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ABSTRACT In air cushion furnace, the floating height is a key process parameter which greatly affects
the quality and production efficiency of high quality mental strips. However, the floating height is hard
to be collected in the complex and abominable industry environment. Furthermore, due to the flow field
characteristics, some important process variables are difficult to accurately calculate by traditional mecha-
nism modeling methods. In order to accurately predict the floating height, firstly, a low discrepancy heuristic
evolution ELM and ground effect theory based serial hybrid soft sensor model is proposed, which constituted
by a mechanism model and two data driven models. Secondly, based on the force equilibrium equation and
ground effect theory, the mechanism model is constructed, which describes the relationship between the
floating height and the process variables including the jet impact angle. Thirdly, a low discrepancy heuristic
evolution ELM is proposed as the data driven model to predict the jet impinging angle. In the data driven
model, the novel dual mutation strategies collaboration differential evolution is proposed to guarantee the
low discrepancy and physical applicability of data driven model. The effectiveness of the proposed method
was validated on the self-developed air cushion experiment platform and got desirable experimental results.
The research lays an important foundation for the successful implementation of monitoring and control of
the strip floating process.

INDEX TERMS Air cushion furnace, hybrid model, height prediction, low discrepancy sequence, evolu-
tionary algorithm, ground effect theory.

I. INTRODUCTION
The high quality mental strips, such as aluminum alloy strip,
electronic copper strip and thin silicon steel strip, are exten-
sively used in automobile industry, national defense industry
and electric power industry [1]. The high quality mental
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strips demand higher requirements for surface quality and
performance. However, in traditional heat treatment furnace,
the surface of strip may be easily scratched and the heating
efficiency is low. In air cushion furnace, the metal strip is
suspended in the air and the desirable quality and high heating
efficiency is guaranteed by this special work mode [2].

In air cushion furnace, the floating height is a key fac-
tor which affects the product quality, production efficiency
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and working safety [3]. The reasons are as follows: a) the
surface of strip may be scratched when the floating height
is abnormal, b) the floating height affects the efficiency of
heating and drying, c) the changes of floating height also
affect the tension control during the strip production process.
Unreasonable control may lead to strip break or equipment
damage. However, due to the high temperature and high
pressure environment, the values of floating height are hard
to be obtained and the cost of data collection process is very
expensive and unaffordable for the enterprises.

For the above reasons, some scholars have developed
some mechanism modeling methods to predict the float-
ing height. Based on Navier-Stokes equation and continuity
equation, Chen et al. established the analytic formula of
floating height and validated the effectiveness of this ana-
lytic formula [4]. Moretti analyzed the mapping relationship
between air box pressure and floating height under differ-
ent lateral deflections of webs [5]. Chang et al. validated
the effectiveness of different ground effect theories for ana-
lyzing aerodynamic characteristics of pressure-pad air bars.
The superiority-inferiority and application scopes of different
ground effect theories were summarized [6]. Based on the
ideal assumptions, Li et al. derived the governing equations
for the paper web and the air cushion. The pressure distri-
bution of air cushion area and the deformation of paper web
were numerically solved by the finite difference method and
the Newton-Raphson method [7]. In fact, the jet impinging
angle of the airflow is an unneglectable factor for affecting
the strip floating height [6]. However, due to the fluid char-
acteristics of airflow, the jet impinging angle is difficult to be
described through the mechanism modeling method.

Due to strong learning ability, the data driven model has
got desirable achievements in large amounts of industrial
fields [8]. For example, a novel back propagation artificial
neural network based on the Levenberg-Marquardt theory
was proposed to estimate the benzo[a]pyrene content of
smoked meats [9]. Yan et al. constructed a soft sensor model
DAE-NN to estimate the oxygen content of flue gasses,
whose parameters are updated by an improved gradient
descent method [10]. In the industrial hydrocracking process,
Yuan et al. developed some data-driven models based on
the deep learning networks and verified the feasibility and
effectiveness of these models [11]–[13]. The artificial neural
network (ANN) based on back propagation has the drawback
of computational complexity. In order to overcome this weak-
ness, the extreme learning machine (ELM) algorithm was
proposed [14]. ELM is widely applied to solve the soft sensor
problem in industrial fields due to the simple structure, fast
learning speed and high computational efficiency [15], [16].
However, the input weights and thresholds of hidden layer
of ELM are randomly generated, which affects the universal
approximation ability of the algorithm. In order to improve
the accuracy, Cristiano and Maccio proposed a low discrep-
ancy extreme learning machine (LDELM) where the input
weights and thresholds of hidden layer of ELM are generated
by low discrepancy sequence [17].

In recent years, the intelligent optimization algorithms
are widely used to improve the accuracy of ELM and have
got desirable results. For instance, Zhou et al. proposed a
SDA-GA-ELM model in which the parameters of ELM are
optimized by genetic algorithm (GA). The model achieved
higher prediction accuracy for the photovoltaic power
output [18]. Moreover, Li and Hu optimized the ELM by
GA to predict industrial CO2 emissions and achieved good
prediction efficiency [19]. However, the GA has the weak
globe exploration ability, which may make the search process
premature convergence.

Duo to strong global search ability, differential evo-
lution (DE) was used for optimizing the parameters of
ELM [20], [21], [22]. Based on the elite guidance mechanism
and the collaboration mechanism, Li et al. proposed a dual
mutation strategies collaboration differential evolution [23].
The elite guidance mechanism provides a clearer direc-
tion for individual mutation. And the collaboration mech-
anism is employed to balance the global exploration and
local exploitation of the algorithm. Nevertheless, because the
mutation and crossover in DE have the powerful capability of
gene alteration, it is difficult to guarantee the low discrepancy
characteristic of network parameters of ELM, which may
lead to the performance reduction of algorithm. Besides,
the physical constrains are not considered, which can reduce
the applicability of ELM in industry.

