning: (A Series of Execution Operations on Variables)

Note that the above code includes the definition, call and
execution of the variable (e.g. operation). The type of X is a
numeric value or an instantiated object.

1) DIRECT STATEMENT
Definition 1: In the source code fragment, the statement

that can express the operation behaviour of the source code
fragment is called the direct statements. By analyzing the
direct statements, we can determine the operation behaviour
of the source code fragment.

We consider two different formats of code and give their
direct statement definitions, respectively.

Case 1: The code that is in the standard format. It usually
includes type declaration/assignment of variables, method
calls to variables, and a series of execution operations on
variables. In this case, the operation statement executed on the
variable (e.g., output variable value) contains the direct con-
tent of the code fragment. Thus, we define such a statement
as a direct statement, where the result of running the program
can be obtained directly by executing a series of operation
statements on the variable.

Case 2: The code that does not conform to the standard
format. In this case, the type declaration/assignment part of
the variable or the set of execution operations on the variable
is missing from the source code fragment. At this point,
we identify the operations performed on variables as direct
statements, which are type declaration/assignment statements
or method call statements for variables.

int sum=0;
for(int i=0; i<str.length; i++) {

int myint = integer.parseInt(str[i])
sum = sum + myint;

}

As listed in the code above, it contains assignments to
the variables and a series of execution operations on the
variable. If the above code contained only the second state-
ment, the type declaration/assignment of the variable would
be missing from the code. At this point, we consider it to
belong to Case 2 and can determine that this statement is a
direct statement.

2) INDIRECT STATEMENT
Definition 2: In the source code fragments, statements

that assist the execution of the direct statement and serve
as the primary operation of the program are defined as the
indirect statement.

Indirect statements are the central part of the source code
fragments and often occupy a lot of space in the entire source
code fragments. Indirect statements usually contain the oper-
ation, subject, and auxiliary parameters of a code fragment,
which provide the main content for the generated natural
language description. Therefore, compared with direct state-
ments, indirect statements also contain a lot of information,
such as variable declaration types and method calls. The

VOLUME 9, 2021 21581

X. Gao et al.: Multi-Module Based Method for Generating Natural Language Descriptions of Code Fragments

FIGURE 1. The overall architecture of our code summarization approach.

FIGURE 2. The preprocessing frame diagram of our method.

information generated from indirect statements can enable
program maintainers better to understand the meaning of an
entire code fragment.

3) SPECIAL STATEMENT
Usually, if some special statements appear in a code frag-
ment, they often convey more code information than direct
statements, e.g., the standard output function in the Java
language. Given a piece of code that contains the state-
ment sum = sum + myint, the statement is judged to
be a direct statement according to the format of the Java
program, and the statement conveys information about the
‘‘sum’’ operation of this piece of program code. Suppose you
add the statement System.out.println(“The sum
of the array elements is:” + sum) at the end
of the program code, the result of running the code
is ‘‘The sum of the array elements is: 100’’. Com-
pared with the direct statement sum = sum + myint,
the information delivered is richer and more direct. Spe-
cial statements have higher priority than direct statements.
We stipulate that in Java programs, statements contain-
ing the System.out.printlin() function are special
statements.

B. INTERNAL PROCESSING MODULE
Fig. 3 illustrates the overall framework of the internal pro-
cessing module. Specifically, it first uses the SWUM and
CamelCase to mine the identifier characteristics and then
combines the natural language template to generate the
description of code statements.

FIGURE 3. The internal processing frame diagram of our method.

The input information of this module is various types of
statements, and the output information is the natural language
description of the code statements. Its main task is to identify
the actions, themes, and auxiliary parameters in these input
statements.

1) NATURAL LANGUAGE TEMPLATES
Since the location of the subject and auxiliary parameters is
not fixed, we created a natural language text template in the
following form:

Verb A preposition B
In this template, A is the subject and B is the auxiliary

parameter. The positions of ‘‘verb’’ and ‘‘preposition’’ are
fixed.We stipulate that in a specific method call if part B does
not exist, the generated natural language ignores ‘‘preposi-
tion’’. We will introduce the conversion strategy of natural
language templates from four common code forms.

Case 1: Program statements are in the form of variable
declaration or assignment. The format of a statement of this
type is ‘‘Type variable = number’’. The right side of the oper-
ator is the subject, and the left side is the auxiliary parameter.
In the processing of the operator itself, if there is no unique
keyword (such as ‘‘new’’) on the right side, ‘‘assignment’’
is placed after the subject. Eventually, the description of the
above statement can be generated as ‘‘add number assignment
to type variable’’ according to the natural language template.

Case 2: Program statements are in the form of object
instantiation, i.e., statements contain the ‘‘new’’ keyword, and
such statements follow the format: ‘‘Class Object = new
Class()’’. This module uses CamelCase and SWUM to split
the identifier on the right side of the operator. We manually

21582 VOLUME 9, 2021

X. Gao et al.: Multi-Module Based Method for Generating Natural Language Descriptions of Code Fragments

added a template to the internal processing module accord-
ing to this format: ‘‘Instantiation class for the object’’. The
class after the keyword ‘‘new’’ is the same as the class in
front of the object, so only the class name after the keyword
‘‘new’’ needs to be processed, and ‘‘new’’ itself is replaced
by ‘‘Instantiation’’ in the description statement. For example,
given a direct statement: ‘‘DataOutputStream ds = new
DataOutputStream(fs)’’, we first use the CamelCase method
and SWUM to split the identifier ‘‘DataOutputStream’’ into
‘‘Data, Output, Stream’’. Since the parameter ‘‘fs’’ is not
defined, the natural language sentence ‘‘Instantiation data
output stream for fs’’ is generated.

Case 3: The form of the program statements is the class
name-calling method. This form is more complicated, and
usually, such statements follow the format: ‘‘class.method(
)’’. First, we adopt the CamelCase and SWUM to split the
format into ‘‘Class.verbW (Parameter)’’ to make it satisfy the
natural language template. ‘‘W’’ is the abbreviation of the
word, which is used to indicate the identifier after the verb.
In the actual project source code, ‘‘W’’ and ‘‘Parameter’’ may
not exist. The topics may be ‘‘Class’’, ‘‘W’’, and ‘‘Parame-
ter’’. The internal processing module judges the position of
the subject according to the following situations:

1) When both ‘‘W’’ and ‘‘Parameter’’ exist, and there is
no connection between the names of ‘‘W’’ and ‘‘Param-
eter’’, ‘‘W’’ is the subject by default. For example,
in ‘‘container.setLayout(null)’’, ‘‘Layout’’ is the sub-
ject, and ‘‘null’’ is the auxiliary parameter. At this
time, ‘‘Layout’’ corresponds to part ‘‘A’’ in the natu-
ral language template, and ‘‘null’’ corresponds to ‘‘B’’.
According to the template, a description sentence is
generated: ‘‘set Layout for container null’’.

