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ABSTRACT Various scientific research organizations generate several petabytes of data per year through
computational science simulations. These data are often shared by geographically distributed data centers
for data analysis. One of the major challenges in distributed environments is failure; hardware, network,
and software might fail at any instant. Thus, high-speed and fault tolerant data transfer frameworks are
vital for transferring such large data efficiently between the data centers. In this study, we proposed a bloom
filter-based data aware probabilistic fault tolerance (DAFT)mechanism that can handle such failures.We also
proposed a data and layout aware mechanism for fault tolerance (DLFT) to effectively handle the false
positive matches of DAFT. We evaluated the data transfer and recovery time overheads of the proposed
fault tolerance mechanisms on the overall data transfer performance. The experimental results demonstrated
that the DAFT and DLFT mechanisms exhibit a maximum of 10% and a minimum of 2% recovery time
overhead at 80% and 20% fault points respectively. However, we observed minimum to negligible overhead
with respect to the overall data transfer rate.

INDEX TERMS Big data, geo-distributed data centers, fault tolerance, bloom filter, parallel file system.

I. INTRODUCTION
Modern scientific experimental facilities such as CERN [1],
LIGO [2], and ORNL [3] generate terabytes to petabytes of
data every day. Additionally, every single entity in today’s
world has some digital component or counterpart, which
is capable of generating data. Devices such as mobile
phones, (security) cameras, smart home gadgets, and teleme-
try devices continuously generate data or digital content.
Internet users generate more than 2.5 quintillion bytes of data
per day geographically, and this number has been acceler-
ated by modern technologies such as IoT, AI, and machine
learning.

To provide a better quality of service to customers in
terms of the response time and availability based on the
location, service providers distribute their data centers geo-
graphically worldwide. This results in a significant increase
in the demand for data transfer among data centers in
such geo-distributed data center systems. However, how can
the available inter-data center network bandwidth be fully
utilized to satisfy real-time computational requirements?
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Although networks are achieving terabit speed and storage
capacities are being expanded to exabytes, there is an evident
mismatch between the speed of network and storage. This
gives rise to a major challenge in achieving higher end-
to-end data transfer rates. To reduce the impedance mis-
match between the network and storage as well as improve
the scalability, data centers deploy parallel file systems
(PFSes).

PFSes use dedicated servers to service metadata and I/O
operations. To improve throughput, PFSes scale up the num-
ber of I/O servers to achieve higher performance. Typi-
cally, large-scale storage systems use tens to hundreds of
I/O servers equipped with tens to hundreds of disks. Stor-
age systems share resources between different clients. This
enables clients to compete for the same resource. As the
contention for these resources increases, there can be a
serious gap between the expected and observed I/O per-
formance; additionally, some servers or their disks might
become overloaded. This type of load imbalance is a serious
problem in PFSes [4]. To answer these problems, researchers
have proposed efficient bulk data transfer frameworks [5]
that can avoid temporarily congested servers during data
transfer [6].
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The traditional disk file system uses an inode data structure
to retrieve file information such as the storage location of file
data. Lustre [7], a PFS, also uses the inode data structure.
However, the inodes on Metadata Target (MDT) points to
one or more Object Storage Target (OST1) objects. These
objects are implemented as files on the OSTs. When a client
opens a file, the file open operation transfers a set of object
identifiers and their layout from the Metadata Servers (MDS)
to the client; this enables the client to directly interact with the
object storage server (OSS) node where the object is stored
and perform I/O in parallel across all OST objects in the file
without further communication with the MDS.

One of the major challenges in the distributed environment
is fault handling; hardware, software, and network might fail
at any point of time. It is very costly in terms of time and
additional network traffic to retransmit the whole data from
the beginning while transmitting several terabytes of data.
Distributed data transfer tools need to handle faults efficiently
to reduce retransmission overhead upon recovery.

Big data transfer frameworks exploit the storage layout of
files and enhance the data transfer rates by transferring the
file objects in parallel. Owing to this object nature of data as
well as parallel processing, the data transfer frameworks can
transfer the objects of the same file from the source to sink
in an out-of-order manner. If there is any fault in the end-to
end path, this out-of-order nature of data transfer will lead
to data corruption issues. This type of behavior forces the
retransmission of the entire file data (objects) after recovering
from the fault, thereby causing unnecessary congestion.

Owing to this out-of-order nature of object transmission,
checkpoint-based logging [8] or logging the index of the last
transferred object is not enough for resuming the transfers
after the fault. Another approach is maintaining a log of all
objects that were successfully sent and written at the sink
end PFS. This type of logging mechanism [9] will affect the
overall space occupied by the log files. Additionally, the time
consumed for logging successful objects while transferring as
well as that for retrieving the successfully completed objects
after fault directly affect the overall performance of data
transfer.

In this study, our main objective is to design fault toler-
ance framework to minimize the time, space, and retrieval
overhead while not negatively impacting the data transfer
performance. This paper makes the following contributions.

• Bloomfilter-based data aware fault tolerancemechanism
(DAFT) for efficiently managing the faults with
out-of-order nature of the object transmission.

• Data and layout aware fault tolerance mecha-
nism (DLFT) for efficiently handling the false positive
object membership matches while recovering from the
fault.

• We have analyzed the overhead of DAFT and DLFT
frameworks with respect to data transfer performance

1 An OST manages a single storage device, and multiple OSTs are
managed by the OSS

TABLE 1. Big Data Applications.

and space overhead. For evaluating our implementa-
tion, we have used a Lustre filesystem which com-
municates over an InfiniBand (IB) network. From our
evaluation results, we have observed negligible overhead
(< 1%) with respect to the data transfer time and space
(≈500 KB (KiloBytes)). However, we observed a recov-
ery time overhead of 2-10% according to the fault point
of data transfer.

The remainder of this paper is organized as follows.
Section II describes the background followed by the moti-
vation of our work. Section III reviews the design and imple-
mentation aspects of the bloom filter. Section IV reviews the
data aware and data and layout aware fault tolerance design
and implementation details. The experimental results are
presented in Section V. We conclude our paper in Section VI.

