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ABSTRACT This article proposes a fast reaching finite time synchronization approach for chaotic systems
along with its application to medical image encryption. First, an adaptive terminal sliding mode tracking
approach with fast reaching condition is designed to synchronize the chaotic systems at the transmitter and
receiver ends in finite time. Then, a chaotic cryptosystem, using synchronized chaotic systems as secret
keys generator, is proposed to enhance the security of medical image transmission and/or storage. The
applicability and efficiency of the proposed synchronization approach is assessed using a simulation as well
as an analytical study. The analysis encompassed security tools such as histogram analysis, correlation test,
and information entropy change the rate of the number of pixels and unified average changing intensity.
The obtained results confirmed the robustness and fast convergence rate of the proposed synchronization
approach. The security analysis also shows that the proposed cryptosystem displays acceptable levels of
resistance to various attacks.

INDEX TERMS Chaos synchronization, fast reaching condition, medical image encryption, MOREmethod
encryption.

I. INTRODUCTION
Chaos theory is a branch of mathematics that studies non-
linear complex systems exhibiting high sensitivities [1]–[4].
The issue of chaotic synchronization was described for the
first time by Afraimovich et al. [5] and later developed by
Ott, Grebogi and York [6]. Notwithstanding all the work
which has been done by the mathematicians on chaos the-
ory and synchronization, it is only the recent event done
by Carroll and Pecora [7] on chaos synchronization that
attracted a lot of attention to the application of chaos in
engineering sciences. Carroll and Pecora have demonstrated,
experimentally and theoretically, that if the chaotic system
is modeled using a master-slave structure, then the two
chaotic signals can be synchronized. In terms of chaos syn-
chronization techniques, various approaches have been pro-
posed in the literature. For instance, sliding mode control
[8], digital redesign control [9], optimal control [10], back-
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stepping method [11], impulsive control [12], intermittent
scheme [13], switching process [14], composite nonlinear
feedback [10], fuzzy-logic control [15] and neural-based con-
trol [16] have been considered. Sliding mode control (SMC)
is an effective robust control technique which has been used
for the synchronization or control of chaos in power elec-
tronic systems [17], [18], touchless fingerprint encryption
[19], satellite motion [20], cryptosystem [21], wind speed
forecasting [22], Van der Pol oscillator [23], wind power
interval prediction [24], nonlinear pendulum [25], image
encryption [26], secure communication [27], [28] and so
on. Among the attractive features of SMC are its robustness
to uncertainties, fast response, computational simplicity and
insensitivity to disturbances [18], [29]–[33].

The rapid development of electronic technology has led
to their widespread adoption in hospitals, notably in pic-
ture archiving and communication systems [34]. These latter
enable the storage of patients’ diagnostic results in the form
of digital images. These images often contain sensitive data
such as patients’ personal information [35]. Consequently,
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safeguarding the storage and transfer of this information is
crucial to protecting patients’ privacy. Though, conventional
encryption schemes are able to satisfy the security of multi-
media information during transmission, there are still some
limitations when it comes to protecting all multimedia con-
tent and preventing illegal access. Research has shown that
these methods, in some cases, have exhibited defects against
brute-force attacks due to lower key space. Additionally,
in most cases, traditional encryption methods require high
computing power and long computational time. In real-time
applications, such as wireless communication due to the low
speed of encryption and decryption, they may present con-
siderable latency. In this context, cryptography using chaotic
signals offers a set of promising techniques which can exhibit
some advantages over the traditional encryption techniques,
especially in terms of a good combination of security, speed
and capability. Encryption methods using chaotic systems is
an encryption technology which uses synchronized chaotic
signals generated by chaotic systems to create keys in encryp-
tion systems. These chaotic keys have good features such
as large key space and are extremely sensitive to the sys-
tem parameters and initial conditions [36], [37]. Because of
the high security and low cost of chaotic signals and the
attractive features of SMC, the implementation of a med-
ical image encryption using an SMC-based synchronized
chaotic system is an attractive solution that can perfectly
resolve the security issues in safe medical communication
systems.

This paper designs and implements a fast reaching tech-
nique finite time synchronization technique for chaotic sys-
tems with application in medical image encryption. Its main
contributions are threefold:

• An adaptive terminal sliding mode tracking approach
based on a novel slidingmanifold with fast reaching con-
dition to synchronize chaotic systems at the transmitter
and receiver ends in finite time.

• A synchronization approach that can practically be
implemented to the chaotic systems without the need for
any unrealistic assumptions about the knowledge of the
upper bounds of the external disturbances.

• A chaotic cryptosystem using a synchronized chaotic
system as secret key generator to enhance the
security of the medical image transmission and/or
storage.

This paper is organized as follows. Section 2 provides some
definitions and preliminaries. The Main results, including
the sliding surface design, finite time control, fast reach-
ing condition and adaptive control approach are detailed in
section 3. The proposed chaotic cryptosystem including the
chaotic key-stream generation, random number generation
algorithms and medical image encryption and decryption
schemes are explained in section 4. The simulation results are
presented in section 5. The performance analyses including
the statistical analysis are provided in section 6. Finally, some
concluding remarks are given in section 7.