2) When ‘‘W’’ exists and ‘‘Parameter’’ does not exist. Such
as ‘‘container.setLayout()’’, the subject is ‘‘W’’. Gener-
ate a description sentence based on the template: ‘‘set
layout for null’’.

3) When ‘‘W’’ does not exist and ‘‘Parameter’’ exists, such
as ‘‘container.set(null)’’ , subject is ‘‘null’’. Generate a
description sentence based on the template: ‘‘set null for
container’’.

4) When neither ‘‘Parameter’’ nor ‘‘W’’ exists. For exam-
ple, for ‘‘container.set()’’, ‘‘class’’ is the subject, and
the description sentence is generated according to the
template: ‘‘set container’’.

Case 4: For ‘‘System.out.printlin()’’. If the output of
the function is a natural language sentence, the content in the
function is directly extracted to describe the sentence. If the
output of the function contains a special form of identifier,
please refer to Case 1, Case 2, and Case 3 for handling.

C. EXTERNAL PROCESSING MODULE
Since the output of the internal processing module is a natural
language description of an independent source code state-
ment, the entire source code fragment’s behavior cannot be
described in general. To address this problem, we design an

FIGURE 4. The external processing frame diagram of our method.

external processing module to establish connections between
independent sentences for sentence optimization. Finally,
a natural language description of the source code fragment
is generated.

Fig. 4 shows the overall framework of the external process-
ing module. The external processing module takes descrip-
tion sentences (collectively referred to as sentences) output by
the internal processingmodule as input. It first sorts these sen-
tences through the sentence weight sorting algorithm accord-
ing to the subject word and sentence type weight value. Then,
it adopts the cosine similarity algorithm to calculate the sim-
ilarity between every two sentences. Finally, the redundant
information is removed based on the sentence optimization
algorithm to form a natural language description of the source
code fragment.

The ultimate goal of this module is to optimize mul-
tiple independent sentences into a short natural language
description text that conforms to human reading habits.
A total of m sentences may contain n subjects, so it is
urgent to distinguish the most important sentences and sub-
ject words, and delete duplicate words. To avoid accidental
deletion of subject words, we sort them first and then delete
them.

1) SENTENCES WEIGHT ALGORITHM
The final natural language description content is automat-
ically aggregated from each line of sentences. We aim to
prioritize individual sentences based on their weight values.
Specifically, we first arrange the sentences with high weight
values before the sentences with low weight values, and then
the natural language description of the source code fragment
can be generated according to the sentence with the highest
weight value. Based on the above purpose, we calculate the
importance of sentences from two aspects: sentence subject
and sentence type. The calculation method of the weight
value of statement Sd (1 ≤ d ≤ n) in all statements set Sn
(n ≥ 1) is as follows:

Wei(Sd) = WeiS (Sd)+WeiT (Sd), (1)

where Wei(Sd) represents the weight value of sentence Sd ,
WeiS (Sd) represents the weight value of the subject word
in sentence Sd , S is the abbreviation of the subject word;
WeiT (Sd) is expressed as the type importance of sentence Sd ;
‘‘T’’ is the abbreviation of the word Type.

VOLUME 9, 2021 21583

X. Gao et al.: Multi-Module Based Method for Generating Natural Language Descriptions of Code Fragments

a: SENTENCES SUBJECT WEIGHT CALCULATION
In terms of subject word selection, many methods pay too
much attention to the frequency of a certain word, that is,
the higher the word frequency of a word in the text, the more
critical the word maybe. However, we found that this rela-
tionship between word frequency and importance is not sat-
isfied in all cases. For example, in a source code fragment
describing ‘‘SET DIALOG’’, the word ‘‘SET’’ may appear
very frequently, but it only indicates an action and cannot
be used as the subject vocabulary of the code. Therefore,
the frequency of occurrence of a word cannot be used as
the only criterion for measuring the importance of the word.
To solve the above problems, we calculate the importance
of subject words based on the subject word decision strat-
egy in the internal processing module. Specifically, when a
vocabulary is determined as a subject word, the higher the
frequency of its occurrence, the higher the importance of
the vocabulary. Based on the above analysis, the calculation
method of the weight value of a single subject word k is as
follows:

Wei(k) = T (k)/
n∑
i=1

T (ki), (2)

where T (k) represents the number of occurrences of the
subject word k; T (ki) represents all subject words in the
code statement; n is the total number of occurrences of all
subject words in the code fragment. When the value of n is 1,
it means that the code statement contains only one subject
word k .

The calculation method of the subject words importance of
sentence Sd is further derived as follows:

WeiS (Sd) =
n∑
j=1

Wei(T (kj) : kj ∈ Sd), (3)

where T (kj) represents all the subject words in sentence Sd ;
n is the total number of occurrences of all subject words in
sentence Sd .

b: SENTENCES TYPE WEIGHT CALCULATION
According to the priority of the sentence types, the weight
value of each type of sentence is a special sentence, direct
sentence and indirect sentence in descending order. If the
parameter value of the sentence type is set too high, it will
weaken the influence of the subject word on the sentence
weight, and if it is too low, it will increase the influence.
According to Eq. (3), the subject word weight of a sentence
is the sum of the weights of individual subject words in the
sentence.