II. BACKGROUND AND MOTIVATION
A. BACKGROUND
1) BIG DATA APPLICATIONS
Big Data has become a game-changer in most, if not all,
types of modern industries over the last few years. More
and more organizations, both big and small, are leveraging
from the benefits provided by big data applications. Table 1
summarizes the applications of big data in different sectors.

2) FAULT TOLERANCE AND DATA TRANSFER FRAMEWORKS
Reliability and high-performance are the major challenges
of big data transfer frameworks while moving large vol-
umes of data between geographically distributed data cen-
ters. To achieve high reliability the fault tolerance must be
accomplished. To cope with the problem of fault tolerance
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in cloud computing environments, researchers have proposed
different fault tolerance methods.

Fault Tolerance
Adaptive framework for reliable cloud computing environ-
ment [10] has developed an adaptive model/framework to
handle the faults in the cloud environment. This adap-
tive model enable the fault tolerance support using both
check pointing and replication techniques. The proposed
framework implement algorithms for deciding/choosing fault
tolerance (FT) method, i.e. replication or check pointing
approaches. The proposed framework has been evaluated
on the basis of throughput, overheads and availability. As a
result, this framework shows an improved performance in the
cloud environments as compared to the existing algorithms.
However, this type of fault tolerance model/framework is
not suitable for the data transfer frameworks that focus on
transferring objects instead of the entire file sequentially.

JCSR (Joint Checkpoint Scheduling and Routing) [11]
provide reliability optimization in the cloud environment.
A peer-to-peer check pointingmethod has been used to enable
fault tolerance. As this method also uses checkpoint record,
this framework is also not suitable for object based big data
transfer frameworks.

Fault-tolerant workflow scheduling (ICFWS) algorithm
[12] for cloud systems combine resubmission and replication
strategies together to play their respective advantages for fault
tolerance while trying to meet the soft deadline of workflow.
Though, this algorithm outperforms some well-known fault
tolerance methods in cloud environment, this method will
have a negative impact on the overall data transfer time due
to resubmission and replication strategies. So, this frame-
work is also not suitable for systems with high performance
requirements.

Owing to the object nature of the data transfer and high
performance requirements, it is not possible to use check-
point, resubmission and replication strategies as fault tol-
erance methods in our framework. In this study, we have
proposed novel bloom filter based probabilistic fault toler-
ance mechanisms to minimize the time, space and retrieval
overhead while not negatively impacting the data transfer
performance.

Data Transfer Frameworks
To address the challenges encountered in transferring data
between the data centers, researchers have proposed different
big data transfer frameworks.

GridFTP [13], [14] is a well-known and robust protocol
for fast data transfer on the grid. It is an extension of the File
Transfer Protocol and defines a general-purpose mechanism
for secure, reliable, and high-performance data movement.
This framework utilizes the parallel data transfer mechanism
by employing multiple TCP (Transmission Control Proto-
col) streams to aggregate the overall bandwidth. This frame-
work also utilizes the striping feature to support multi-host
to multi-host data transfer. Another important aspect of

GridFTP is its ability to recover from failed transfers by
salvaging the partial transfers and resuming mid-file. While
transferring data, the Reliable File Transfer (RFT) service of
GridFTP provides an interface to write the restart markers
to the database to ensure that it can survive local faults.
Upon recovery from a fault, the GridFTP server sends these
restart markers to the client and the client restarts the transfer
from based on these markers. Because GridFTP transfers the
logical file data sequentially, the transfers can be recovered
from the markers. However, our work considers transferring
the data as objects based on their layout; hence, the marker-
based recovery mechanism cannot be implemented in our
framework.

BBCP [15] is an alternative for GridFTP for transferring
large amounts of data. This tool can break a transfer into
multiple simultaneous streams, thereby transferring data sig-
nificantly faster than single-streaming utilities such as SCP
(Secure Copy Protocol) and SFTP (SSH File Transfer Proto-
col). Because BBCP transfer the entire file data sequentially,
the checkpoint-based fault recovery mechanism is used with
this framework. However, this type of recovery mechanism
is not suitable for the data transfer frameworks that focus on
transferring objects instead of the entire file sequentially.

XDD [16] was designed to provide the software infras-
tructure required to move large datasets with high levels
of performance and reliability. This tool provides several
options to facilitate better file transfer, such as impedance
matching, configurable device access schemes, threads, and
I/O scheduling policies. Owing to its improved I/O schedul-
ing policies, objects of the same file are transferred in an
out-of-order manner from the source to destination. How-
ever, recovering from faults, if any, is not considered in this
tool. Hence, the entire dataset needs to be retransmitted after
recovering from faults.

RAMSYS (Resource-Aware Asynchronous Data Transfer)
[17], a resource-aware high-speed data transfer software,
utilizes a multistage end-to-end data transfer pipeline, where
each stage is fully resource-driven and implements a flexible
number of components using predefined functions, such as
storage I/O, network communication, and request handling.
RAMSYS relies on the asynchronous paradigm to maximize
the concurrency of components, thereby offering improved
scalability and resource utilization in modern multi-core sys-
tems. However, this framework does not consider error recov-
ery upon faults.

All the above-mentioned data transfer frameworks focus on
transferring large data in a fast and securemanner from source
to destination over the network. Also, as these frameworks
transfer the logical file data sequentially, it is possible to
resume from the failed transfers using a checkpoint based
restart marker or an offset record. However, our work focuses
on an entirely different scenario from the prior fault tolerance
studies. In this work, we aim to support fault tolerance func-
tionality when the workload is transferred as objects rather
than files. Due to the object nature of the data transfer, it is
possible to transfer one logical file’s objects in random order.
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FIGURE 1. Checkpoint and object index logging.

Hence, checkpoint based restart marker or an offset record
based fault tolerance mechanisms are not sufficient to resume
from the failed transfers. Therefore, in this study, we pro-
pose data aware and data and layout aware fault tolerance
mechanisms to handle fault tolerance in object-based big data
transfer frameworks.