II. SYSTEM DEFINITION AND PRELIMINARIES
Consider the following canonical description of a chaotic
system with external disturbances:

ẋ1 (t) = x2(t)

ẋ2 (t) = x3(t)

ẋ3 (t) = f (x (t) , t)+ b (x (t) , t) u (t)+ d (x (t) , t) (1)

wherex (t) = [x1 (t) , x2 (t) , x3 (t)]T are the system states,
u(t) is the control input, b (x (t) , t) and f (x (t) , t) are two
nonlinear functions with known bounds, and d(x(t),t) indi-
cates the external disturbance with |d(x(t),t)| ≤δ, where δ is a
positive scalar. The control objective is to force the nonlinear
disturbed system (1) to track the reference trajectories defined
by:

ẋ1d (t) = x2d
ẋ2d (t) = x3d
ẋ3d (t) = g(xd (t) , t) (2)

where g(xd (t) , t) is a differentiable function of time.
Define the tracking error signals as

e (t) = x1 (t)− x1d (t) (3)

ė (t) = x2 (t)− x2d (t) (4)

ë (t) = x3 (t)− x3d (t) (5)

In what follows, we propose a terminal sliding mode
approach to ensure the finite-time convergence of the tracking
errors to the origin.

III. MAIN RESULTS
A. SLIDING SURFACE DESIGN
Define the following terminal sliding mode control surface:

s (e (t)) = ë(t)+ ς ė(t)+ λe(t)+ µe(t)η (6)

where λ,µ, ς > 0 and 1 > η > 0 is a ratio of two odd
positive integers. Using (1)-(6), the time-derivative of s(e(t))
is obtained as

ṡ(e(t)) = e(t)+ ς ë(t)+ λė(t)+ µė(t)e(t)η−1

= ẋ3(t)− ẋ3d (t)+ ς (x3(t)− x3d (t))

+λ(x2(t)− x2d (t))+ µ(x2(t)

−x2d (t))e(t)η−1

= f (x(t), t)+ b(x(t), t)u(t)+ d(x(t), t)

−ẋ3d (t)+ ς (x3(t)− x3d (t))

+

(
λ+ µe(t)η−1

)
(x2(t)− x2d (t)) (7)

B. FINITE TIME CONTROL
In the subsequent theorem, the finite time convergence of
the fast terminal sliding surface based on the fast reaching
condition is satisfied. In this section, it is shown that the fast
reaching condition drives the error trajectories to converge to
the sliding surface with a fast speed. After the convergence
of the tracking errors to the sliding surface, the tracking
objective of the reference trajectory is fulfilled.
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Theorem 1: Consider the nonlinear disturbed system (1)
and assume that the external disturbance d(x(t),t) is bounded
by a positive constant δ. The terminal sliding mode tracker
with the fast reaching condition is designed as:

u(t) = −b(x(t), t)−1(f (x(t), t)− ẋ3d (t)

+ς (x3(t)− x3d (t))

+

(
λ+ µe(t)η−1

)
(x2(t)− x2d (t))

+m1

(
β |s(e(t))| − 1

)
sgn(s(e(t)))

+m2 |s(e(t))|α sgn(s(e(t)))

+δsgn(s(e(t)))) (8)

where m1,m2 > 0, 0 < α < 1 and β = 1 + m2/m1. Then,
the sliding surface converges to the origin in finite time and
the reachability condition of the terminal sliding surface (6)
is satisfied.

Proof: Construct the Lyapunov function as:

V (s) = 0.5s(e(t))2 (9)

where differentiating (9) with respect to time and using (7),
yields:

V̇ (s) = s(e(t))(f (x(t), t)+ b(x(t), t)u(t)

+d(x(t), t)− ẋ3d (t)+ ς (x3(t)− x3d (t))

+(λ+ µe(t)η−1)(x2(t)− x2d (t))) (10)

Substituting (8) into (10), gives

V̇ (s) = s(e(t))(d(x(t), t)− m1

(
β |s(e(t))| − 1

)
sgn(s(e(t)))

−m2 |s(e(t))|α sgn(s(e(t)))− δsgn(s(e(t)))), (11)

where, since |d(x(t),t)| ≤ δ, Eq. (11) gives

V̇ (s) = d (x (t) , t) s (e (t))− m2 |s (e (t))|α+1

−m1

(
β |s(e(t))| − 1

)
|s (e (t))| − δ |s (e (t))|

≤ (|d (x (t) , t)| − δ) |s (e (t))|

−m1

(
β |s(e(t))| − 1

)
|s(e(t))|m2 |s(e(t))|α+1

≤ −m1

(
β |s(e(t))| − 1

)
|s(e(t))|

−m2 |s(e(t))|α+1 (12)

According to the Lyapunov function (9), one obtains
|s(e(t))| =

√
2 V (s)

1
2 . Since m1,m2 > 0 and γ = β |s(e(t))| −

1 ≥ 0, Eq. (12) can be rewritten as

V̇ (s) ≤ −
√
2m1γV (s)

1
2 − 2

α+1
2 m2V (s)

α+1
2 < 0 (13)

The last condition means that the terminal sliding mode
surface (6) based on the fast reaching condition converges to
the origin in the finite time.

C. FAST REACHING CONDITION
In the terminal sliding mode control law (8), two important
terms have been used, i.e., −m1

(
β |s(e(t))| − 1

)
sgn(s(e(t)))

and −m2 |s(e(t))|α sgn(s(e(t))). By combining these two
terms, the fast reaching condition is formed as:

ṡ(e(t)) = −m1

(
β |s(e(t))| − 1

)
sgn(s(e(t)))

−m2 |s(e(t))|α sgn(s(e(t))) (14)

When the tracking errors are far away from the switching
surface (|s(e (t))|> 1), the first term of (14) has a dominant
task. In this condition, the change rate of the first term is
larger than that of the second term of ṡ(e(t)) and it speeds
up the reaching rate. In addition, when the tracking errors are
near to the surface (|s(e (t))|< 1), the second term of (14)
plays the dominant role. The combination of the effects of
two terms in ṡ(e(t)) can force the tracking system to have a
superior dynamic performance.

