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ABSTRACT A novel approximation-free differentiator-based output-feedback controller for uncertain
large-scale systems (LSSs) is proposed. The considered LSS has nonautonomous and nonaffine-in-the-
control subsystems which is yet to be tackled for decentralized output-feedback controller in the previous
researches. The controller adopts a higher-order switching differentiator that can track the time-derivatives
of a time-varying signal asymptotically. Through the differentiators, time-derivatives of output tracking
errors are estimated and unstructured uncertainties in the controlled subsystems are compensated. The
proposed decentralized output-feedback control formulae and the stability analysis are relatively simple in
comparison to the previously proposed decentralized controllers. In this case, approximators such as fuzzy
systems or neural networks are not required. The proposed controller guarantees that the tracking errors of
the subsystems are asymptotically convergent to zeros and all the signals involved in the closed-loop systems
are bounded.

INDEX TERMS Large-scale system, uncertain nonlinear system, decentralized controller, approximation-
free, differentiator-based controller.

I. INTRODUCTION
Large-scale systems (LSSs) or interconnected systems have
received much attention because many modern practical sys-
tems are described as this kind of systems [1]. For example,
a multi-agent system,multi-machine power system, andmod-
ern mechanical systems are all comprised of interconnected
subsystems. For the control of LSSs, decentralized control
scheme which uses only locally available states without com-
munication between remote subsystems is used, as opposed
to distributed controller that requires exchange of state infor-
mation for each subsystem. Thus, the decentralized controller
is generally more practical because the controller usually has
insufficient knowledge of the plant uncertainties and interac-
tions between subsystems.

Influenced by the intensive research results on the con-
troller for unknown nonlinear systems [2]–[10], typical
approaches for controlling nonlinear LSSs with unstruc-
tured uncertainties are adopting universal approximators
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[11]–[19]. The universal approximators such as fuzzy logic
systems(FLSs) and neural networks(NNs) capture and com-
pensate for unknown functions in the controlled system
dynamics. As a result, the unknown function problem is
replaced by an unknown parameter problem that can apply
the traditional adaptive control method. However, the control
schemes that adopt the universal approximators suffer from
its computational complexity and high dynamic order of the
controller due to many adaptively tuning parameters. In addi-
tion, in the case of the strict- or pure-feedback systems, com-
bining backstepping scheme with real-time tuning approx-
imators increases considerable complexity to the resultant
control law [3], [5], [12], [13], [17]. Recently, to overcome
these drawbacks, prescribed performance control (PPC) [20]
has been widely used to control uncertain nonlinear systems,
and it has been applied to the interconnected LSSs. [21]–[23]
In the case of PPC, the complexity of the controller structure
is reduced considerably since universal approximators are not
required. However, in the PPC schemes, backstepping design
steps are still required. Moreover, most of the researches
consider strict-feedback nonlinear systems. If the scope is
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narrowed down to the problem of decentralized output-
feedback controller for LSS with uncertain pure-feedback
nonlinear subsystems, the research results are very limited.
[14], [15], [18], [19] However, their control schemes adopt
FLS or NN as the approximators of the unknown functions for
adaptive observers or controllers. As described above, these
approximators in the closed-loop system increase dynamic
order of the control laws and make stability analysis very
complex. Moreover, all the previous research [14], [15], [18],
[19] deals with autonomous nonlinear subsystems.

More recently, differentiator-based controllers (DBCs) for
uncertain nonlinear systems have been proposed. [24]–[27]
The DBC has the following advantages over the conventional
controllers in regards to uncertain nonlinear systems. First,
it does not require FLSs or NNs as unknown function esti-
mators, which considerably simplifies the control law and
stability proof. It is not based on the backstepping design
scheme, which results in further reduction of the complexities
of the overall control scheme. Second, as shown in [27],
it is applicable to a general class of nonlinear systems and
easy to design output-feedback controllers. According to the
performance of the adopted differentiator (or time-derivative
estimator), finite-time exact output tracking or asymptotic
stability is guaranteed.