Based on the above analysis, each sentence needs to be
processed hierarchically. Given two sentences S1 and S2 arbi-
trarily from the sentence set Sn(n ≥ 1), the hierarchical
processing process is described as follows:

If sentences S1 and S2 belong to the same type, both
sentences have the same weight. In this case, the weight
values of the two sentences are determined by the weight

of the sentence subject words. In the calculation of the
weight value of the same type sentences, the parameter value
needs to be set. According to Eq. (2), the weight of a sin-
gle subject word is within the interval [0, 1]. If a sentence
only contains one subject word, the difference between the
weights of different sentence types is set to 1.0. Accord-
ingly, the hierarchical statement type weight is calculated as
follows:

WeiT (Sd) =

2.1, special statement
1.1, direct statement
0.1, indirect statement

If sentences S1 and S2 are not of the same type. The weight
values of the two sentences types are different, and the weight
values of the two sentences is determined by the sentence type
weight value.

c: SENTENCES SORTING ALGORITHM
In the foregoing work, we introduce that the weight value
of the entire sentence is determined by the sentence type.
Therefore, in the sentence sorting process, the types of sen-
tences S1 and S2 are first judged. Two sentences S1 and S2
are arbitrarily given from the sentence set Sn(n ≥ 1). Specif-
ically, if sentence S1 and sentence S2 are of the same type,
calculate the weight of sentence subject words, When the
weight of the subject word of sentence S1 is greater than that
of sentence S2, the output order is: S1 → S2, which means
the output sentence S1 is preferred; otherwise, the output
order is: S2 → S1, which means the output sentence S2 is
preferred. When the subject word weight of sentence S1 is
equal to the subject word weight of sentence S2, the output
order is: S1 ⇐⇒ S2, which means that the sentence is sorted
according to the input order of the sentence. If sentence S1
and sentence S2 are not of the same type, the weight of the
sentence subject word is ignored and the sentence type is
considered. When the priority of sentence type of sentence
S1 is greater than sentence S2, the output order is: S1 → S2;
otherwise, the output order is: S2→ S1. The detailed process
is shown in Table 1.

2) SENTENCES SIMILARITY CALCULATION
a: COSINE SIMILARITY CALCULATION
In terms of similarity calculation, we evaluate the degree of
similarity between sentences by calculating the cosine of the
angle between corresponding vectors. We map the sentence
Sn (such as S1, S2) to a m-dimensional space vector, and
calculates the similarity of the sentence in the form of the
space vector.When the vector cosine value changeswithin the
interval [−1, 1], the similarity of sentences can be displayed
intuitively.

Suppose the sentence set Sn = {S1, S2, . . . , Sn} corre-
sponds to the vector set Vn = {V1,V2, . . . ,Vn}, If the
angle between vectors Vi and Vj is θ , then the plane vector
cosine formula cosθ = Vi·Vj

|Vi|×|Vj|
is used to further derive the

21584 VOLUME 9, 2021

X. Gao et al.: Multi-Module Based Method for Generating Natural Language Descriptions of Code Fragments

TABLE 1. Sentence ordering algorithm process of our method.

similarity formula in the case of multidimensional vectors:

similarity(vi, vj) =

m∑
i=1
j=1

(Vi · Vj)

√
m∑
i=1

(Vi)2 ×

√
m∑
j=1

(Vj)2
(4)

b: SENTENCES OPTIMIZATION ALGORITHM
Given any two sentences Si(1 ≤ i ≤ n) and Sj(1 ≤ j ≤
n) from the set of sentences Sn(n ≥ 1), when calculating
the similarity of sentences Si and Sj, a threshold interval is
set according to the cosine similarity calculation principle.
When the similarity value changes in this interval, if the
similarity(Si, Sj) value is 1, it is judged that the two sentences
are completely duplicated, and one of these two sentences
is randomly deleted; If the similarity(Si, Sj) value is 0, it is
judged that the two sentences are completely non-repetitive.
At this point, the results are output in the order in which the
sentences are entered. If 0<similarity(Si, Sj)<1, it is judged
that the two sentences have duplicate information, and the
redundant information is optimized and deleted for sentences
Si and Sj. The specific process is as follows.
The input sentences Si and Sj of any length can be

regarded as vocabulary sets composed of n1 and n2 words
Si = {wi1,wi2,wi3, . . . ,win1}, Sj = {wj1,wj2,wj3, . . . ,wjn2},
where wi1,wi2,wi3, . . . ,win1 and wj1,wj2,wj3, . . . ,
wjn2 , respectively represent the vocabulary constituting sen-
tences Si and Sj. The sentence optimization operation uses
double inner and outer loops to traverse the vocabulary sets
in sentences Si and Sj. If the current traversal vocabulary
wi(wi ∈ Si) and wj(wj ∈ Sj) are repeated in the inner loop,
keep the format of sentence Si where vocabulary wi is located
and delete vocabulary wj in sentence Sj until the vocabulary
between the two sentences is all traversed and compared; If
the current traversal vocabulary wi(wi ∈ Si) and wj(wj ∈ Sj)
are not repeated in the inner loop, skip the current inner
loop.
The pseudo code of the sentence optimization algorithm

described in this section is shown in Algorithm 1.
In Algorithm 1, Summary(Si → Sj) represents a natural

language description composed of sentences Si and Sj in the
initial form; Summary(Si/Sj) represents a natural language

Algorithm 1 Flow Chart of Sentence Optimization
Algorithm
Input: Si, Sj ∈ Sn(n ≥ 1).
Output: Summary.

1: Algorithm Process:
2: if Similarity(Si, Sj) = 0 then
3: Output:Summary(Si→ Sj);

4: if Similarity(Si, Sj) = 1 then
5: Output:Summary(Si/Sj);

6: if 0<Similarity(Si, Sj)<1 then
7: Output:Summary(Si, Sj).

description composed of Si after the sentence Sj is deleted;
Summary(Si, Sj) represents a natural language description
composed of sentences Si and Sj after the operation of opti-
mizing and deleting redundant information.

3) ALGORITHM
According to the relationship between the sentences, the sort-
ing algorithm based on sentence weight value calculation
and the optimization algorithm based on cosine similarity
calculation in the external processingmodule are summarized
as follows.
Step 1 Enter the sentence of the source code statement.
Step 2 Calculate the importance of subject words in each

sentence according to Eq. (1).
Step 3 Calculate the importance of each line of sentences

based on subject words and sentence types accord-
ing to Eq. (2) and rank the sentences in order of
importance.

Step 4 Calculate the similarity between sentences according
to Eq. (4) and execute Algorithm 1.

IV. EXPERIMENTAL SETTING
A. RESEARCH QUESTIONS
To evaluate the performance of this research method. This
paper conducts experiments in terms of accuracy, simplic-
ity, and smoothness to answer the following three research
questions:

VOLUME 9, 2021 21585

X. Gao et al.: Multi-Module Based Method for Generating Natural Language Descriptions of Code Fragments

TABLE 2. Statistics of the datasets.

1) RQ1 (Accuracy Evaluation): Can the program descrip-
tion generated by our method accurately describe the
functionality of the source code?

2) RQ2 (Simplicity Evaluation): Compared with the tra-
ditional method, does the program description generated
by our method use concise sentences to express the
meaning of the source code?

3) RQ3 (Smoothness Evaluation): Is the program descrip-
tion generated by our method semantically fluent and in
line with the programmer’s reading habits? Is it easier
than viewing the source code?