When the initial value of the sliding surface (s(e (0))) is
greater than one (s(e (0) ) > 1), the process of motion from
the initial value to the slidingmode is divided into two phases:

(a): s(e(0)) → s(e(t)) = 1. In this phase, one can
obtain s(e(t)) > 1; then m1(β |s(e(t))| − 1) > m2 |s(e(t))α|,
and the second term of (14) is ignored. Hence, the reaching
condition (14) is simplified as

ṡ (e (t)) ≈ −m1(βs(e(t)) − 1) (15)

where integrating both sides of (15) yields:
ta∫
0

dt ≈ −
1

m1lnβ

1∫
s(e(0))

d(ln(1− β−s(e(t)))) (16)

Then, the tracking convergence time of phase a (s(e(0))→
s(e(t)) = 1) is found as

ta ≈
ln
(
1− β−s(e(0))

)
− ln(1− β−1)

m1lnβ
(17)

(b): s (e (t)) = 1 → s(e(t)) = 0 In this phase, we have
m1(β |s(e(t))| − 1) < m2 |s(e(t))α|; the second term of (14)
has a prominent duty and the first term is ignored. Therefore,
the reaching condition (14) can be simplified as

ṡ (e (t)) ≈ −m2s(e(t))α (18)

where by integrating Eq. (18), we have:
tb∫
0

dt ≈ −
1
m2

0∫
1

ds
s(e(t))α

(19)

The tracking convergence time of phase
b (s (e (t)) = 1→ s (e (t)) = 0) is calculated as

tb ≈
1

m2(1− α)
(20)

Hence, the total convergence time is the combination of the
times (17) and (20) as

ttotal ≈ ta + tb =
ln
(
1− β−s(e(0))

)
− ln

(
1− β−1

)
m1lnβ
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+
1

m2(1− α)
(21)

When the initial value of the sliding surface is smaller than
-1, i.e., s (e (0)) < −1, the process of motion from the initial
value to the sliding mode is divided into the following two
phases:

(c): s (e (0)) → s (e (t)) = −1. In this phase, we have
s (e (t)) < −1; thenm1(β |s(e(t))|−1) > m2 |s(e(t))α|, the first
term of (14) has a prevailing effect and the second term is
ignored. Thus, the reaching condition (14) is written as

ṡ (e (t)) ≈ m1(β−s(e(t)) − 1 (22)

where by integrating (22), it follows

tc∫
0

dt ≈ −
1

m1 lnβ

−1∫
s(e(0))

d(ln(1− β−s(e(t)))) (23)

Then, the convergence time of phase c(s (e (0)) →
s (e (t)) = −1) is calculated as

tc ≈
ln
(
1− β−s(e(0))

)
− ln(1− β−1)

m1 lnβ
(24)

(d)s (e (t)) = −1 → s(e(t)) = 0. In this phase, one can
obtain m1(β |s(e(t))| − 1) < m2 |s(e(t))α|; the second term of
(14) plays a dominant role and the first term is ignored. The
reaching condition (14) is converted to

ṡ (e (t)) ≈ −m2(−s(e (t)))α (25)

where integrating (25) yields

td∫
0

dt ≈
1
m2

0∫
−1

ds
(−s (e (t)))α

(26)

The convergence time of phase d(s (e (t)) = −1 →
s (e (t)) = 0) is obtained as

td ≈
1

m2(1− α)
(27)

The total convergence time can be found from (24) and (27)
as:

ttotal ≈ tc + td =
ln
(
1− βs(e(0))

)
− ln

(
1− β−1

)
m1 lnβ

+
1

m2(1− α)
(28)

As a result, the error trajectories, in both conditions
|s(e(t))| > 1 and |s(e(t))| < −1, converge to the terminal slid-
ing surface in finite time. On the sliding surface (s(e (t)) = 0),
in the light of Eq. (14), the time-derivative of the sliding
surface is zero, i.e. ṡ(e (t)) = 0. It means that the velocity
at which the error trajectories reach the sliding surface is
equal to zero. This case reduces the chattering phenomenon
efficiently.

D. ADAPTIVE CONTROL APPROACH
In real applications, it is impossible to determine the upper
bound of the external disturbances d(x(t), t). To solve this
problem, an estimation of the positive constant δ, i.e. δ̂(t),
is suggested in the following theorem.
Theorem 2: Consider the nonlinear disturbed system (1)

and the terminal sliding surface (6). Assume that the exter-
nal disturbance d(x(t),t) is bounded by a positive unknown
constant δ, which is estimated by δ̂(t). The adaptive terminal
sliding mode tracking controller with the fast reaching con-
dition is designed as

u(t) = −b(x(t), t)−1(f (x(t), t)− ẋ3d (t)+ ς (x3(t)

−x3d (t))+
(
λ+ µe(t)η−1

)
(x2(t)− x2d (t))

+m1

(
β |s(e(t))| − 1

)
sgn(s(e(t)))

+m2 |s(e(t))|α sgn(s(e(t)))

+δ̂(t)sgn(s(e(t)))) (29)

and the estimation law is given by

˙̂
δ (t) = l−1 |s(e(t))| (30)

where l is a positive constant. Then, the reachability condition
of the terminal sliding surface (6) is guaranteed.