B. MOTIVATION
Traditional big data transfer tools [13]–[15] consider work-
loads in terms of the logical files, irrespective of their physical
distribution, of the file data in the storage. Owing to this, data
transfer tools read or write the file data sequentially until the
entire file is processed. During the transfer, the storage server
consumesmore time to service new I/O requests if the number
of I/O requests exceeds the storage server capabilities. This
type of storage congestion negatively impacts the overall data
transfer rate.

A PFS is a type of distributed file system that distributes
the file data across multiple storage servers and provides
concurrent access to such file data. Owing to this, PFSes his-
torically have targeted high-performance computing (HPC)
environments that require access to large files, massive quan-
tities of data, simultaneous access from multiple computer
servers, or multiple tasks of a parallel application. In this
study, we used the open-source file system Lustre as our PFS.

Fig. 1(a) and Fig. 1(b) depict how the Lustre file system
stripes Filea and Fileb across multiple OSTs. Considering the
distributed nature of logical file data, multiple I/O threads can
be assigned to process the data transfer and improve the big
data transfer performance. Employing multiple I/O threads
without any knowledge about the physical distribution of files
might still cause disk contention issues as multiple threads
compete for the same OSS or OST. This contention degrades
the data transfer performance of the application. These types
of resource contention issues are addressed by [6] and [18],
which employ layout aware scheduling algorithms to process
data transfers. Owing to these layout aware scheduling algo-
rithms, objects of different logical files might be transferred
in parallel. Although this type of mechanism significantly
improves the data transfer performance, complex fault toler-
ance mechanisms must be devised to recover data transfers
upon fault.

Big data transfer tools should handle faults efficiently to
reduce the retransmission overhead upon recovery. Because
the existing big data transfer tools transfer the file data
sequentially, simple fault tolerance mechanisms such as
checkpoint records can be adopted. As shown in Fig. 1(a),
all objects of Filea and Fileb are transferred in sequence.
Thread T1 transfers the first object of Filea and records the
file offset information. After completing the second object,
the thread overwrites the checkpoint record with the updated
file offset information. This process is repeated for all files
in the dataset. During this process, if the transfer is resumed
from a fault, then the transfer tool checks for the existence
of checkpoint record for the target file; if yes, it starts trans-
ferring the objects from the offset found in the checkpoint
record.

Data transfer frameworks, which target high data transfer
performance, employ multiple I/O threads by exploiting the
physical layout of files. Thus, objects of one logical file are
transferred out-of-order. It can be observed fromFig. 1(b) that
the second object of Filea is transferred before the first object.
Similarly, we can also observe the out-of-order object transfer
for Fileb. Because objects are transferred in an out of order
manner, it is not possible to recover the completed object
information by a checkpoint record, as shown in Fig. 1(a).
Instead, the information about all objects of all logical files,
which are successfully transferred, as shown in Fig. 1(b),
should be recorded appropriately.

The amount of space occupied by log files for main-
taining information regarding the successfully transferred
objects corresponding to the logical files in the dataset is
one of the major challenges. In previous research [19],
we proposed fault tolerance mechanisms to address the space,
computation, and recovery overheads of the object logging
mechanisms on the data transfer rate. Among the proposed
mechanisms, we concluded that the universal logger mecha-
nism combined with bit binary methods (Bit8 and Bit64) has
the minimum overhead with respect to space and recovery
time. This study is an extension of our previous research [19]
where we answer the following questions.
• How can the data transfer performance and recov-
ery time overhead of the proposed bloom filter-based
probabilistic fault tolerance mechanisms be minimized?
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FIGURE 2. An illustrative example of bloom filter.

• How can the space occupied by the fault tolerance
mechanisms be minimized using bloom filter-based
probabilistic data structures?

• How can the false positive matches of bloom filter-based
probabilistic data structures be reduced?

III. BLOOM FILTER DESIGN
In this section, we describe the design and implementation
aspects of the bloom filter.

A. BLOOM FILTER DATA STRUCTURE
A bloom filter is a simple space-efficient probabilistic data
structure for representing a set to support constant-timemem-
bership queries [20], [21]. A bloom filter representing a set
of n elements consists of an array of m bits that are initially
set to 0. The bloom filter uses k independent hash functions
h1, h2 . . . ., hk to generate k hashed positions in the range
1, . . . ,m. By inserting an object, k out of m bits are set
to 1. By querying for an object, k hashed positions are tested
against 1, and if any one of the k bits is 0, it implies that the
object is not in the set. If all k bits are set to 1, we assume that
the object is in the set, and hence, the bloom filter may yield
false-positive errors.

The probability of an element not present in a set or the
false positive probability can be estimated in a straightfor-
ward manner [22]. After all objects of a data set are hashed
into the bloom filter, the probability that a specific bit is still
0 for k number of hash functions and large m can be defined
by:

p = (1−
1
m
)kn ≈ (e−kn/m). (1)

Therefore, the probability that it is 1 is

p = 1− (1−
1
m
)kn ≈ (1− e−kn/m). (2)

To test the membership of an object that is not in the set,
the probability of the false-positive error can be defined by

ε = (1− (1−
1
m
)kn)k ≈ (1− e−kn/m)k . (3)

The false-positive error probability of the bloom filter
depends on the number of objects in the set (n), total bloom
filter size (m), and the number of hash functions (k). In prac-
tice, k must be an integer; a smaller, suboptimal k is preferred

because it reduces the number of hash functions to be com-
puted. For a given m and n, the number of hash functions
required to minimize the false-positive errors is

k =
m
n
ln2. (4)

B. HASH FUNCTION OPTIMIZATION
Hash functions are the core operations of bloom filters that
require multiple independent hash functions for generating
a bloom filter. Appropriately designed hash functions, such
as MD5 and SHA-1, are computationally expensive. To
optimize the computation overhead of hash functions, state-
of-the-art techniques have attempted to generate multiple
independent hash values with only one or two hash functions
[23]–[25]. In our experiments, we used two hash functions,
i.e., murmur [26] and DJB2 on the SHA-1 hashed input data.
These two hash functions are used to generate additional hash
functions. Specifically, the k hash functions are calculated as
Eq.(5):

gi(x) = h1(x)+ i ∗ h2(x) mod m (5)

where:
i = 0 ≤ i ≤ k − 1
m = filter size

C. ILLUSTRATION OF BLOOM FILTER
An illustrative example of bloom filter used in DLFT is as
shown in the Fig.2. In this illustration, we have considered
the number of objects in the set n = 6, number of hash
functions k = 3, and bloom filter size as m = 30. For
the purpose of illustration, we have depicted the case where
objects {A,B,C} were transferred to the sink end PFS before
the fault and to illustrate success, fail, and false positive
match scenarios, we considered the objects {C,D,E} upon
recovery.