B. DATASETS
We collected Github’s open source project Hmkcode1 and
algorithm data2 as experimental datasets. The statistics of the
number of files, code statements, and vocabulary included in
these projects are listed in Table 2.

C. METRICS
In the experiment, we use three evaluation indicators, namely
accuracy, simplicity and smoothness, which are defined as
follows:

Accuracy Rate. The accuracy rate is the ratio of gener-
ated program description subject words to actual program
code subject words. For the program description T of a code
fragment, the formula for calculating accuracy is defined as
follows:

Accuracy =

∑m
1 Km∑n
1 Cn

, (5)

where Km = {K1,K2, . . . ,Km} is the set of program descrip-
tion subject words, and Cn = {C1,C2, . . . ,Cn} is the set of
program code subject words.

Simplicity. The standard of conciseness can be measured
by the total number of words that constitute the description
of the program. In converting the program code to its final
program description, under the premise of retaining impor-
tant information, the more redundant information is deleted,
the more concise the program description is. Suppose that the
program description sentence T is generated from the pro-
gram code statement set P = {P1,P2, . . . ,Pn}, the simplicity
of the sentence T is calculated by:

Simplicity =

∑n
1 Pn −

∑
WT∑n

1 Pn
, (6)

where
∑n

1 Pn is the total vocabulary of the program code
fragment, including repeated words;

∑
WT is the number of

words contained in the program description T.

1https://github.com/hmkcode/Java.
2https://github.com//TheAlgorithms/Java.

FIGURE 5. The overall workflow of our code summarization approach.

Smoothness. Smoothness refers to whether the program
description is semantically fluent and whether it conforms
to the programmer’s reading habits. The smoothness evalu-
ation standard adopts the manual evaluation method, which
is described in detail in Section V-B.

V. EXPERIMENTAL RESULTS
A. ANSWER TO RQ1
To evaluate the generated descriptions’ accuracy, we conduct
the experiment by judging if the correct subject words can be
generated. Compared with two automatic generationmethods
and two human groups, our method can extract the subject
words more accurately.

The two automatic methods are the TextRank proposed
by Mihalcea et al. [14], and the Suncode proposed by
Msie et al. [34]. In addition to this, we compared the method
with two groups of people: the first group consisted of six
PhD students majoring in computer science at ShandongNor-
mal University with more than 3 years of programming expe-
rience (referred as PhD Group); the second group consisted
of six programmers working at Inspur Software Company
and developing Java for more than 5 years (referred as Pro
Group). In the manual extraction method, the two groups
were asked to provide the corresponding descriptions of the
code fragments with the following requirements: 1) No limit
on the number of words in the description; 2) People in the
same group are free to discuss; 3) People in different groups
are not allowed to discuss with each other.

In this experiment, we used the sample program code
in Fig. 5 as the experimental input, and then calculated the
number of subject words contained in the generated program
descriptions.

As shown in Table 3, the bold part is the three sub-
ject words. The experimental results show that the program
descriptions generated by both the proposed method and
Pro Group contain the entire vocabulary in the code lines,
especially retaining all the subject words. The PhD Group
omitted some parameter values but kept the subject words.
In the program description generated by the TextRank, most
the subject words are ignored, resulting in a relatively sim-
ple description with limited information about the program
function. The Suncode can summarize the class and method
names in the source code, and conduct information mining
on the core running program. Although its generated result

21586 VOLUME 9, 2021

X. Gao et al.: Multi-Module Based Method for Generating Natural Language Descriptions of Code Fragments

TABLE 3. Comparison of keyword extraction results between various methods.

FIGURE 6. Comparison of reduction rate between our method and other
methods.

retains all the subject words, some parameters are missing,
affecting the ability of the description to express the detailed
functions of the code.

For the other 30 codes in the dataset, we counted the num-
ber of subject words in the generated program descriptions.
The results show that the natural language description gen-
erated by our method contains a total of 275 subject words,
and the accuracy rate reaches 96%. Both the manual ways
and the other two baseline accuracy rates are only over 70%.
This experiment shows that the sorting algorithm has a high
accuracy rate in retaining the subject words.

In conclusion, the above results verify that our method can
extract subject words in code fragments more accurately than
manual methods, Suncode and TextRank. As a result, our
method’s program descriptions can more accurately describe
the functions of the code.

B. ANSWER TO RQ2
For the code fragment shown in Fig. 5, the simplicity of
our approach is 40%. We also tested the simplicity of each
method for generating results on the other 30 code fragments.

As shown in Fig. 6, the average vocabulary simplicity
rates of our method, PhD group, and Pro Group are 55.4%,
49.0%, and 53.1%, respectively. This verifies that the pro-
posed method can effectively improve the simplicity of the
program description. Note that we did not conduct compara-
tive experiments with other automatic methods in simplicity

rates.This is because these methods generate only a single
program description sentences, not paragraphs of program
description, so they have no basis for comparison.

The experimental results show that the vocabulary sim-
plicity rate of our method is highest, which verifies that our
method can generate more concise descriptions of the code
fragments.

C. ANSWER TO RQ3
The evaluation of smoothness currently relies on human judg-
ment. For this reason, we invited ten software engineers from
Inspur as evaluators to evaluate the experimental results gen-
erated by our method, two manual ways and two baselines.
We randomly select 30 pieces of source code from the dataset
as experimental data.

1) EVALUATION PROCESS
We divided the 10 evaluators equally into two groups, with
one group providing only 30 pieces of source code and the
other group providing both 30 pieces of source code and the
corresponding comments (descriptions). At the same time,
we set up a set of questionnaires for the evaluators to score
the results of each method, including:
• How complete is the code summarization information?
• How well does the code summarization summarize the
function of the code?

• How smooth is the code summarization?
• Does the code summarization conform to reading con-
ventions?

• How well did the evaluators approve of the code sum-
marization?

Evaluators are required to assign a score of 1 to 10 to
each generated result for each evaluation question, and then
use the average score of each problem as the final result.
The higher the average score is, the higher the smoothness
is. We divide the measurement results into Approval, Neu-
tral, and Negative. Negative corresponds to 1∼3, indicating
that the evaluator believes the comment is poor and cannot
describe the meaning of the program code fragment at all
or loses some vital information (such as the subject name);
Neutral corresponds to 4∼7 points, indicating that the
evaluator believes the comment is generally effective and

VOLUME 9, 2021 21587

X. Gao et al.: Multi-Module Based Method for Generating Natural Language Descriptions of Code Fragments

FIGURE 7. Comparison of smoothness between our method and other
methods.

can basically describe the meaning of the source code, but
the comment is too complicated and not concise enough;
Approval corresponds to 8∼10 points, indicating that the
evaluator believes that the comment is more consistent with
the programmer’s intent and can accurately describe the
meaning of the code.