Proof: Assume the estimation error as

δ̃ (t) = δ̂(t)− δ (31)

Using (30) and (31), the time-derivative of δ̃ (t) is found as

˙̃
δ (t) = ˙̂δ(t) = l−1 |s(e(t))| (32)

Consider the positive-definite Lyapunov function as

V (s, δ̃) = 0.5
{
s (e (t))2 + lδ̃(t)

2
}

(33)

where differentiating the Lyapunov function and using (7)
and (32), we have

V̇ (s, δ̃) = s(e(t))ṡ(e(t))+ lδ̃(t) ˙̂δ(t)

= δ̃(t) |s(e(t))|

+s(e(t))(f (x(t), t)+ b(x(t), t)u(t)

+d(x(t), t)− ẋ3d (t)+ ς (x3(t)− x3d (t))

+(λ+ µe(t)η−1)(x2(t)− x2d (t))). (34)

Now, substituting (29) into (34), one attains:

V̇ (s, δ̃) = δ̃(t) |s(e(t))| + s(e(t))(d(x(t), t)

−(δ̂(t)+ m2 |s(e(t))|α

+m1(β |s(e(t))| − 1))sgn(s(e(t)))). (35)

Since s(e(t))d(x (t) , t) ≤ |s(e(t))| |d(x (t) , t)| and |s| =
s.sgn(s), Eq. (35) can be written as

V̇ (s, δ̃) ≤ δ̃(t) |s(e(t))| + |s(e(t))| |d(x(t), t)|

−δ̂(t) |s(e(t))| − m2 |s(e(t))|α+1

−m1

(
β |s(e(t))| − 1

)
|s(e(t))| . (36)
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By addition and subtraction of the term δ(t) |s(e(t))| to the
right-hand-side of (36), we have

V̇ (s, δ̃) ≤
(
δ̂(t)− δ(t)

)
|s(e(t))|

+ |s(e(t))| |d(x(t), t)| − δ̂(t) |s(e(t))|

−m2 |s(e(t))|α+1

−m1

(
β |s(e(t))| − 1

)
|s(e(t))|

+δ(t) |s(e(t))| − δ(t) |s(e(t))| , (37)

where simplifying Eq. (37) gives

V̇ (s, δ̃) ≤ −m1

(
β |s(e(t))| − 1

)
|s(e(t))|

−m2 |s(e(t))|α+1

− (δ(t)− |d(x(t), t)|) |s(e(t))|

≤ −m1

(
β |s(e(t))| − 1

)
|s(e(t))|

−m2 |s(e(t))|α+1 . (38)

Hence, according to the estimation-based tracking control
law (29), it is resulted that the Lyapunov function (33)
decreases gradually, i.e., V̇ (s, δ̃) ≤ 0. This finalizes the proof.
Remark 1. There is tradeoff between the controller’s com-

plexity and its performance. However, in this paper, due to
the usage of synchronized chaotic system to implementation
of the information cryptosystem, the more complexity of
the controller causes more complexity of the cryptosystem.
In fact, if the eavesdropper wants to extract the original data
from the encrypted data, he/she will face more complexity to
achieve the encryption keys and the security performance will
improve. Therefore, it can be concluded that in the chaotic
cryptography applications, the consideration of the crypto-
graphic performance can take precedence over the control
performance.

IV. PROPOSED MEDICAL IMAGE ENCRYPTION
The block diagram of the proposed medical image encryption
system is illustrated in Fig.1. In this system, the reference tra-
jectories (2) considered as the transmitter chaotic system and
the equation (1) considered as the receiver chaotic system.
Note that the focus of our work is on the proposed chaotic
encryption and decryption approach. The details about the
wireless multimedia communication system can be found
in [38].

A. CHAOTIC KEY AND RANDOM BIT GENERATION
At first, the parameters and initial states of the transmitter
chaotic system are defined. Then, the sampling interval of
the system (1h) is determined and the chaotic system is
solved using the fourth-order Runge–Kutta (RK-4) integra-
tion algorithm. As a result of the system analysis, three
chaotic signals as 15 digit float values [x1d (i), x2d (i), x3d (i)]
are obtained. By using the chaotic sequences x1d (i), x2d (i)
and x3d (i), the chaotic keys (ck) are generated as follow:

ck1(i) = mod(x1d (i) ,floor(x1d (i− 1)))

ck2(i) = mod(x2d (i) ,floor(x2d (i− 1)))

ck3(i) = mod(x3d (i) ,floor(x3d (i− 1))) (39)

where the function mod (f , g) returns the remainder of f
divided by g, and floor(ω) rounds the elements of ω to the
nearest integers. Also, on the chaotic float values x1d (i), x2d (i)
and x3d (i) obtained from step 1, the values of the decimal
parts after the comma(fraction part) are considered. These
values are converted to 64 bit binary digits and 32 LSBs with
low-valued and high-precision (rbx , rby, rbz). This process
is done to generate 1 million bits per phase. Following the
generation of these random bits for each phase, the phases
are subjected to XOR processing in binary form. The new
random bit sequences are generated by

rbxy = bitxor(rbx , rby)

rbxz = bitxor(rbx , rbz)

rbyz = bitxor(rby, rbz)

rbxyz = bitxor(rbx , rby, rbz) (40)

At last, the final random bits (rb) are obtained as

rb = [rbxy, rbxz, rbyz, rbxyz] (41)