This paper considers interconnected LSSs whose sub-
systems are uncertain general nonlinear systems. Whereas
the previous researches have mostly dealt with autonomous
strict- or pure-feedback nonlinear subsystems, this paper
considers quite general uncertain nonautonomous nonlinear
subsystems including strict- or nonstrict- systems. To the
best of the authors’ knowledge, there is no literature that
considers decentralized output-feedback controller of this
general class of uncertain nonautonomous nonlinear LSSs.
The differentiator-based controller proposed in [25], [27] is
adopted and modified to the case of interconnected LSS
control. Especially, by adopting the higher-order switching
differentiator (HOSD) [28] that estimates the derivatives of
a time-varying signal, the proposed controller guarantees
asymptotical output tracking performance. It is not based on
backstepping and it requires no universal approximators to
cope with unstructured uncertainties intrinsic to the subsys-
tems. Another advantage of the proposed controller is that
there is no severe and consistent chattering or peaking in the
control input. The contributions of this paper are summarized
as follows.

1) Compared to the previous controllers in [14], [15], [17],
[18], the LSS considered in this paper has a broader
class of nonautonomous nonaffine-in-the-control non-
linear subsystems. To the best of authors’ knowledge,
there has been no research that has examined output-
feedback decentralized controller for this class of inter-
connected LSS.

2) The proposed scheme combines the HOSD [28] and
the differentiator-based controller [25] in order to deal
with unstructured uncertainties in the controlled sub-
systems. No approximators such as NN or FLS are

required, which considerably lowers the dynamic order
and complexity of the controller.

3) The proposed output-feedback decentralized control
algorithm has a relatively simplified structure. There is
no lengthy or complicated control law or adaptive for-
mula. There are only two design constants in the control
formula for each subsystem, which demonstrates the
compactness of the proposed controller.

The rest of this paper is organized as follows. In Section II,
the dynamics of the considered LSS and its normalized sys-
tem equations are described. The HOSD is also introduced in
Section II. Section III describes the structure of the proposed
output-feedback decentralized controller with the main theo-
rem. Also, the Lyapunov stability analysis are presented and
discussed in Section III. In Section IV, numerical simulations
using two examples of LSSs are then conducted to illus-
trate the proposed controller’s performance and compactness.
Finally, Section V presents the conclusion.

II. PROBLEM FORMULATION
A. CONSIDERED NONLINEAR SYSTEM
This paper considers an interconnected general nonlinear
system whose dynamics are uncertain, nonautonomous, and
nonaffine-in-the-control. The dynamics of N interconnected
subsystems of the large-scale nonlinear system are as follows.

ẋj = fj(xj, uj, t, x̃j)
yj = hj(xj, t)

}
, j = 1, 2, · · · ,N (1)

where fj and hj are unknown smooth functions, xj =
[xj,1, xj,2, · · · , xj,nj ]

T is a state vector of jth subsystem, nj is
the dynamic order of the jth subsystem, yj and uj denote the
output and input of jth subsystem, respectively. x̃j denotes the
total state vectors of remote subsystems defined as follows

x̃j = [xT1 , · · · , x
T
j−1, x

T
j+1, · · · , x

T
N ]

T . (2)

That is, it is a collection of state vectors except for the jth
one. Throughout this paper, the index j ∈ {1, 2, · · · ,N }
denotes a unique index of a subsystem. Note that the system
in consideration is of a relatively broader class of nonlinear
systems including strict- and pure-feedback systems. It is also
nonautonomous. That is, fj and hj are the functions of time
explicitly. This class of systems may contain time-varying
parameters, additive or multiplicative disturbances, etc. Only
the output yj of the subsystem is assumed to be measurable.
The control objective is driving yj to track the desired output
ydj (t) that is a smooth function of t while also maintaining all
the signals in the closed-loop system to be bounded.

In practical engineering systems, all the states tend to be
maintained in prescribed bounded operation regions, and the
control inputs are also bounded due to physical limitations.
Assumption 1: The following open set includes the whole

operation region of the jth subsystem (1)

�j =

{
xj, uj

∣∣|xj| < bxj , uj < buj
}

(3)

where bxj and b
u
j are positive bounding constants.
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The total set is defined as the union of all the �js as follows.

� = ∪Nj=1�j (4)

Assumption 2: The relative degree of the system (1) is nj
for all j = 1, · · · ,N . That is, all the subsystems have full
relative degrees, and the control inputs appear first in the y(nj)

equation.