2) RESULTS
As shown in Fig. 7 (The horizontal coordinates indicate the
ratings, and the vertical coordinates indicate the number of
code fragments in each rating). We conducted two sets of
manual evaluations for 30 source code fragments. For the
first group of evaluators, the number of code fragments in
the Approval and Neutral ratings of our methods is equal
but much higher than those in the Negative. Both manual
methods have a smaller number of Approval code fragments
and a larger number of Negative code fragments. The Tex-
tRank method and the Suncode method obtain relative good
Approval results but are lower than our method. For the sec-
ond group of evaluators, they believe our method has the
highest number of Approval code fragments. Meanwhile,
the number of Negative code fragments is higher for both
manual methods. The TextRankmethod and Suncode method
are similar to the first set of results. From the two sets of
manual evaluations, it can be seen that our method has the
most significant advantage. In other words, our method has
the highest smoothness.

Longitudinally there is some variability in the assessment
results due to the different code information given by the two
groups of assessors. The first group of evaluators gave only
30 source code segments with no corresponding comments,

FIGURE 8. Evaluation results of our method and other methods.

so it is more subjective. Therefore, there is a somewhat con-
servative attitude towards ourmethod, and the number of code
fragments of Neutral rating is higher. A similar phenomenon
occurs with the TextRank method and the Suncode method.
The second group of evaluators gave 30 source code segments
and their corresponding comments, and the final score was
derived by referring to the comments. From the second set
of scores, we can see that the number of Neutral code frag-
ments decreases, and the number of Approval code fragments
increases. The program descriptions generated by our method
have a high match with the comments and achieve better
smoothness.

21588 VOLUME 9, 2021

X. Gao et al.: Multi-Module Based Method for Generating Natural Language Descriptions of Code Fragments

We also analyzed the scores of the two groups of raters
together and calculated the percentage of approval, neutral,
and negative for each method. As shown in Fig. 8, our
method, PhD Group, Pro Group, TextRank and Suncode
achieved Approval rates of 81.3%, 70.0%, 81.6%, 65.3% and
56.7%, respectively. The evaluators gave the least proportion
of neutral opinions on the program description written by
the Pro Group, and the rest are our method, the PhD Group
and other methods in order. The evaluators have the lowest
negative rate of the method in this paper, followed by the Tex-
tRank method and the Suncode method, and the manual ways
have the highest negative rate. Experimental results show
that the method in this paper optimizes program description
based on cosine similarity, and can generate natural language
description with high smoothness, which is more in line with
human reading habits.

VI. THREATS TO VALIDITY
We have identified the following threats to validity.

A. INTERNAL VALIDITY
A threat to internal validity stems from the limitations of code
mining tools. In this paper, we use SWUM and CamelCase to
mine code features. Some important wordsmay be lost during
code mining, and although the loss rate is low, the amount
of missing information may increase when applied to large
projects. In the future, we will explore more effective code
mining tools to extract code features.

B. EXTERNAL VALIDITY
Threats to external validity include the quality and represen-
tativeness of the datasets. We have collected only two Java
datasets to verify the effectiveness of our method. We will
continue to try multiple types of datasets to validate our
approach. Another threat to external validity is code language
limitation. Our approach is to experiment only with the Java
language. Although the original design goals were not limited
to the Java language, there is no direct experimental data
to show that the method applies to other programming lan-
guages. In the future, we plan to generalize our approach to
other programming languages. In addition, we invited several
volunteers to write natural language descriptions by hand, and
the sample code fragments in the comparison experiments
were shorter, considering the time limit for reading the code
manually. Therefore, there may exist errors when dealing
with large projects.

VII. RELATED WORK
A. AUTOMATIC TEXT SUMMARIZATION
Automatic text summarization refers to the use of concise
language to summarize the text’s subject, which is similar
to the task of code summarization. Therefore, code sum-
marization can learn from the studies of automatic text
summarization [7], [44]. According to the different output
types, automatic text summarization can be divided into
knowledge-based abstract summarization method [6] and
statistics-based extractive summarization method [8].

The abstract text summarizationmethod aims to use natural
language understanding technology to analyze the text and
generate a summary based on the analysis result. Liu et al. [9]
proposed to use abstract meaning representation (AMR)-
based methods [10] to generate text summarization. AMR
adopted a directed acyclic graph with root nodes to express
the semantic structure of sentences. It used JAMR to analyze
the sentence structure and express each sentence as an AMR
graph. The authors merged the AMR graphs of all sentences
into a total AMR graph to extract the most semantic informa-
tion. Finally, integer linear programming (ILP) and support
vector machine (SVM) was used to constrain the whole AMR
graph and learned the coefficients, respectively, to obtain the
optimal subgraph that can be reduced to a summarization.
Although the AMR-based graph model can effectively rep-
resent the semantic structure of the text, the current research
on AMR is only at the initial stage, and more efficient
graph decoding algorithms need to be explored in the future.
Rush et al. [11] used the Encoder-Decoder framework based
on deep learning and the attention mechanism to perform
sentence-level text summarization. They represented each
word in the sentence as a vector and inputted it to the encoder
for semantic encoding to obtain a fixed-dimensional semantic
vector. Then, a decoder was used to decode the semantic
vector to get the text summarization output. To solve the
problem of processing long sentences caused by the fixed
vector dimension, the authors introduced an attention mech-
anism [12], which assigned different weights to the word
vectors that were input into the decoder to determine its
influence on the current output. In this way, its performance
is improved. However, the models mentioned above are based
on deep learning, which relies on the support of a large
amount of training data. Besides, the input of the model is
a sequence of words, lacking consideration of the semantic
structure of the text. To summarize, the abstract text sum-
marization approach has the advantages of flexibility and
readability and generates higher quality summarization [36].
However, the generalizability of such methods has yet to be
improved as the implementation of the models requires a
large knowledge base and training data support.