B. MEDICAL IMAGE ENCRYPTION
After obtaining the chaotic keys [ck1, ck2, ck3] and ran-
dom bits [rb], in this subsection, a medical image P mea-
suring m × n was used for encryption by combination of
Chaotic Matrix Operation for Randomization or Encryp-
tion (C-MORE) method and XOR operation. Conventional
MORE Method as a probabilistic symmetrical fully homo-
morphic cryptosystem was fully described in [39], [40]. The
details of the encryption are explained as follow:
Step1: Convert the medical image P into a vector P̃ of

length m× n.
Step 2: For each sample pixel of the image vector P̃(j), the

invertible matrix S(j) is formed using the chaotic keystream
(ck1) as

S(j) =
[
s11 s12
s21 s22

]
=

[
ck1(4j− 3) ck1(4j− 2)
ck1(4j− 1) ck1(4j)

]
(42)

By using the matrix S(j) and chaotic key streams (ck2) and
(ck3), the pixel value P̃(j) is encrypted by

C(j) =
[
c11 c12
c21 c22

]
= S(j)

[
ck2 (j) .P̃(j) 0

0 ck3(j)

]
S(j)−1 (43)

where c11, c12, c21, c22 are four encrypted pixel values related
to one pixel value of the original image vector P̃(j). This pro-
cess is done for all of the pixels (P̃(j) |j = 1, 2, . . . ,m× n )
and the encrypted values are gathered to build four encrypted
pixel vectors [C1,C2,C3,C4].
Step 3: For more security, the encrypted pixels vec-

tor [C1,C2,C3,C4] are encrypted again with random bit
sequences obtained from (41) by XOR operation as

Ẽk = Ck ⊕ rn, k = 1, . . . , 4 (44)
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FIGURE 1. Block diagram of the proposed chaotic encryption-decryption system.

Finally, four encrypted images related to the original medi-
cal image can be obtained by reshaping the encrypted vectors[
Ẽ1, Ẽ2, Ẽ3, Ẽ4

]
to the four matrixes [E1,E2,E3,E4] of size

m × n. These four encrypted images are sent to the receiver
using a TX/RXmodule through a public noisy wireless chan-
nel which can be accessed by an eavesdropper.

C. MEDICAL IMAGE DECRYPTION
When the synchronization process described in Sec. III is
achieved and the chaotic signals at the receiver end are syn-
chronized with the chaotic signals at the transmitter, the orig-
inal medical image can be recovered by applying the reverse
operations in the encryption as follow:
Step 1: Using the initial states, system parameters and

control inputs of the receiver chaotic system, the chaotic
synchronization is achieved and the chaotic key streams
[ck1, ck2, ck3] and random bits [rb] are obtained at the
receiver with the same process of Sec. IV-A.
Step 2: Four encrypted images [E1,E2,E3,E4] related to

the original medical image that received at the receiver, con-
vert into four vectors

[
Ẽ1, Ẽ2, Ẽ3, Ẽ4

]
. By using the random

numbers [rb] and XOR operation, one can obtain

C ′k = Ẽk ⊕ rb, k = 1, . . . , 4 (45)

Step 3:By using the chaotic key stream (ck1), the invertible
matrix S ′(j) can be reconstructed for each cipher-texts sample
pixel [C ′1(j),C

′

2(j),C
′

3(j),C
′

4(j)] in the receiver as

S ′(j) =
[
s′11 s

′

12
s′21 s

′

22

]
=

[
ck1(4j− 3) ck1(4j− 2)
ck1(4j− 1) ck1(4j)

]
(46)

Now, the sample value P̃′(j) can be recovered by chaotic
key streams ck2 and ck3 as

D(j) =
[
d11 d12
d21 d22

]
= S ′(j)−1

[
C ′1(j) C

′

2(j)
C ′3(j) C

′

4(j)

]
S ′(j)

=

[
ck2(j).P̃′(j) 0

0 ck3(j)

]
(47)

Finally, by selecting the first array ck2 (j) .P̃′(j) of the
matrix D(j) and removing the weight ck2 (j), the plain-text
sample pixel P̃′(j) is obtained. This process is done for all
of the cipher-text sample pixels [C ′k (j) , k = 1, . . . , 4, j =
1, 2, . . . ,m× n] and by reshaping the recovered vector P̃′ to
the matrix P′ of size m × n the original medical image P′ is
recovered.
Remark 2. In this study, we have focused on medical image

encryption because of the heightened security concerns about
patients’ privacy and the need for a robust and secure encryp-
tionmethod for such images.Moreover, we found that various
methods such as the approach of [41] are effective for the
general image. The medical images mainly contain the few
colors and low details. Hence, these methods are not suitable
for the medical image, and realizing the encryption take
much time. Figure 2 shows the encryption result for med-
ical image encryption by the method of [41]. Nonetheless,
the proposed approach can be broadly implemented to other
types of images.

V. SIMULATION RESULTS
A. SIMULATION RESULTS OF CHAOS SYNCHRONIZATION
The performance and robustness of the proposed fast reaching
finite time synchronization approach is illustrated in this
section using a numerical simulation study. In this simulation,
the reference trajectories (2) as the transmitter chaotic system
is considered with the condition [x1d (0) , x2d (0) , x3d (0)] =
[0, 0, 0] and differentiable function

g(xd (t), t) = − |x1d (t)| − x2d (t)

+0.6x3d (t)+ 1 (48)
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FIGURE 2. (a) Original image (b) encryption result by the method in [41].