As shown in Fig.2, bloom filter array is divided into two
parts; layout and bloom filter. Layout segment of the bloom
filter array is populated based on the object layout informa-
tion upon successful object transfer. Whereas, bloom filter
segment of the array is used to randomly map the objects into
k positions by employing k independent hash functions. Upon
initiating the data transfer, all of the (n+m) bits of the boom
filter array are initialized to 0.
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FIGURE 3. Fault tolerance system architecture.

1) BEFORE FAULT
Fig.2(a) depicts before fault scenario. SHA-1 engine is used
to compute the block hash on the object data to uniquely rep-
resent the object. In this example, we have considered objects
{A,B,C} were inserted to bloom filter. Hash functions
{h1, h2, h3} are employed on hashed object data to randomly
map the objects into k positions. Employing {h1, h2, h3} hash
fucntions on hashedObjectA data, bits {13, 16, and 20} of the
bloom filter array are set to 1. Also, as the layout of ObjectA
is 0, bit 0 of the bloom filter array is set to 1. Similarly, for
ObjectB and ObjectC , bits {1, 8, 28, 32} and {2, 20, 24, 26}
are set to 1 respectively.

2) AFTER FAULT
Fig.2(b) depicts after fault scenario. In this example, we have
considered objects {C,D,E} for querying their membership
with the bloom filter. Object is assumed to be the member
if all the k bits along with its layout bit is set in the bloom
filter array. For ObjectC , the resultant hash positions {20, 24,
and 26} along with its layout bit {2} is set, thus the bloom
filter return ‘‘Positive’’ for the query. The membership query
ofObjectD returns ‘‘Negative’’ since the bit at position {11} is
not set. Though, the bits at positions {8, 28 and 32} are all set,
the membership query of ObjectE would return ‘‘Negative’’
as the layout information at position {4} is 0. Without the
layout information, the membership query of ObjectE would
return ‘‘False Positive’’ as the bits at positions {8, 28 and 32}
are all set. Thus, using layout information in conjunction with
the bloom filter, we have avoided the false positive matches
of the bloom filter.

IV. DESIGN AND IMPLEMENTATION
In this section, we describe the design and implementa-
tion aspects of proposed fault tolerance mechanisms. First,
we describe fault tolerant big data transfer system architecture

for handling software, hardware, or common communica-
tion errors using the bloom filter-based probabilistic data
structure. Then, we focus on the design and implementation
details of DAFT. Next, we discuss the design and imple-
mentation aspects of DLFT for avoiding the false-positive
matches of the bloom filter using the object layout informa-
tion. Finally, we conclude by analyzing object logging based
fault tolerance, DAFT andDLFT fault tolerancemechanisms.

A. SYSTEM ARCHITECTURE
Fig. 3 depicts the proposed fault tolerant big data transfer
system architecture. On initiating data transfer, source end
of the data trasfer tool prepares the list of the objects to be
transferred to the sink end and initiates the transfer. Sink
end acknowledges the source end for the objects that are
sucessfully written to the sink end PFS. Upon receiving the
acknowledgement from sink end, DLFT framework recorder
component records the successfully completed objects infor-
mation using the proposed probabilistic bloom filter-based
fault tolerance mechanism.

If a transfer is resumed from a previous failed transfer,
then the source end retrieves the completed object infor-
mation using retriever component of the DLFT framework
and exclude those objects from the list of the objects to be
transferred to the sink end. For the remianing objects, source
end initiates the transfer. This process is repeated until all
objects of the dataset are successfully transferred to the sink
endpoint.

B. DAFT (DATA AWARE FAULT TOLERANCE)
The data aware fault tolerance system is implemented using
one master and communication (comm) threads, along with
a configurable number of I/O and bloom filter (B/F) threads.
The master thread schedules the transfer of file objects and
the I/O threads read or write the object data from or to
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FIGURE 4. Data aware fault tolerance sequence diagram.

the PFS. The B/F thread hashes the object data using crypto-
graphic hash functions to uniquely represent the object data,
and computes the k hash positions of the m-bit bloom filter
array on the hashed object data. The comm thread manages
the communication between the source and sink endpoints.
The master, I/O, and B/F threads get blocked while wait-
ing for a resource; however, the comm thread continuously
handles the communication between the source and sink
endpoints.

Fig. 4 depicts the data transfer sequence between the
source and sink endpoints. Upon initiating the data trans-
fer, the source and sink endpoints initialize the threads
required for communication, along with the required locks,
wait queues, and work queues, and allocate buffers for the
data transfer. As shown in Fig. 4, the source master thread
generates a NEW_FILE request for each file in the target
dataset, and enqueues the request in the work queue of the
comm thread. The source comm thread dequeues the request
and transfers it to the sink. At the sink end, upon receiving the
NEW_FILE request, the comm thread enqueues the request
to the work queue of the master thread and wakes it up.
Based on the target file information in the request, the sink
master thread opens the file and adds the file descriptor to the
FILE_ID request and enqueues the request on the work queue
of the comm thread. The sink-end comm thread dequeues the
request and sends it to the source. On receiving the FILE_ID
request, the source comm thread enqueues the request on

the wait queue of the source master thread. Upon receiving
the FILE_ID request, the source-end master thread splits the
file according to the object size, generates a NEW_BLOCK
request, and enqueues the request on thewait queue of the I/O
thread. Upon receiving the NEW_BLOCK request, the I/O
thread reserves the buffer and determines the OST [27], [28]
to be used for reading the object data, and issues pread() to
read the object data into the buffer reserved for communi-
cation. After completing the read operation, the I/O thread
enqueues the NEW_BLOCK request on the wait queue of the
B/F thread.
• Before Fault: If an object is scheduled to be trans-
ferred for the first time, the source B/F thread deques
the request and computes the block hash on the object
data and enqueues the request on the work queue of
the comm thread. After enqueuing the request, the B/F
thread progresses to compute the k hash positions of the
m-bit bloom filter array on the hashed object data.