B. NORMALIZING ORIGINAL SYSTEM
Let the tracking error of the jth subsystem be ej , yj − ydj .
Then, the original subsystem (1) can be normalized with
respect to the tracking error into the following Brunovsky
form.

ėj,i = gj,i(xj, t, x̃j)

, ej,i+1, i = 1, 2, · · · , nj − 1

ėj,nj = gj,nj (xj, uj, t, x̃j) (5)

with ej,1 = ej where

gj,1(xj, t, x̃j) =
∂hj
∂xj

fj +
∂hj
∂t
− ẏdj (t)

gj,i(xj, t, x̃j) =
∂gj,i−1
∂xj

fj +
∂gj,i−1
∂ x̃j

f̃j

+
∂gj,i−1
∂t

, i = 2, · · · , nj − 1

gj,nj (xj, uj, t, x̃j) =
∂gj,nj−1
∂xj

fj +
∂gj,nj−1
∂ x̃j

f̃j

+
∂gj,nj−1
∂t

(6)

with

f̃j , [fT1 , · · · , f
T
j−1, f

T
j+1, · · · , f

T
N ]

T . (7)

Note that, from Assumption 2, control input appears only in
gj,nn (·). Also note that gj,is are all smooth functions since fjs
and hjs are all assumed to be smooth.
For the controllability of the considered system, it is

required the following assumption.
Assumption 3: The following inequality holds for all j =

1, · · · ,N

∂gj,nj (xj, uj, t, x̃j)

∂uj
> 0 (8)

on the compact set �× [0,∞).
This assumption for the controllability of the system (1)

is widely adopted in the literature. (e.g., assumption 1 in [4],
assumption 4 in [3], assumption 1 in [5], etc.)

C. INTRODUCTION OF HOSD
In the proposed controller, the HOSD [28], [29] is adopted
in its design. The switching differentiator is first proposed in
[29] to estimate the time-derivative of a time-varying signal.
In [28], the differentiator is extended to observe higher order
time-derivatives. The HOSD has the property of asymptotic
convergence, which results in no peaking or chattering in the

estimated signals. In [27], a more compact form of HOSD,
which contains only one design constant while maintaining
tracking performance is proposed, and subsequently adopted
in this paper.

Before introducing HOSD dynamics, some definitions are
required. Let8 be a set of all strictly increasing infinite time
sequences such that

8 , {(ti)∞i=0|t0 = 0, ti < ti+1∀i ∈ N0} (9)

where N0 = {0, 1, 2, · · · }. For a sequence T = (ti) ∈ 8, �T
denotes a set of functions that are discontinuous at some or all
ti.
Definition 1: [28] For T = (ti) ∈ 8, define the set of

functions as follows:

�
L
T ,

f (t)
∣∣∣f (t) ∈ �T , sup

ti≤t<ti+1
∀i∈N0

|f (t)| ≤ L <∞

 (10)

where L > 0 is a constant. The functions in �
L
T are bounded

in the piecewise sense (BPWS) below L.
Lemma 1: [27] Suppose the time-derivatives of a time-

varying signal a(t) are BPWS such that a(i+1) ∈ �
L∗i
T for

i = 1, 2, · · · , n where L∗i s are positive constants and T ∈ 8.
a(n+2) is also assumed to be BPWS. Consider the following
HOSD dynamics

α̇i = βiLeαi + σi
σ̇i = L sgn(eαi )

}
, i = 1, 2, · · · , n (11)

where eαi = σi−1 − αi with σ0 = a. If the design constants
are selected such that βi > 0 and L > max

i=1,··· ,n
L∗i , then:

σi(t)→ a(i), i = 1, 2, · · · , n (12)

holds.
Detailed proof of Lemma 1 is shown in [28]. In [27], appropri-
ately selected constants βjs up to j = 6 have been presented
as

β1 = 10, β2 = 7, β3 = 5.5, β4 = 4.8, β5 = 4.4, β6 = 4.2.

(13)

As described in [27], the only design constant L must be
increased to improve the estimation performance of the
HOSD.