The receiver chaotic system(1) is specified with initial con-
dition [x1 (0) , x2 (0) , x3 (0)] = [1, 1, 1] and system parame-
ters:

f (x (t) , t) = − |x1 (t)| − x2 (t)+0.6x3 (t)+ 1 (49)

b(x(t), t) = 0.5 sin(x1(t))+ cos(x2(t))

+1.2 sin(x3(t)) (50)

d(x(t), t) = 0.2 sin(x1(t) ∗ t)+ cos(x2(t) ∗ t)

+0.15 sin(x3(t) ∗
√
t) (51)

The state trajectories of the chaotic systems are illustrated
in Figs. 3-5, when the suggested controller (29) is applied.
It is seen that the chaotic signals x1 (t) and x1d (t) are synchro-
nized in 5 seconds. Also, the state trajectories x2 (t) and x3 (t)
are synchronized with x2d (t) and x3d (t) in 4 and 2 seconds,
respectively. Fig.6 displays the dynamics of the error signals.
It is shown from Fig.6 that the error signals converge to zero
in less than 5 seconds. Thus, it can be concluded that the pro-
posed method is able to mitigate the parametric uncertainties
while displaying a suitable synchronization performance. The
time responses of the designed control inputs u (t) and FTSM
surface s (t) are shown in Fig.7. Note from the figure that
the acceptable amplitudes of the proposed control law and
FTSM surface. Note also the dynamics of the control signal
and FTSM surface are free of chattering.

B. SIMULATION RESULTS ILLUSTRATING THE MEDICAL
IMAGE ENCRYPTION SYSTEM
In this subsection, the usefulness and application of pro-
posed scheme for medical image encryption is validated
using numerical simulation. A medical skull image of size
444× 535× 3 uint8, in JPG format is used in this simulation
as the original data which must be encrypted (see Fig.8).
The encryption keys are generated by the transmitter chaotic
system. By applying these chaotic keys and the encryption
method described in subsection IV-B, the original image is
encrypted. Fig.9 shows the obtained encrypted images. At the
receiver side, the chaotic system is used to generate the
decryption keys. The decrypted medical skull image can be
obtained after the synchronization procedure and the decryp-
tion process illustrated in Fig.10. From these figures, it can be
seen that the encrypted images have uniform distribution, and

FIGURE 3. State trajectories x1, x1d .

FIGURE 4. State trajectories x2, x2d .

FIGURE 5. State trajectories x3, x3d .

the encrypted images are similar to the noise. It demonstrates
that from the viewpoint of visual impression, the proposed
method has a well encryption performance.
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FIGURE 6. Error signals e1, e2, e3.

FIGURE 7. FTSM surface s(t) and control signal u(t).

FIGURE 8. Original skull image.

Remark 3. In the finite time control, the convergence time
is dependent to the initial conditions. Although any finite-
time convergent sliding mode controller can be transformed
into a fixed-time convergent control approach [42]; how-

FIGURE 9. Encrypted skull images.

FIGURE 10. Recovered skull image.

ever, for the application of synchronized chaotic systems in
data encryption, because the output of the chaotic system is
extremely sensitive to the initial conditions, the transmitter
can obtain the new encryption keys by the change of the initial
conditions. On the other hand, when the synchronization
process is achieved in a new time and the chaotic signals at
the receiver are synchronized with the chaotic signals at the
transmitter, the new encryption keys and the original data can
be recovered respectively.
Remark 4. The finite time convergence in synchronization

of the chaotic systems has a very important role and sig-
nificance for the realization of synchronization and secure
communication. Since the finite time convergence can fulfill
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FIGURE 11. Synchronization errors using the controller in [45].

the identification of the system parameters in finite time,
it can be ensured that the encoding of the original signal is
completed in a given finite time that is shorter than the signal
duration [43]. Moreover, in the data communication networks
such as wireless sensor networks, there are many restrictions,
including restrictions on battery lifetime. Thus, reduction of
the synchronization time causes the sensors return to the
idle mode more fast and consequently, the battery lifetime
is increased [44]. Fig.11 shows the time trajectories of the
synchronization errors using the method of [45]. As can
be observed in this figure, the asymptotic convergence is
achieved in more than 10 seconds. It can be expected that
some errors might occur initially in the transient responses
during themessage decryption. In order to avoid this problem,
the authors have proposed that the dummy information are
sent in the beginning of the communication so as to prevent
the loss of information, while the total time for communica-
tion is less than the considered time.

VI. PERFORMANCE ANALYSIS OF THE PROPOSED
CRYPTOSYSTEM
To analyze the robustness and illustrate the adequate security
of the proposed chaotic cryptosystem, we perform in this
section a set of security analysis tests. That is, histogram
analysis, correlation test, analysis of occlusion and noise
attack, classical attack, information entropy, number of pixels
change rate and unified average changing intensity are carried
out. Additionally, to have a fair judgment and to further
compare our approach to other works, we consider a classical
standard test image (Lena) of size 512× 512 uint 8. The
results of the encryption process for the Lena image are
illustrated in figures. 12-14.

A. HISTOGRAM ANALYSIS
To barricade the revelation of image information from an
eavesdropper, it is useful if the encrypted image has no or very
few statistical similarities to the original image. The his-
togram of image illustrated that pixel elements in an image
are distributed using graphical display of the pixel elements,
by measuring the color intensity level of each pixel element.
The histograms of the original and encrypted medical skull

FIGURE 12. Original Lena image.

FIGURE 13. Encrypted Lena images.

FIGURE 14. Recovered Lena image.

image are shown in Fig.15. The histograms of the encrypted
images are more uniform, considerably different from the
original image and have no statistical similarity to the original
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TABLE 1. Variance of histogram.

image. Therefore, the encrypted medical skull images suc-
cessfully hide the information of the original medical skull
image.