• After Fault: If a transfer is resumed from a previous
partial transfer, then the source B/F thread computes
the k positions of the m-bit bloom filter array based
on the hashed object data. According to the computed
k positions, the source B/F thread queries the object
membership with the bloom filter. If any bit at these k
positions is 0, then the B/F thread determines that the
object was not transferred previously, and schedules the
transfer by enqueuing a NEW_BLOCK request on the
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work queue of the comm thread. If all bits at these k
positions are set, then theB/F thread considers that block
to be complete and releases the block resources.

The comm thread dequeues the NEW_BLOCK request
and transfers it to the sink. On receiving the NEW_BLOCK
request at the sink end, the comm thread attempts to reserve
the buffer. If the comm thread acquires the buffer successfully,
it initiates a read operation. If it fails to acquire the buffer,
it enqueues the request on the work queue of the master
thread. The master thread waits until a buffer is available,
and then enqueues the request back on the work queue of
the comm thread, which issues the read operation. Upon the
successful completion of the read operation, the sink comm
thread enqueues the request on the wait queue of the I/O
thread. The I/O thread dequeues the request and determines
the appropriate OST based on the object offset and issues a
pwrite() system call to write the object data to the corre-
sponding OST. Upon the successful completion of the write
operation, the I/O thread enqueues a BLOCK_SYNC request
on the work queue of the comm thread. The sink-end comm
thread dequeues the BLOCK_SYNC request and notifies
the source endpoint, and releases the resources allocated for
the block transfer. Upon receiving BLOCK_SYNC request,
source-end comm thread dequeues the BLOCK_SYNC
request and enqueues the request on the wait queue of the
B/F thread and releases the resources allocated for the block
transfer. TheB/F thread updates the bloomfilter by setting the
previously computed k positions to 1. This process is repeated
until all objects of the dataset are successfully transferred to
the sink endpoint.

While the proposed data-aware fault tolerance mechanism
with bloom filters has a substantial space advantage over the
existing fault tolerance mechanisms, this method result in
false-positive object membership errors owing to its proba-
bilistic nature of detecting the object membership. To avoid
false-positive object membership matches of the bloom filter,
we proposed a DLFT framework, which has been described
in IV-C.

C. DLFT (DATA AND LAYOUT AWARE FAULT TOLERANCE)
The main objective of the bloom filter-based fault tolerance
mechanism is to build a space-efficient data structure for
retrieving the objects that were successfully transferred to the
sink end. While maximizing the space efficiency, the bloom
filter-based fault tolerance mechanism sacrifices the correct-
ness. Owing to the false-positive nature of the bloom filter
data structure, some object membership queries result in
errors. Hence, some blocks that are not transferred to the
sink end are falsely considered to be transferred. This results
in data corruption, and thus, the transferred data would be
unusable for further analysis.

A bloom filter is a bit vector (B) of m-bits with k inde-
pendent hash functions (h1,. . . ., hk ) that maps each element
in the dataset (S = {x1,. . . ., xn}) to Rm = {0,1,. . . .,m-1}.
We assume that each hash function, hk , uniformly maps each
object in the dataset to a random number over the range Rm

with equal probability. Initially, all m-bits of bit vector B are
set to ‘‘0’’.
• Insert. For each object xi ∈ S, compute h1(xi),. . . ., hk (xi)
and set B[h1(xi)] = B[h2(xi)] = . . . . = B[hk (xi)] = 1.

• Query. To check if an object, xi, is in S, compute
h1(xi),. . . ., hk (xi). If B[h1(xi)] = B[h2(xi)] = . . . . =
B[hk (xi)] = 1, the answer is yes; otherwise, the answer
is no. However, if h1(xi),. . . ., hk (xi) in bit vector B are
set to 1 by other objects due to hash collisions, then it
causes false positive errors.

To avoid this type of false-positive object membership
queries of the bloom filter, the object layout information
(n-bits) is prepended in the bloom filter as additional infor-
mation of the object. Consequently, the total size of B is
increased to (n+m)-bits, and initially, these (n+m)-bits are
initialized to ‘‘0’’.
• Insert. For each object xi ∈ S, compute h1(xi),. . . .,
hk (xi) and set B[n+h1(xi)] = B[n+h2(xi)] = . . . . =
B[n+hk (xi)] = 1, along with B[i] = 1.

• Query. To check if an object, xi, is in S, compute
h1(xi),. . . ., hk (xi). If B[n+h1(xi)] = B[n+h2(xi)] = . . . .
= B[n+hk (xi)] = 1 and B[i] = 1, the answer is yes;
otherwise, the answer is no.

The data transfer sequence between the source and sink
endpoints for DLFT is illustrated in Fig. 5. The resource
initialization, NEW_FILE, FILE_ID, and NEW_BLOCK
request processing are similar to those in the DAFT system,
as described in IV-B.
• Before Fault: Upon scheduling an object transfer,
the source B/F thread computes the hash on the object
data and enqueues the request on the work queue of
the comm thread. After enqueuing the request, the B/F
thread progresses to compute the k hashed positions of
the (n+m)-bit bloom filter array on the hashed object
data. The k independent hash functions, h1,. . . ., hk , take
an initial value ‘‘n’’ and compute the k hash positions in
the range {n,n+1,. . . .,n+m−1}; then, the bloom filter
corresponding to that logical file is composed.