III. CONTROLLER DESIGN
As described earlier, the objectives of the controllers are that
the yjs track desired output ydj s and that all the time-varying
signals involved in the closed-loop system remain bounded.
The HOSD (11) is adopted in every subsystem, and they are
described as follows

α̇j,i = βiLjeαj,i + σj,i
σ̇j,i = Lj sgn(eαj,i )

}
, i = 1, 2, · · · , nj (14)

for j = 1, · · · ,N where eαj,i , σj,i−1 − αj,i with σj,0 = aj.
The constants βis in (13) are commonly used in all subsys-
tems. The feeding signal aj into the jth HOSD is generated as
described in the following subsection.
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A. CONTROL INPUT FILTERING
The following simple linear time-invariant(LTI) filter is
adopted to generate the signal aj(t) that is injected into the
HOSD (14).

ẇj,i = −cjwj,i + wj,i+1, i = 1, · · · , nj − 1

ẇj,nj = −cjwj,nj + uj (15)

where cj > 0 is a design constant. Note that, due to the
stabilizing terms of −cjwj,i for i = 1, · · · , nj in (15) with
positive cj, it is guaranteed that the states wj,i of the LTI filter
(15) are bounded since uj is bounded based on Assumption 1.

Lemma 2: With Assumption 1, the following inequalities
hold

|wj,i| <
buj

c
nj−i+1
j

(16)

for i = 1, · · · , nj.
Detailed proof of Lemma 2 is described as in [30].

The input signal to the HOSD is generated as

aj = ej − wj,1. (17)

From Lemma 1, the following holds

σj,1 = ȧj + dj,1(t)

= ėj − p1(wj)− wj,2 + dj,1(t) (18)

σj,2 = äj + dj,2(t)

= ëj − p2(wj)− wj,3 + dj,2(t) (19)
...

σj,nj−1 = a
(nj−1)
j + dj,nj−1(t)

= e
(nj−1)
j − pnj−1(wj)− wj,nj + dj,nj−1(t) (20)

σj,nj = a
(nj)
j + dj,nj (t)

= e
(nj)
j − pnj (wj)− uj + dj,nj (t) (21)

where wj = [wj,1,wj,2, · · · ,wj,nj ]
T , and dj,i(t)s denote esti-

mation errors that disappear asymptotically, i.e., dj,i(t)→ 0.
The terms of pi(wj)s are the polynomials of the elements of
wj that are easily calculated for i = 1, · · · , 6 as follows:

p1(wj) = −cjwj,1 (22)

p2(wj) = c2j wj,1 − 2cjwj,2 (23)

p3(wj) = −c3j wj,1 + 3c2j wj,2 − 3cjwj,3 (24)

p4(wj) = c4j wj,1 − 4c3j wj,2 + 6c2j wj,3
− 4cjwj,4 (25)

p5(wj) = −c5j wj,1 + 5c4j wj,2 − 10c3j wj,3

+ 10c2j wj,4 − 5cjwj,5 (26)

p6(wj) = c6j wj,1 − 6c5j wj,2 + 15c4j wj,3

− 20c3j wj,4 + 15c2j wj,5 − 6cjwj,6 (27)

As described in [27], the value of cj does not have a crucial
effect on the performance of the controller. Therefore, the cjs

are typically chosen as 1 in order to simplify the calculations
of pi(wj)s.

B. CONTROL LAW AND STABILITY ANALYSIS
The tracking error vector for the jth subsystem is defined as
ej = [ej, ėj, · · · , e

(nj−1)
j ]T ∈ Rnj for j = 1, · · · N and its

estimate is available using (18)-(20) as follows

êj =


ej

σj,1 + p1(wj)+ wj,2
...