Moreover, the variance of a histogram can quantitatively
describe the distribution of pixel values, which is calculated
by [46]:

var(Z ) =
1
n2

n−1∑
i=1

n−1∑
j=1

1
2

(
zi − zj

)2 (52)

where Z is a vector and Z = {z1, z2, . . . ,z256} , zi and zj
are the numbers of pixels with gray values equal to i and j,
respectively. The lower value of variance indicates the higher
uniformity of ciphered images. In the experimental tests,
the variances of the histograms of the medical skull image,
Lena image and their encrypted images are calculated by
using Equation (52) and listed in TABLE 1. From TABLE
1, it can be discovered that the histogram variance values
of the encrypted images are much smaller than those of the
original images. Thus, our proposed algorithm has suitable
performance in resisting statistical attacks.

B. CORRELATION TEST
Pearson’s correlation, developed by mathematician Karl
Pearson and made public knowledge in 1884 can be used in
correlation coefficient tests that will measure or compute the
degree of similarity between two variables [47]. According to
the Pearson’s correlation, a good way to measure the encryp-
tion quality of an encryption system is by calculating the
correlation coefficient between two adjacent sample values
in the original message or the encrypted message. This metric
can be calculated by [48]:

Corr (u, v) =
cov (u, v)
√
G (u)
√
G (v)

(53)

Cov (u, v) = 1/
N
∑N

i=1
(ui − E(u))(vi − E(v)) (54)

where u and v are the values of two adjacent samples in
the original message signal or decrypted message signal and

E (u) = N−1
N∑
i=1

ui, G (u) = N−1
N∑
i=1

(ui − E(u))2, N rep-

resents the number of samples involved in the correlation
calculation. The correlation distribution of two horizontally
adjacent samples in the original and encrypted medical skull
images are illustrated in Fig.16. Also, the mean absolute
value of the correlation coefficients for medical skull image
and Lena image have been given in Table 2 and compared
with reference [46]. It is clear that the correlation coeffi-
cients of the encrypted images are too small. It means that

TABLE 2. Correlation coefficients of two adjacent pixels.

no detectable correlation exists among the original and its
corresponding encrypted images. Thus, the suggested chaotic
encryption algorithm has great security against statistical
attacks.

C. ANALYSIS OF OCCLUSION AND NOISE ATTACK
Encrypted images are subject to occlusion or cropping attack
during transmission andmay be partially damaged. Neverthe-
less, digital images allow a certain extent of distortion on the
transmission channel. An ideal cryptosystem should against
data loss attacks by transmission and storage. Also, in prac-
tical applications, noise interference is inevitable which can
be due to thehigh bit error rate. An outstanding encryption
algorithm has the ability to resist noise attack. To test the
performance of proposed encryption scheme in resisting data
loss, the encrypted medical skull images were attacked by a
data cut with size of 64× 64 as shown in Fig.17 (a-d). The
result of the decryption is given in Fig.18. As can be seen
from the decrypted figure, the original medical skull image
recovered with some noise distortion and blurring and it can
still be recognized with the details.

Moreover, to evaluate the robustness of the proposed
encryption algorithm against the noise attack, the encrypted
medical skull images were attacked with the 3% ‘‘salt &
pepper’’ noise attack (see Fig.19). Then, these encrypted
images were decrypted and the result of the decryption is
given in Fig.20. It can be said from this figure that our
algorithm has good robustness and can efficiently resist noise
attacks.

D. CLASSICAL TYPES OF ATTACK
According to the Kerckhoffs principle, which is an important
principle in cryptosystems, in evaluating the security of these
systems, it should be assumed that attackers know exactly
the design and working of the cryptosystem under study.
According to this principle, the system security should not
depend on the secrecy and confidentiality of its algorithms,
but only depend on the confidentiality of cryptographic keys.
Most modern cryptosystems are based on the Kirkhofs prin-
ciple. As mentioned in [49], the classical attacks such as cho-
sen plaintext attack, plaintext-only attack, chosen ciphertext
attack, and ciphertext-only attack are most common attacks
in cryptography. In these attacks, chosen plaintext is the
most powerful attack and it can be said that if an encryption
algorithm resists against the chosen plaintext attack, then it is
resistant to other attacks. The proposed algorithm is sensitive
to the system parameters and the initial states of the chaotic
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FIGURE 15. Histograms of (a) original image, (b, c, d, e) encrypted images.

FIGURE 16. Correlations of two adjacent samples in (a) original image, (b, c, d, e) encrypted images.

system. If one of them changes, the chaotic keyswould be
totally different. Furthermore, in the proposed chaoticMORE
encryption, different chaotic keys are used to encrypt each
pixel of the image. This means that different ciphered images
have different former plain values and former ciphered val-
ues. Hence, the proposed algorithm can resist the chosen
plaintext/ ciphertext attack.

E. IE, NPCR AND UACI METRICS
Additional image cryptosystem quality measurement metrics
such asInformation entropy (IE), Number of Pixels Change
Rate (NPCR) and unified average Changing intensity (UACI)
are considered in this section.

In information entropy theory, the complexity of the
encrypted data is determined by calculating the information
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TABLE 3. IE, NPCR and UACI metrics.

entropy for an image as follows [50]:

IE (m) =
255∑
i=1

p(mi)log(
1

p(mi)
) (55)

where p(mi) represents the probability of variable mi and
the entropy is calculated in bits. The information entropy
value for a truly random source is equal to 8 [48]. The closer
the information entropy is to the quantity of 8, the better
the quality of the encryption. The IE value of the proposed
encryption method is 7.9224. Thus, the obtained IE value of
the proposed method is very close to 8.