• After Fault: If a transfer is resumed from a previous
partial transfer, then the source B/F thread computes
the k positions of the (n+m)-bit bloom filter array
on the hashed object data. Based on the computed k
hashed positions, the source B/F thread queries the
object membership with the bloom filter.
– If any bit at these k positions in bloom filter is 0,

then the B/F thread determines that the object was
not transferred previously and schedules the trans-
fer by enqueuing the NEW_BLOCK request on the
work queue of the comm thread.

– If all bits at these k positions as well as the block lay-
out bit in the bloomfilter are set, then theB/F thread
considers that block to be complete and releases the
resources allocated for block transfer.

After processing the NEW_BLOCK request at the sink
end, the I/O thread enqueues the BLOCK_SYNC request
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FIGURE 5. Data and layout aware fault tolerance sequence diagram.

on the work queue of the comm thread. The sink-end comm
thread dequeues the BLOCK_SYNC request and notifies the
source endpoint. Upon receiving the BLOCK_SYNC request,
the source-end comm thread enqueues the request with the
wait queue of the B/F thread, which synchronizes the block
layout information alongwith the previously computed k hash
positions with the bloom filter; it also releases the resources
allocated for the block transfer. This process is repeated until
all objects of the dataset are successfully transferred to the
sink endpoint.

D. OBJECT LOGGING BASED FAULT TOLERANCE VS DAFT
VS DLFT
In our previous research [19], we have proposed novel object
logging based fault tolerance (FT) mechanisms for efficiently
handling the faults when the workload is transferred as
objects rather than files. In this section, we analyze object
logging FT, DAFT and DLFT fault tolerance mechanisms.

In the object logging based FT mechanisms, objects which
are successfully written to the sink PFS are considered as
successful and log the information of those objects in the
FT log file. Upon successful completion of all the objects
of one logical file, the log information corresponding to that
file will be erased. If there is any fault during the transfer,
the proposed mechanisms search for the completed objects

and schedule only those objects which were not transferred
previously. From our experimental results, we have con-
cluded that, object logging based FT mechanisms efficiently
handle the faults without negatively impacting the data trans-
fer performance. However, owing to the object layout logging
nature of the FT, updates to the data is gone unnoticed and end
up having old data at the sink end. In this work, our proposed
DAFT and DLFT fault tolerance mechanisms efficiently han-
dle faults as well as updates to the data.

DAFT method of FT address the issues observed with
object logging based fault tolerance mechanims using bloom
filter based probabilistic data structure. This method of fault
tolerance considers the object data rather than the object
layout for identifying the transferred objects. DAFT uniquely
represent the object data using k-bits. If an object is scheduled
to be transferred for the first time, the source end of the
transfer computes the block hash on the object data and
computes the k hash positions of the m-bit bloom filter array
on the hashed object data. Upon successful object transfer,
DAFT method of FT updates the bloom filter corresponding
to that logical file (fbloom) with the computed k hash positions.
If there is any fault during the transfer, DAFT method of
fault tolerance determines if the object is already transferred
or not by computing the k hash positions, on the hashed
object data, and comparing with the fbloom. If the object is
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not transferred previously, schedules the same for the transfer.
This method of fault tolerance mechanism has a substantial
space advantage over object logging based fault tolerance
mechanisms. However, this method result in false-positive
object membership errors owing to its probabilistic nature
of detecting the object membership. To avoid false-positive
object membership matches of the bloom filter, we have
proposed a DLFT framework.

DLFT framework address the false positive object mem-
bership matches of the DAFT mechanism by complementing
DAFTwith object layout information. Upon successful object
transfer, DLFT framework logs the object layout information
along with its corresponding k hash positions of the bloom
filter as described above. If there is any fault during the
transfer, DLFT searches for the completed object information
by comparing k hash positions as well as the block layout bit
in the bloom filter are set or not. If not set, then schedules the
object for the transfer. Our experimental results conclude that
with small to negligible overhead, the use of the object layout
information in conjunction with DAFT can help in avoiding
false-positive matches of the bloom filter.

V. EVALUATION
In this section, we describe our simulation environment and
present the experimental results along with their analysis.

A. TESTBED AND WORKLOAD SPECIFICATIONS
1) TESTBED
For our experiments, we used a private testbedwith two nodes
(source and sink) connected using the InfiniBand (IB) net-
work interface. We used Intel(R) Xeon(R) CPU E5-2650 v4
@ 2.10GHz servers with 32 cores and 16 GB DRAM. The
source and sink hosts operate on Linux kernel 3.10.0-1062.
Additionally, both nodes have separate Lustre file systems
2.9.0 [28] with one OSS and 4 OSTs, mounted over 1 TB
drives each. By default, our Lustre file system configuration
includes a stripe count of four with a stripe size of 1 MB.
To fairly evaluate our implementation, we ensured that the
storage server bandwidth is not over-provisioned with respect
to the network bandwidth between the source and sink servers
(i.e., the network does not encounter a bottleneck).

2) WORKLOAD
To analyze the file size distribution, we used the distribution
data of Lustre Atlas 1 & 2 filesystems [29] hosted by the Oak
Ridge Leadership Computing Facility [3]. Fig. 6 plots the
number of files vs. the file size. It can be observed from this
plot that 91.55% of the files are less than 4 MB and 84.17%
are less than 1 MB. Additionally, less than 10% of the files
are greater than 4 MB, and these files occupy most of the
file system space. Hence, for the purpose of our evaluation,
we used two groups of files with different sizes; one for small
workloads with 10,000 files of size 1 MB and the other for
big workloads with 100 files of size 1 GB. For the purpose of
evaluation, we used a pre-configured source file system, with
big and small workloads, by stripping the data across 4 OSTs
using stripe count as 4 and stripe size as 1MB.

FIGURE 6. File size distribution.

3) THREAD CONFIGURATION
For an optimal evaluation environment, in all our experi-
ments, we configured the data transfer framework with four
I/O threads, four B/F threads (only source), onemaster thread,
and one comm thread at both the source and sink endpoints.

4) RECOVERY TIME
Because there is no direct method for evaluating the recovery
time of failed transfers, we estimated the recovery time of the
DAFT and DLFT methods as follows.