σj,nj−1 + pnj−1(wj)+ wj,nj

 ∈ Rnj . (28)

which tracks ej asymptotically by Lemma 1. Therefore,
the following equality holds

ej = êj − dj(t) (29)

where dj(t) , [0, dj,1(t), · · · , dj,nj−1(t)]
T . Considering (21),

the decentralized control law of jth subsystem is determined
as

uj = −σj,nj − pnj (wj)− kTj êj (30)

where kj = [kj,1, kj,2, · · · , kj,nj ]
T is selected such that the

polynomial

snj + kj,njs
nj−1 + · · · + kj,2s+ kj,1 (31)

is Hurwitz. To reduce the number of design constants, the ele-
ments of the vector kj can be chosen such that the following
equality holds

(s+ κj)nj = snj + kj,njs
nj−1 + · · · + kj,2s+ kj,1 (32)

with κj > 0. Thus, if κj is once selected, the vector kj is
directly calculated. Therefore, the proposed controller has
only two design constants κj > 0 in (32) and Lj > 0 in (14)
since the design constant cj in (15) is chosen typically as 1.

C. MAIN THEOREM AND SOME REMARKS
The following theorem describes the main result of the pro-
posed controller.
Theorem 1: Consider the system (1) under Assumption

1 and Assumption 2. The control input (30) using the HOSD
(11) and input filter (15) makes the tracking error vector ej to
be asymptotically stable.

Proof: From (21) and (29), it is evident that the control
input (30) becomes

uj = −σj,nj − pnj (wj)− kTj êj
= −{e

(nj)
j − pnj (wj)− uj + dj,nj (t)}

− pnj (wj)− kTj ej − kTj dj(t)

= −e
(nj)
j + uj − kTj e− dj,nj (t)− kTj dj(t) (33)

from which the following equality is induced

e
(nj)
j = −k

T
j ej + δj(t) (34)

where δj(t) , −dj,nj (t)− kTj dj(t). In vector form

ėj = Ajej + bjδj(t) (35)
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FIGURE 1. Overall block diagram of the proposed decentralized controller.

where

Aj =


0 1 0 · · · 0
0 0 1 · · · 0
...

...

−kj,1 −kj,2 −kj,3 · · · −kj,nj

 , bj =


0
0
...

1

 (36)

There exist positive definite matrixes Pj and Qj such that
AT
j Pj + PjAj = −Qj holds. Defining Lyapunov function

Vj = eTj Pjej, its time derivative is derived as

V̇j = −eTj Qjej + 2eTj Pjbjδj(t)
≤ −λmin(Qj)|ej|2 + 2|ej|λmax(Pj)|δj(t)| (37)

From the last inequality, it is determined that if |ej| > λj|δ(t)|
where λj =

2λmax (Pj)
λmin(Qj)

, then V̇j < 0. This means that, since δj(t)
converges at zero asymptotically, the |ej| is also asymptoti-
cally stable. It is trivially concluded that the total Lyapunov
function that is defined as V =

∑N
j=1 Vj is also stable. �

Remark 1: Although the jth subsystem itself is affected
by the other subsystems, the jth controller (30) is a fully
decentralized one since no real-time signal of kth subsystem
(k 6= j) is required. Actually, the jth control law is derived by
using the jth output signal only, which is illustrated in Fig. 1
representing the overall block diagram of the closed-loop
system.
Remark 2: It is worth noting that the proposed controller

uses no universal approximators such as NNs or FLSs despite
the unstructured uncertainties in the subsystem.
Remark 3: The time-derivatives of the desired output ydj (t)

are not required to be available. In practical situations, this
is may be desirable since it may be hard to obtain time-
derivatives of the desired output signal. The only condition
for the ydj (t) is that it is differentiable up to the njth order.

Remark 4: The proposed decentralized controller assumes
that all the subsystems have a full relative degree. However,
from [27], it is expected that the controller is also applicable
to systems whose relative degree is less than the system
dynamic order as long as the internal zero dynamics are
stable.

IV. NUMERICAL SIMULATIONS
A. TWO-INVERTED PENDULUM EXAMPLE
In this section, the numerical simulation of two connected
inverted pendulums is performed to illustrate the design pro-
cedure and performance of the proposed controller. The state-
space equations of the system are as follows.