The extractive text summarization method selects vital
sentences from the text to generate a summarization. The
earliest method of extracting text summarization was based
on word frequency statistics [13]. This method divided the
text into word combinations and calculated the frequency
of words in the text. The authors used words with high
frequency as abstract words for the text. Inspired by PageR-
ank, Rada et al. [14] proposed a graph-based text processing
algorithm (TextRank) and applied it to generate text sum-
marization. This work first divided the text into a collection
of individual sentences and vectorized the sentences. Then,
it calculated the similarity between sentence vectors and
stored the similarity score in the form of a matrix. The authors
converted the matrix into a graph with sentences as nodes and
similarity scores as edges’ weights. After that, they used the
TextRank algorithm to obtain the sentence with the highest

VOLUME 9, 2021 21589

X. Gao et al.: Multi-Module Based Method for Generating Natural Language Descriptions of Code Fragments

ranking, which was finally used as the summarization of the
text [45]. The advantage of the extractive method is that 1) it
can retain the original text information to the greatest extent;
2) it is faster; and 3) the summarization’s subject is not easy
to shift. The disadvantage is that it merely selects information
in the text and is not flexible enough. Existing research shows
that the extractive text summarization methods are generally
better than the abstract text summarization methods [37].
However, with the continuous development of deep learning
today, abstract text summarization is developing rapidly, and
good results have also been obtained on specific datasets.

Techniques in text summarization can also be applied to
code summarization. For example, CamelCase aims to com-
bine two or more words into one word. From a formal point
of view, compound words are uneven and hump-shaped. For
instance, ‘‘PlayStation’’ is the product name of the SONY
company, and the first letters of the words ‘‘Play’’ and ‘‘Sta-
tion’’ are both capitalized. The spelling does not conform to
English writing standards, but it is widely used in program-
ming languages. In this paper, we use CamelCase to process
identifiers. For example, we use CamelCase to split the iden-
tifier ‘‘ABYButton234’’ to extract ‘‘Button.’’ ‘‘ABY’’ and
‘‘234’’ are automatically ignored because ‘‘ABY’’ and ‘‘234’’
may have no practical meaning in this identifier. This is
because using the first letter of a word to separate identifiers is
more concise and more consistent with human reading habits
than separating words by other characters. For example,
‘‘DataBase’’ seems easier to read than ‘‘DATABase’’ [39].

SWUM refers to the software word usage model, which
captures source code text and structure information through
a three-layer structure of SWUMword , SWUMprogram, and
SWUMcore. In this paper, we use it to split code identifiers to
obtain method information, such as actions, topics, and some
parameters [38]. Specifically, given a callingmethod, we ana-
lyze the calling method name (signature). If the method name
contains verb components (such as Contents.add(‘‘list 1′′)),
SWUM directly expresses the verb ‘‘add’’ as the operation
for the method call. However, not all codes contain verb
components. Thus, SWUM infers words that may represent
actions based on the structure of the method name (such as
the position of the word in the method name and form type).
For example, in Image.savedImage(), SWUM uses ‘‘save’’
to represent the operation of the method.

B. AUTOMATIC CODE SUMMARIZATION
Automatic code summarization is essentially the implemen-
tation of a mapping relationship between code and natural
language [42].Maskeri et al. [17] proposed using information
retrieval techniques for code analysis and proposed a seman-
tic clustering-based strategy to reveal code intent. In another
work, Kuhn et al. [15] proposed a three-level hierarchical
Bayesian probabilistic topic model based on LDA to model
and analyze code summarization. Specifically, this work first
extracted the semantic topic information and user manual
information presented in the code using LDA. Then, it cal-
culated the correlation between the software code and the

software description document. Finally, it extracted the text
describing the code functionality using the LexRank algo-
rithm. Baldi et al. [16] verified the effectiveness of using
LDA technology to mine code topics through experiments.
In general, LDA techniques are effective for the abstraction
of code topics, but such techniques are not sufficiently com-
plete for mining code features to reflect code functionality
comprehensively. Therefore, there is still much room for the
development of LDA-based code topic techniques.

The development of deep learning has opened up another
area of code summarization methods [35]. Convolutional
Neural Network (CNN) contains convolution operations that
consist of three parts: convolution, activation, and pooling.
Translation invariance is the most crucial feature of CNN,
and the effect of feature aggregation can be obtained through
convolution operation [18]. Allamanis et al. [19] used VSM
(Vector SpaceModel) andCNN to study code summarization.
The researchers treated the code as an image, and each code
element could correspond to a point in the picture. Therefore,
CNN could extract the features of the code elements like
a convolutional image to capture the high-level semantic
structure of the code. The author conducted experiments with
10 Java projects and achieved good results. In addition to
CNN, Recurrent Neural Network (RNN) [20] has achieved
great success in natural language processing (NLP), espe-
cially Seq2seq uses RNN as the basic network and is widely
used in machine translation and other tasks [21]. Iyer et al. [5]
applied Seq2seq to the field of code summarization and
achieved significant results. They segmented the codes, vec-
torized them using word embedding techniques, and inputted
them to the encoder for encoding, where the codes were
converted to hidden vectors. The decoder accepted the hid-
den vectors as input and assigned different weights to them.
Finally, the required natural language description was output
by the decoder. In general, code summarization methods
based on deep learning use unsupervised or semi-supervised
learning. It summarizes code features by training a large
amount of data, which affects the model’s generalization
ability. Therefore, it is a challenge to obtain high-quality
labeled training data for code summarization [40].

VIII. CONCLUSION
In this paper, we proposed a new method that can automat-
ically generate source code natural language descriptions.
This method is unique because it focuses on the overall state-
ments in the entire code fragment, rather thanmerely process-
ing a line of code. This method first classifies code statements
according to the division rules and performs priority process-
ing. Then, it uses identifier processing tools to mine code
characteristics and generates program descriptions for each
line of code statements based on natural language templates.
Finally, it adopts cosine similarity measures to sort and opti-
mize the program descriptions of code statements to generate
natural language descriptions of the source code fragment.
We conducted comparative experiments and manual evalua-
tions on two datasets. The experimental results show that the

21590 VOLUME 9, 2021

X. Gao et al.: Multi-Module Based Method for Generating Natural Language Descriptions of Code Fragments

proposedmethod outperforms other competitors significantly
in terms of accuracy, simplicity, and smoothness.

REFERENCES
[1] S. Haiduc, J. Aponte, L.Moreno, and A.Marcus, ‘‘On the use of automated

text summarization techniques for summarizing source code,’’ in Proc.
17th Work. Conf. Reverse Eng., Oct. 2010, pp. 35–44.

[2] B. P. Eddy, J. A. Robinson, N. A. Kraft, and J. C. Carver, ‘‘Evaluat-
ing source code summarization techniques: Replication and expansion,’’
in Proc. 21st Int. Conf. Program Comprehension (ICPC), May 2013,
pp. 13–22.