ERt = TBFt + TAFt − TTt (6)

where,

ERt = Estimated Recovery Time
TBFt = Time consumed before fault
TAFt = Time consumed after fault
TTt = Time consumed with no fault

5) BLOOM FILTER CONFIGURATION
As noted above, for all our experiments, we populated our
file system with files with a stripe size of 1MB and used two
groups of files with different sizes; one for small workloads
(10,000 files of size 1 MB) and the other for big workloads
(100 files of size 1 GB). Hence, the number of elements, n,
to be inserted in the bloom filter is 102400 and 10000 for the
big and small workloads, respectively. The required number
of bits in the bloomfilter,m, for a given n and the desired false
positive probability, ε (Eq. (3)), can be computed by substi-
tuting the optimal value of k in the probability expressions,
Eq.(7) and Eq.(8).

k =
m
n
ln2 (7)

m = −
nlnε
(ln2)2

(8)

The salient feature of the bloom filter is that there is a clear
tradeoff between m and the probability of a false positive.
Inorder to balance the computational and storage overhead,
we considered the optimal value of k as 7 and the false
positive probability as 0.00001 and 0.0001, respectively, for
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FIGURE 7. Data transfer time analysis for big and small workloads. The 99% confidence intervals are shown in the error bar.

big and small workloads. Based on the above considerations,
we computed the number of bits in the bloomfilter. As a result
of these calculations, in all our experiments, the value of m
was considered to be 28 KB for small workloads and 408 KB
for big workloads.

B. PERFORMANCE EVALUATION
One of the major objectives while designing the proposed
fault tolerance mechanisms involved the minimization of the
bloom filter-based fault tolerance overhead on the overall
data transfer time. In this section, we present the evaluation
results for the proposed bloom filter-based DAFT on the
overall data transfer performance. To evaluate the perfor-
mance, we used the data transfer time, computational over-
head, recovery overhead, and false-positive matches as the
target performance factors.

1) DATA TRANSFER TIME
In this section, we analyze the impact of DAFT on the overall
data transfer time. Fig. 7 depicts the DAFT data transfer
time comparison for both big and small workloads. In these
figures, the DAFT transfer time for varying number of hash
functions are represented using a bar graph, whereas the line
represents the transfer time without fault tolerance support.

From Fig. 7(a) and Fig. 7(b), it is evident that the
DAFT method has a minimum to negligible impact on
the overall data transfer time. Although it is expensive to
compute the hash functions and generate the bloom filter,
the overhead is nullified using a pipelining architecture,
as described in IV-B. We utilized this pipelining tech-
nique to achieve high-performance data transfer with bloom
filter-based DAFT. Our pipeline included the read, hash,
bloom filter generation, and transfer operations. Our sys-
tem design ensured that each operation overlaps with the
operations of a different block.

Along with the average runtime, Fig. 7(a) and Fig. 7(b)
illustrate the 99% confidence intervals represented as error
bars. From these error bars, we can observe some variability
for both workloads. This variability might be related to the
file management overhead of the file system. Overall, from
Fig. 7, we can conclude that the bloom filter-based DAFT

method has a negligible impact on the overall data transfer
time.

2) RECOVERY TIME
Minimizing the recovery time upon resuming from fault is
another major objective of our fault tolerance framework.
In this section, we evaluated the recovery time for both small
and big workloads. For the effective evaluation of the recov-
ery time, we created a simulation environment wherein we
generated faults after transferring 20%, 40%, 60%, and 80%
of the total data size. Although faults can occur at any transfer
endpoint, in our simulation environment, we generated faults
at the source end.

Fig. 8 and Fig. 9 depict the recovery time of both big and
small workloads at varying fault points, respectively. In these
figures, recovery time for varying number of hash functions
are represented using a bar graph, whereas the line represents
baseline data transfer time without failure and fault tolerance
support. For effective comparision, we have represented time
consumed before fault, after fault, and estimated recovery
time.

From these graphs, it is evident that the recovery time is
linearly proportional to the fault point. The later the fault,
the higher the number of redundant blocks to be hashed for
verifying the object membership to determine if the block has
already been transferred. Hence, the later the fault, the higher
the recovery time. These graphs also elucidate that the recov-
ery time is independent of the number of hash functions
being used for generating the bloom filter. For quantitative
comparison, the percentage of recovery time against the num-
ber of hash functions was calculated. At 20% fault time,
our fault tolerance framework experienced an overhead of
approximately 2–3% for all hash functions; however, at 80%
fault point, the overhead increased to 10–11%.

Based on our evaluation results, we can conclude that the
recovery time does not affect the number of hash functions
used for generating the bloom filter.

3) FALSE POSITIVE MATCHES OF DAFT
The bloom filter-based fault tolerance framework is prone
to false-positive results of object membership queries.
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FIGURE 8. Recovery time analysis of DAFT at varying fault timing for big workloads.

FIGURE 9. Recovery time analysis of DAFT at varying fault timing for small workloads.

Thus, some object membership queries result in errors, and
some blocks that are not transferred to the sink end are falsely
considered to be transferred. This results in data corruption;
therefore, the transferred data would be unusable for further
analysis. Reducing the false positive matches of the object

membership queries is another major design aspect of this
framework.

Fig. 10 shows the false positive matches for the big and
small workloads at varying fault points and for different
number of hash functions. For ease of analysis, we divided
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FIGURE 10. False positive matches of DAFT at varying fault timing for big and small workloads.

the graph into two sets (k = {2,3,4} and k = {5,6,7}). From
this graph, we can observe that the false-positive matches are
inversely proportional to the number of hash functions. Addi-
tionally, it is evident that the later the fault point, the lower the
number of false-positive matches. This is because the later the
fault point, the lower the number of blocks to be transferred
to the sink end.