61 :



ẋ1,1 = x1,2

ẋ1,2 =
(
m1ζH
J1
−
ηH
2J1

)
sin(x1,1)

+
ηH
2J1

(l − v)

+
sat(u1)
J1

+
ηH2

4J1
sin(x2,1)+11(t)

y1 = x1,1

(38)

62 :



ẋ2,1 = x2,2

ẋ2,2 =
(
m2ζH
J2
−
ηH
2J2

)
sin(x2,1)

+
ηH
2J2

(l − v)

+
sat(u2)
J2

+
ηH2

4J2
sin(x1,1)+12(t)

y2 = x2,1

(39)

where the system outputs xj,1(j = 1, 2) are the vertical
angular displacements that are available for measurement.
The states of xj,2(j = 1, 2) are the angular velocities that
are assumed to be unavailable. The inputs ujs (j = 1, 2) are
torques that are generated by servomotors and 1js (j = 1, 2)
are external unknown disturbances that are assumed to be
11(t) = 0.1 sin(t) and 12(t) = 0.2 + 0.1 cos(2t). The
parameter ζ = 9.8 m/s2 is the gravitational acceleration,
η = 100 N/m is the spring constant, H = 0.5 m is the
pendulum height, l = 0.5m is the length of spring, J1 =
0.5 kg · m2 and J2 = 0.625 kg · m2 represent the moments
of inertia, and v = 0.4m < l is the distance between the
hinges of the pendulums. The masses of the pendulums are
m1 = 2 kg and m2 = 2.5 kg respectively. The control inputs
are assumed to be saturated as sat(uj) = sgn(uj) min(|uj|, buj )
with bu1 = bu2 = 25 where buj s are the maximum torques of
the servomotors.

The design procedure of the controllers is as follows.
It is worth noting that the actual dynamic equations and
contained disturbances are unknown to the controller. For
illustrative purposes, the output is regulated to the origins.
Thus, the desired outputs yd1 (t) and y

d
2 (t) are all zeros for all

t ≥ 0. For the controller for 61, the HOSD, input filer and
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control input formula is determined as follows.

D1 :


α̇1,1 = 10L1eα1,1 + σ1,1
σ̇1,1 = L1 sgn(eα1,1)
α̇1,2 = 7L1eα1,2 + σ1,2
σ̇1,2 = L1 sgn(eα1,2)

F1 :

{
ẇ1,1 = −c1w1,1 + w1,2

ẇ1,2 = −c1w1,2 + u1

u1 = −σ1,2 − p2(w1)− kT1 ê1 (40)

where

eα1,1 = a1(t)− α1,1
eα1,2 = σ1,1 − α1,2

w1 =

[
w1,1
w1,2

]
ê1 =

[
e1

σ1,1 + p1(w1)+ w1,2

]
(41)

and p1(w1), p2(w1) are defined as in (22), (23) respectively.
The design constants are chosen as L1 = 12, κ1 = 10 (that is,
k1 = [100, 20]T ), and c1 = 1. Note that, as depicted in Fig. 1,
the equations in (40) uses y1 only to generate control input of
the first system (38).

The followingHOSD, filter, and control law constitutes the
controller for 62.

D2 :


α̇2,1 = 10L2eα2,1 + σ2,1
σ̇2,1 = L2 sgn(eα2,1)
α̇2,2 = 7L2eα2,2 + σ2,2
σ̇2,2 = L2 sgn(eα2,2)

F2 :

{
ẇ2,1 = −c2w2,1 + w2,2

ẇ2,2 = −c2w2,2 + u2

u2 = −σ2,2 − p2(w2)− kT2 ê2 (42)

where

eα2,1 = a2(t)− α2,1
eα2,2 = σ2,1 − α2,2

w2 =

[
w2,1
w2,2

]
ê2 =

[
e2

σ2,1 + p1(w2)+ w2,2

]
(43)

and p1(w2), p2(w2) is defined as in (22), (23) respectively.
The design constants are selected as L2 = 12, κ2 = 10
(that is, k2 = [100, 20]T ), and c2 = 1. It is also noted that,
as depicted in Fig. 1, the equations in (42) uses y2 only to
generate control input of the second system (45). The initial
states of HOSDs and input filters are all zeros. The initial
conditions of the systems states are x1(0) = [−3, 0.5]T

and x2(0) = [3,−0.7]T . The simulations have been per-
formed using python libraries such as NumPy, SciPy and
matplotlib [31].

The simulation results are expressed as in Figs. 2-6.
As in Fig. 2 and Fig. 3, it is illustrated that the system outputs
xj,1 and xj,2 show that the outputs of the subsystems are

FIGURE 2. Trajectories of x1,1 and x1,2 of system 61.