[3] L. Moreno, J. Aponte, G. Sridhara, A. Marcus, L. Pollock, and
K. Vijay-Shanker, ‘‘Automatic generation of natural language summaries
for java classes,’’ in Proc. 21st Int. Conf. Program Comprehension (ICPC),
May 2013, pp. 23–32.

[4] A. Tuan Nguyen and T. N. Nguyen, ‘‘Automatic categorization with deep
neural network for open-source java projects,’’ in Proc. IEEE/ACM 39th
Int. Conf. Softw. Eng. Companion (ICSE-C), May 2017, pp. 164–166.

[5] S. Iyer, I. Konstas, A. Cheung, and L. Zettlemoyer, ‘‘Summarizing source
code using a neural attention model,’’ in Proc. 54th Annu. Meeting Assoc.
Comput. Linguistics (Long Papers), vol. 1, 2016, pp. 2073–2083.

[6] S. Gehrmann, Y. Deng, and A. M. Rush, ‘‘Bottom-up abstractive sum-
marization,’’ 2018, arXiv:1808.10792. [Online]. Available: http://arxiv.
org/abs/1808.10792

[7] M. Gambhir and V. Gupta, ‘‘Recent automatic text summarization tech-
niques: A survey,’’ Artif. Intell. Rev., vol. 47, no. 1, pp. 1–66, Jan. 2017.

[8] L. Luo, X. Ao, Y. Song, F. Pan, M. Yang, and Q. He, ‘‘Reading like
HER: Human reading inspired extractive summarization,’’ in Proc. Conf.
Empirical Methods Natural Lang. Process. 9th Int. Joint Conf. Natural
Lang. Process. (EMNLP-IJCNLP), 2019, pp. 3024–3034.

[9] F. Liu, J. Flanigan, S. Thomson, N. Sadeh, and N. A. Smith, ‘‘Toward
abstractive summarization using semantic representations,’’ 2018,
arXiv:1805.10399. [Online]. Available: http://arxiv.org/abs/1805.10399

[10] L. Banarescu, C. Bonial, S. Cai, M. Georgescu, K. Griffitt, U. Hermjakob,
K. Knight, P. Koehn, M. Palmer, and N. Schneider, ‘‘Abstract meaning rep-
resentation for sembanking,’’ in Proc. 7th Linguistic Annotation Workshop
Interoperability Discourse, 2013, pp. 178–186.

[11] A. M. Rush, S. Chopra, and J. Weston, ‘‘A neural attention model for
abstractive sentence summarization,’’ 2015, arXiv:1509.00685. [Online].
Available: http://arxiv.org/abs/1509.00685

[12] D. Bahdanau, K. Cho, and Y. Bengio, ‘‘Neural machine translation by
jointly learning to align and translate,’’ 2014, arXiv:1409.0473. [Online].
Available: http://arxiv.org/abs/1409.0473

[13] O. Tas and F. Kiyani, ‘‘A survey automatic text summarization,’’ Pres-
sacademia, vol. 5, no. 1, pp. 205–213, Jun. 2017.

[14] R. Mihalcea and P. Tarau, ‘‘Textrank: Bringing order into text,’’ in Proc.
Conf. Empirical Methods Natural Lang. Process., 2004, pp. 404–411.

[15] A. Kuhn, S. Ducasse, and T. Gírba, ‘‘Semantic clustering: Identifying
topics in source code,’’ Inf. Softw. Technol., vol. 49, no. 3, pp. 230–243,
Mar. 2007.

[16] P. F. Baldi, C. V. Lopes, E. J. Linstead, and S. K. Bajracharya, ‘‘A theory
of aspects as latent topics,’’ ACM SIGPLAN Notices, vol. 43, no. 10,
pp. 543–562, Oct. 2008.

[17] G. Maskeri, S. Sarkar, and K. Heafield, ‘‘Mining business topics in source
code using latent Dirichlet allocation,’’ in Proc. 1st Conf. India Softw. Eng.
Conf. ISEC, 2008, pp. 113–120.

[18] I. Hadji and R. P. Wildes, ‘‘What do we understand about convolutional
networks?’’ 2018, arXiv:1803.08834. [Online]. Available: http://arxiv.
org/abs/1803.08834

[19] M. Allamanis, H. Peng, and C. Sutton, ‘‘A convolutional attention network
for extreme summarization of source code,’’ in Proc. Int. Conf. Mach.
Learn., 2016, pp. 2091–2100.

[20] W. Zaremba, I. Sutskever, and O. Vinyals, ‘‘Recurrent neural network
regularization,’’ 2014, arXiv:1409.2329. [Online]. Available: http://arxiv.
org/abs/1409.2329

[21] I. Sutskever, O. Vinyals, and Q. V. Le, ‘‘Sequence to sequence learning
with neural networks,’’ in Proc. Adv. Neural Inf. Process. Syst., 2014,
pp. 3104–3112.

[22] P. W. McBurney and C. Mcmillan, ‘‘Automatic documentation generation
via source code summarization of method context,’’ in Proc. 22nd Int.
Conf. Program Comprehension - ICPC, 2014, pp. 279–290.

[23] X. Hu, G. Li, X. Xia, D. Lo, S. Lu, and Z. Jin, ‘‘Summarizing source
code with transferred API knowledge,’’ in Proc. 27th Int. Joint Conf. Artif.
Intell., Jul. 2018, pp. 1–9.

[24] P. Fernandes, M. Allamanis, and M. Brockschmidt, ‘‘Structured neu-
ral summarization,’’ 2018, arXiv:1811.01824. [Online]. Available: http://
arxiv.org/abs/1811.01824

[25] X. Hu, G. Li, X. Xia, D. Lo, and Z. Jin, ‘‘Deep code comment generation,’’
in Proc. 26th Conf. Program Comprehension, May 2018, p. 200.

[26] P. Malhotra, L. Vig, G. Shroff, and P. Agarwal, ‘‘Long short term memory
networks for anomaly detection in time series,’’ in Proc. ESANN, vol. 89,
2015, pp. 89–94.

[27] M.-T. Luong, H. Pham, and C. D. Manning, ‘‘Effective approaches to
attention-based neural machine translation,’’ 2015, arXiv:1508.04025.
[Online]. Available: http://arxiv.org/abs/1508.04025

[28] P. W. McBurney and C. Mcmillan, ‘‘An empirical study of the textual
similarity between source code and source code summaries,’’ Empirical
Softw. Eng., vol. 21, no. 1, pp. 17–42, Feb. 2016.