We evaluated our framework using the bloom filter con-
figuration described in SectionV-A5. From Fig. 10, it can
be observed that the false-positive match patterns for both
big and small workloads are significantly similar. It can be
observed from the graphs that at 20% fault and k = 2,
big workloads experience approximately 0.7% false-positive
matches, whereas at a similar configuration, small work-
loads experience approximately 1.5% false-positive matches.
As we increase the number of hash functions to 7, the num-
ber of false-positive matches reduces drastically. From the
evaluation results, it can be observed that at 20% fault and
k = 7, both big and small workloads experience as low
as 2 false-positive matches. From this, we can conclude
that increasing the number of hash functions will mini-
mize the number of false-positive matches. However, these
false-positive matches cannot be completely avoided owing
to the probabilistic nature of the bloom filter. To negate the
impact of the false-positive matches of DAFT, we proposed
the DLFT framework, as described in Section IV-C.

4) RECOVERY TIME AND FALSE POSITIVE MATCHES OF DLFT
To evaluate the impact of the DLFT mechanism on the
recovery time, we used a similar simulation environment as

described in V-B2, and generated faults at 20%, 40%, 60%,
and 80% of the total data size. Fig. 11 and Fig. 12 depict
the DLFT recovery time for both big and small workloads,
respectively. For effective comparison, the total recovery
time is represented by two colors. RecoveryTimeA denotes
the DAFT recovery time and RecoveryTimeL represents the
object layout logging overhead. Also, to understand the
impact of failures, the baseline data transfer time without
failure is represented as a line, Baseline.

Big Workloads: From Fig. 11, it can be observed that
at 20% and 40% fault points for a varying number of hash
functions (k), the overhead incurred by object layout log-
ging is significant. However, at 60% and 80% fault points,
the layout logging overhead is considerably negligible. This is
because the later the fault, the higher theDAFT recovery time.
Although the object layout logging overhead is independent
of the fault points, a higher DAFT recovery time (at 60% and
80% fault points) results in negligible object layout logging
overhead.

Small Workloads: From Fig. 12, we can observe that
small workloads also exhibit similar behavior as big work-
loads for a varying number of hash functions (k). At 20%
and 40% fault points, the object layout logging overhead is
visible; however, this overhead is not significant at 60% and
80% fault points.

Accordingly, we can conclude that with small to negligible
overhead, the use of the object layout logging mechanism in
conjunction with DAFT can help in avoiding false-positive
matches of the bloom filter, irrespective of the number of
hash functions used. According to the experimental results,
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FIGURE 11. Recovery time analysis of DLFT at varying fault timing for big workloads.

FIGURE 12. Recovery time analysis of DLFT at varying fault timing for small workloads.

no false-positive matches were observed with the DLFT
mechanism.

5) SPACE OVERHEAD ANALYSIS
An important aspect of using the bloom filter-based proba-
bilistic fault tolerance mechanism is to reduce the amount of

space occupied by the fault tolerance framework during data
transfer. SectionV-A5 describes the required storage space
for computing the bloom filter at varying number of hash
functions. Fig. 13 depicts the space overhead of DAFT and
DLFT for both big and small workloads. From Fig. 13(a)
and Fig. 13(b), we can observe that the amount of space
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FIGURE 13. Space overhead analysis of DAFT and DLFT for both big and small workloads.

occupied by the DAFT and DLFT frameworks is negligible
(in the order of few KB (KiloBytes)) for both big and small
workloads. Owing to the additional object layout information,
the DLFT space overhead was found to be 30% and 44%
higher than DAFT for big and small workloads, respectively.

VI. CONCLUSION
The PFS distributes file data across multiple storage servers
and provides concurrent access to the file data. Big data trans-
fer tools with higher data transfer performance requirements
employ multiple I/O threads to process data transfers. Thus,
objects of different logical files might be transferred in par-
allel. Although such data transfer tools significantly improve
the data transfer performance, they introduce additional com-
plexity in the efficient management of faults because tra-
ditional file offset-based fault tolerance mechanisms are
not suitable owing to the out-of-order nature of data trans-
fer. In this study, we proposed DAFT mechanisms that
employed a bloom filter-based probabilistic data structure
for efficiently managing faults with out-of-order object trans-
mission. We evaluated and compared the data transfer per-
formance overhead of DAFT for varying number of hash
functions (k = 2 to 7) on the overall data transfer rate and
concluded that the proposed fault tolerance mechanisms do
not negatively impact the data transfer performance. More-
over, to evaluate the recovery time overhead of DAFT, we cre-
ated a simulation environment to generate faults at 20%,
40%, 60%, and 80% points of data transfer. The evalua-
tion results demonstrated that the recovery time of DAFT
increases with the fault point of data transfer. For big work-
loads, we observed a minimum overhead of 2% for k = 2
and 2.5% for k = 7 at 20% fault point. Meanwhile, at 80%
fault point, the recovery time overhead increased to 10% for
k = 2 and 10.7% for k = 7. Similar recovery time overhead
was observed with small workloads as well.

Although the proposed DAFT mechanism significantly
improved the data transfer tool performance upon encounter-
ing faults, its probabilistic nature of data structure resulted
in false-positive object matches. Thus, some objects that
were supposed to be transferred after fault were considered
as already transferred. This results in data integrity issues.
We evaluated the false-positive object matches for both big

and small workloads at predefined fault points. The experi-
mental results demonstrated that at 20% fault point and num-
ber of hash functions k = 2, 0.7% and 1.5% false-positive
matches were observed for big and small workloads, respec-
tively. As the number of hash functions was increased to
k = 7, the number of false object matches was reduced to
as low as 2 for both big and small workloads.

By increasing the number of hash functions, the number
of false-positive matches can be reduced, but they cannot
be completely avoided. Therefore, we proposed the DLFT
framework that combines DAFT with the object layout infor-
mation to avoid false-positive object matches. According
to the experimental results, no false-positive matches were
observed with the DLFT mechanism. We also evaluated the
recovery time and space overhead of the DLFT framework
on the overall data transfer performance. The experimental
results demonstrated constant and negligible recovery time
overhead at all fault points for both big and small work-
loads. Furthermore, 30% and 44% space overheads were
observed in comparison to DAFT for big and small work-
loads, respectively.

To summarize, the proposedDAFT andDLFTmechanisms
complement the existing big data transfer tools with fault tol-
erance support without negatively impacting the data transfer
performance.
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