FIGURE 3. Trajectories of x2,1 and x2,2 of system 62.

FIGURE 4. Trajectories of control inputs u1 of 61 and u2 of 62.

regulated to the origins after short transient periods. It is
also shown in Figs. 4 - 6 that the control inputs as well as
all the state variables of the HOSDs and input filters are
bounded.
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FIGURE 5. Trajectories of w1,1, w1,2 in filter F1 and σ1,1, σ1,2 in HOSD
D1 of 61.

FIGURE 6. Trajectories of w2,1, w2,2 in filter F2 and σ2,1, σ2,2 in HOSD
D2 of 62.

Remark 5: There are two design constants (i.e., κj > 0
and Lj > 0 for j = 1, 2) in each decentralized controller.
The performance of HOSD tends to be better as the design
constant Lj becomes larger. However, if Lj is too large, chat-
tering occurs in the differential estimates. Therefore, after
performing the simulation severally, the Lj value was properly
selected such that chattering did not occur and sufficient
estimation performance was achieved.

B. SECOND EXAMPLE
The second example is the following LSS with pure-feedback
nonlinear subsystems that have unmatched disturbances and
interconnections.

63 :



ẋ1,1 = x1,1 + (1+ 0.2x21,2)x1,2 + sin(
t
10

)

+ x2,1x2,2

ẋ1,2 = x1,1x1,2 + u1 +
u31
7
+ cos(

t
15

)+ x22,2
y1 = x1,1

(44)

FIGURE 7. Trajectories of y1(= x1,1) and x1,2 of system 63.

FIGURE 8. Trajectories of y2(= x2,1) and x2,2 of system 64.

FIGURE 9. Control inputs u1 of 63 and u2 of 64.

64 :



ẋ2,1 = x2,1 + (1+ 0.2x22,2)x2,2 + sin(
t
10

)

+ x1,1x1,2

ẋ2,2 = x2,1x2,2 + u2 +
u32
7
+ cos(

t
15

)+ x21,2
y2 = x2,1

(45)
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FIGURE 10. Trajectories of w1,1, w1,2 in filter F1 and σ1,1, σ1,2 in HOSD
D1.

FIGURE 11. Trajectories of w2,1, w2,2 in filter F2 and σ2,1, σ2,2 in HOSD
D2.

where xj,1,xj,2 are state variables and uj, yj are control input
and output of jth subsystem (j = 1, 2), respectively. In this
example, the desired outputs are yd1 (t) = yd2 (t) = sin(t).
The controllers have the same structures as the ones used
in the former subsection IV-A since the dynamic order of
the subsystems are identical. Control formulas (40) and (42)
are adopted again for 63 and 64 respectively with κ1 =
κ2 = 5 and L1 = L2 = 11. The initial state vectors
are x1(0) = [0.2, 0]T and x2(0) = [−0.1, 0]T . The sim-
ulation results are presented as in Figs. 7 - 11. It is illus-
trated that the subsystem outputs track the desired signal well
in Fig. 7 and Fig. 8. Apparently, the remaining time-varying
signals in the closed-loop systems are bounded as shown
in Figs. 9-11.

V. CONCLUSION
A novel differentiator-based decentralized controller for
interconnected LSS with uncertain nonautonomous and non-
affine nonlinear subsystems is proposed. The nonlinear sub-
systems in consideration are quite general and contain broad

classes of modern controlled systems. To the best of the
authors’ knowledge, there are no research results of decen-
tralized output-feedback controller design studies for such
classes of LSSs. The proposed controller adopts HOSD that
can estimate the time-derivatives of a time-varying signal
asymptotically for the purpose of compensating uncertainties
in the controlled subsystems. No universal approximators
such as FLS or NN are required, and the control scheme is
not based on backstepping. As a result, the proposed output-
feedback decentralized controller has a relatively simple for-
mulae, and the resulting stability analysis is straightforward.
The proposed controller guarantees that the tracking errors
of the subsystems are asymptotically convergent at zero, and
that all the signals involved are bounded. Herein, the numer-
ical simulations performed illustrate the performance and
compactness of the proposed control scheme.
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