[29] W. Li, Y. Cao, J. Zhao, Y. Zou, and B. Xie, ‘‘Toward summary extraction
method for functional topic,’’ in Proc. IEEE Int. Conf. Softw. Qual., Rel.
Secur. Companion (QRS-C), Jul. 2017, pp. 16–23.

[30] R.Wang, H. Zhang, G. Lu, L. Lyu, andC. Lyu, ‘‘Fret: Functional reinforced
transformer with BERT for code summarization,’’ IEEE Access, vol. 8,
pp. 135591–135604, 2020.

[31] P.W.McBurney and C.Mcmillan, ‘‘Automatic source code summarization
of context for java methods,’’ IEEE Trans. Softw. Eng., vol. 42, no. 2,
pp. 103–119, Feb. 2016.

[32] C. babu K, K. C., and S. N, ‘‘Entity based source code summarization
(EBSCS),’’ in Proc. 3rd Int. Conf. Adv. Comput. Commun. Syst. (ICACCS),
Jan. 2016, pp. 1–5.

[33] X. Wang, L. Pollock, and K. Vijay-Shanker, ‘‘Automatically generating
natural language descriptions for object-related statement sequences,’’ in
Proc. IEEE 24th Int. Conf. Softw. Anal., Evol. Reeng. (SANER), Feb. 2017,
pp. 205–216.

[34] R. Al-Msie’deen and A. H. Blasi, ‘‘Supporting software documentation
with source code summarization,’’ 2018, arXiv:1901.01186. [Online].
Available: http://arxiv.org/abs/1901.01186

[35] Z. Liu, X. Xia, C. Treude, D. Lo, and S. Li, ‘‘Automatic generation of pull
request descriptions,’’ inProc. 34th IEEE/ACM Int. Conf. Automated Softw.
Eng. (ASE), Nov. 2019, pp. 176–188.

[36] J. Cheng and M. Lapata, ‘‘Neural summarization by extracting sentences
and words,’’ 2016, arXiv:1603.07252. [Online]. Available: http://arxiv.
org/abs/1603.07252

[37] M. Zhong, P. Liu, Y. Chen, D. Wang, X. Qiu, and X. Huang, ‘‘Extrac-
tive summarization as text matching,’’ 2020, arXiv:2004.08795. [Online].
Available: http://arxiv.org/abs/2004.08795

[38] M. Harman, N. Gold, R. Hierons, and D. Binkley, ‘‘Code extraction algo-
rithms which unify slicing and concept assignment,’’ in Proc. 9th Work.
Conf. Reverse Eng., Oct. 2000, pp. 11–20.

[39] E. Enslen, E. Hill, L. Pollock, and K. Vijay-Shanker, ‘‘Mining source
code to automatically split identifiers for software analysis,’’ in Proc.
6th IEEE Int. Work. Conf. Mining Softw. Repositories, May 2009,
pp. 71–80.

[40] Y.Wan, Z. Zhao,M. Yang, G. Xu, H. Ying, J.Wu, and P. S. Yu, ‘‘Improving
automatic source code summarization via deep reinforcement learning,’’
in Proc. 33rd ACM/IEEE Int. Conf. Automated Softw. Eng., Sep. 2018,
pp. 397–407.

[41] Y. Yang, X. Chen, and J. Sun, ‘‘Improve language modeling for code
completion through learning general token repetition of source code with
optimized memory,’’ Int. J. Softw. Eng. Knowl. Eng., vol. 29, no. 11n12,
pp. 1801–1818, Nov. 2019.

[42] R. Kadar, S. M. Syed-Mohamad, and N. A. Rashid, ‘‘Semantic-based
extraction approach for generating source code summary towards program
comprehension,’’ in Proc. 9th Malaysian Softw. Eng. Conf. (MySEC),
Dec. 2015, pp. 129–134.

[43] S. Rai, T. Gaikwad, S. Jain, and A. Gupta, ‘‘Method level text summariza-
tion for java code using nano-patterns,’’ in Proc. 24th Asia–Pacific Softw.
Eng. Conf. (APSEC), Dec. 2017, pp. 199–208.

[44] X. Wang, L. Pollock, and K. Vijay-Shanker, ‘‘Developing a model of
loop actions by mining loop characteristics from a large code corpus,’’
in Proc. IEEE Int. Conf. Softw. Maintenance Evol. (ICSME), Sep. 2015,
pp. 51–60.

[45] H. Niu, I. Keivanloo, and Y. Zou, ‘‘Learning to rank code examples for
code search engines,’’ Empirical Softw. Eng., vol. 22, no. 1, pp. 259–291,
Feb. 2017.

VOLUME 9, 2021 21591

X. Gao et al.: Multi-Module Based Method for Generating Natural Language Descriptions of Code Fragments

XUEJIAN GAO is currently pursuing the master’s
degree with the School of Information Science and
Engineering, Shandong Normal University, Jinan,
China, under the guidance of C. Lyu. His research
interests include natural language processing, code
analysis, and artificial intelligence.

XUE JIANG is currently pursuing the bachelor’s
degree with the School of information Science and
Engineering, Shandong Normal University, Jinan,
China, under the guidance of C. Lyu. Her research
interests include program comprehension, auto-
matic program summarization, and component
based software development.

QIONG WU is currently pursuing the bachelor’s
degree with the School of information Science and
Engineering, Shandong Normal University, Jinan,
China, under the guidance of C. Lyu. Her research
interests include code analysis and artificial
intelligence.

XIAO WANG is currently pursuing the master’s
degree with the School of Information Science and
Engineering, Shandong Normal University, Jinan,
China, under the guidance of C. Lyu. Her research
interests include natural language processing, code
analysis, and artificial intelligence.

LEI LYU received the Ph.D. degree in computer
application technology from the University of
Chinese Academy of Science, in 2013. He is
currently an Associate Professor with the School
of Information Science and Engineering, Shan-
dong Normal University, Jinan, China. His
current research interests include software engi-
neering and programming languages, includ-
ing automated software analysis and software
evolution.

CHEN LYU received the Ph.D. degree from
the Institute of Computing Technology, Chinese
Academy of Sciences, Beijing, China, in 2015.
He is currently an Associate Professor with the
School of Information Science and Engineering,
Shandong Normal University, Jinan, China. His
research interests include program comprehen-
sion, software maintenance and evolution, and
source code summarization.

21592 VOLUME 9, 2021