The number of pixels change rate (NPCR) and unified
averagechanging intensity (UACI) are two metrics that are
used to measure the strength of theencryption process to
differential attacks. For our best knowledge, NPCR andUACI
are first shown in 2004 [51]. In fact; the rate of changes in
the result of encryption process when the difference between
the original images is very small can be measured by the
NPCR and UACI quantities. Suppose that C1 and C2 are two
encrypted images after and before changing in the one pixel
of the original image at the position i, j and d (i, j) is a bipolar
array which is defined as

d (i, j) =

{
1 if C1(i, j) 6= C2(i, j)
0 if C1(i, j) = C2(i, j)

(56)

Now, the NPCR and UACI quantities are calculated as [52]

NPCR (C1,C2) =
∑
i,j

d(i, j)
S
× 100% (57)

UACI (C1,C2) =
∑
i,j

|C1 (i, j)− C2 (i, j)|
S.F

× 100% (58)

where S denotes the total number pixels in the original
image and F is the value of the largest theoreticalallowed
value in encrypted image. The optimalvalues of the NPCR
and UACI are NPCRopt= 99.61%NPCRopt= 99.61% and
UACIopt= 33.46%UACIopt= 33.46%, respectively [52]. The
values of NPCR and UACI of our suggested encryption
method are 99.6281 and 33.6120, correspondingly. It is
observed that NPCR and UACI are very close to the optimal
values. Additionally, the IE, NPCR and UACI metrics were
given for both the medical skull image and the Lena image
in Table 3 and compared with reference [46]. In conclusion,
we can deduct from the practical results and performance
analysis, that the suggested cryptosystem can perfectly hide
the information of the medical image.

FIGURE 17. The encrypted images with data loss.

F. TIME ANALYSIS
A practical encryption algorithm should be efficient in terms
of security and encryption time. The simulation experiments
were run on a PCwith Intel(R) Core(TM) i7-6820HQCPU@
2.70GHz, 16 GB RAM and 750 GB hard disk. The operating
system is 64 bits Microsoft Windows 10 and the computa-
tional platform is MATLAB R2018b. A medical skull image
of size 444 × 535 × 3 uint8, in JPG format is used in this
simulation as the original data which must be encrypted. The
proposed scheme consists of two main parts: (a) chaotic key
generation, (b) medical image encryption. The chaotic key
generation phase takes 1.1057 seconds and encryption phase
takes 0.7212 seconds. Thus, to generate the final encrypted
images, the proposed scheme takes 1.8269 seconds which
considering its high level of security, the speed of image
encryption processing is acceptable. In addition, sometimes
we don’t need to encrypt all the data, especially where a
faster speed is major requirement. For example, in a bank
cheque/draft, only the seal of the bank, signature and amount
need to be secure. Similarly, in the case of medical images we
always only need to encrypt a specific portion of the image.
In these cases for Decreasethe encryption time we can use the
selective region based image encryption.
Remark 5. Motivations for considering chaotic encryp-

tion methods over traditional encryption schemes stem from
the fact that these latter often exhibit, heightened security
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FIGURE 18. decrypted original image with some noise distortion and
blurriness.

FIGURE 19. The encrypted images in the presence of 3% ‘‘salt & pepper’’
noise.

issues, high time consumption, key distribution problems
and low-efficiency levels. Chaos-based encryptions are fast
and advanced security algorithms exhibiting high sensitivity
to the initial conditions, pseudo randomness property, and
no periodicity and parameter dependency. These properties
allow for supporting the permutation-diffusion requirement
in cryptosystem establishment [53].

FIGURE 20. Decrypted original image with some noise distortion.

On the other hand, the symmetrical key cryptosystem
(MORE Method) is a probabilistic symmetrical fully homo-
morphic Encryption method. Homomorphic Encryptions
(HE) techniques such as the MORE method are new cryp-
tographic research topics that were introduced to help users
in preserving their data confidentiality and privacy by allow-
ing untrusted parties to process computations over encrypted
data. Althoughthere are many different image encryption
algorithms such as fast image encryption algorithms, HE are
highly sought after in real world modern applications such
as Cloud Computing, Data aggregation in wireless sensor
network scenario, Electronic Voting, Spamfilters, etc. In such
applications, HE will allow the creation of new techniques
capable to run over encrypted inputs to produce encrypted
outputs without knowing any information about the primitive
data, once they are used by untrusted parties. Thus user’s
privacy is guaranteed [54]. However, traditional HE tech-
niques exhibit some drawbacks including weakness against
chosen/known plaintext attacks [54]. In this regard, one of
the main advantages of the proposed method is the fact that
it takes into consideration the above listed advantage of the
MORE encryption method while at the same time eliminate
some of its main disadvantages such as weakness against
chosen/known plaintext attack using the chaotic encryption
and different chaotic keys for encrypting each image pixel.

VII. CONCLUSION
This paper proposed a new fast reaching finite time synchro-
nization approach for chaotic systems along with its applica-
tion to medical image encryption. In this regard, an adaptive
terminal sliding mode tracking controller with fast reaching
condition was designed to synchronize the chaotic systems
at the transmitter and receiver ends in finite time. The pro-
posed approach was implemented to enhance the security of
the medical image transmission and/or storage, by using the
chaotic keys and combination of chaotic encryption method
as chaotic MORE and XOR operation. The main objective
of the suggested method was to remove all of the appear-
ances of the original medical imageduring the transmission
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or storage, while at the same time protecting the quality
of the recovered medical image at an adequate level. The
proposed approach was assessed using a simulation and ana-
lytical study. The obtained results showed that the suggested
technique is robust, simple to implement and has a fast con-
vergence rate. Additionally, the proposed cryptosystem was
shown to yield an acceptable level of resistance to various
attacks.
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