In view of the physical meaning of mechanism model
and strong learning ability of data driven model, the hybrid
models (HMs) integrating the advantages of two types of
models was constructed and widely applied in many fields,
such as meteorology [24], membrane technology [25], metal
manufacturing industry [26] and petroleum industry [27]. For
example, to predict the deformation of an air preheater rotor
in thermal power plant boiler, Wang and Liu constructed a
Lab-stacked autoencoders (L-SAE) model based on the mass
balance equation, domain knowledge and deep learning [28].
In the air cushion furnace, Hou et al. proposed a SBEH hybrid
model which includes the mechanism model to predict strip
floating height and the selective bagging ensemble model to
compensate the prediction error of mechanism model [29].
In recent years, Hou et al. proposed parallel hybrid floating
height prediction model. The mechanism model is used for
height prediction and the error compensation model (ECM)
is hard to compensate the error between the actual value and
the prediction result [30]. In addition, Hou et al. developed
a novel soft-transition model for the transition state based on
data gravitation to achieve the state identification. And the
parallel hybrid model was constructed to predict the floating
height. In the parallel hybrid model, the mechanism part was
derived by combining thick jet theory and the equilibrium
equation force. The random forest as the data model com-
pensated the prediction error [31].

The serial hybrid model as one kind of HMs plays an
important role in reducing the complexity of mathematical
modeling and realizing the soft measurement of intermediate
variables. For instance, to predict the gold leaching rate,
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FIGURE 1. The structure diagram of air cushion furnace. (a) the main structure of air cushion furnace; (b) The
nozzle enlarged drawing.

Zhang et al. constructed a serial hybrid model composed of
the mass conservation equations and the kernel partial least
square, in which the kinetic reaction rates as an intermedi-
ate variable is estimated [32]. In the steel refining of the
ladle furnace, Lv et al. applied the serial hybrid model to
real-time predict the sulfur content, and the reaction time
as an intermediate variable is predicted by the optimized
ELM [33]. In the working process of air cushion furnace, due
to the influence of liquid-solid coupling relationships, some
important variables are hard to be described by establishing
mechanism models. Among them, the jet impinging angle
is a key variable for the prediction of floating height and is
too difficult to be described by mechanismmodeling method.
In such cases, the serial hybrid model is suitable for the
prediction of the floating height in the air cushion furnace.
In addition, there are a lot of noise interference signals in
the industrial environment, which deteriorate the precision
of the data driven model. Compared with pure data driven
model, the serial hybrid model can reduce the impact of the
noise samples and the requirement of the amount of training
samples. Nevertheless, to the best knowledge of the author,
the serial hybrid model has not been found in the air cushion
furnace.

In this paper, a serial hybrid soft sensor model is proposed
for predicting the strips floating height in air cushion fur-
nace. Firstly, a low discrepancy heuristic evolution ELM and
ground effect theory based serial hybrid soft sensor model
is proposed to accurately predict the floating height, which
is constituted by a mechanism model and two data driven
models. Secondly, considering the influence of jet impinging
angle γ , the mechanism model is proposed based on the
ground effect theory and force equilibrium equation. Thirdly,
the low discrepancy heuristic evolution ELM as the data
drivenmodel is presented to predict the jet impinging angle γ .
In the data driven model, a novel dual mutation strategies
collaboration differential evolution (NDMCDE) is proposed
to guarantee the low discrepancy of parameters and improve
the prediction performance of data driven model.

The rest of this paper is organized as follows: the back-
ground knowledge of air cushion furnace and the related algo-
rithms are introduced in Section II. The mechanism model of
floating height is derived in Section III. Section IV describes
the modeling process of data driven model. The serial hybrid
soft sensor model is established in Section V. The results of
experiments and the analysis are showed in Section VI. The
conclusions are given in Section VII.

II. PRELIMINARIES
In this section, the structure and the workflow of the air
cushion furnace are briefly introduced. The basic knowledge
of the low discrepancy extreme learning machine and the
dual mutation strategy collaboration differential evolution are
illustrated.

A. RELEVANT KNOWLEDGE OF AIR CUSHION FURNACE
Air cushion furnace is an advanced heat treatment equipment
for the high-quality metal strips. It can suspend the strip in the
air and let the strip do not contact with equipment [29]–[31],
so the scratches on the surface of the strip can be avoided
in the work process. The structure diagram of air cushion
furnace is shown in Figure 1.

As shown in Figure 1, there are nU upper air boxes and
nD lower air boxes at the top and bottom of air cushion
furnace. The distance between upper air box and lower air
box is d . The upper and lower air boxes are located on the
upper and lower sides of the aluminium strip, respectively.
Additionally, each air box has two parallel slot nozzles and
one inlet. The flow equalization board is installed horizon-
tally inside each air box and can make the air more uni-
formly distributed. In order to understand the structure more
clearly, the nozzles enlarged drawing is shown in Figure 1(b).
w is the distance between two slot nozzles. θ is the jet
ejection angle. b is the width of slot nozzles outlet. In the
work process, the air enters the air boxes from the inlet and
emits from the slot nozzles. Then, the air flows impinge on
the upper and lower surface of strip at the velocity of Vj.
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The jet impinging angle γD and γU are generated between the
jet centerline of slot nozzles and the strip. Meanwhile,
the cushion pressure Pc is also generated between the strip
and the air boxes. The lift force is formed and act on the
lower and upper surface of the strip, respectively. If the
difference of the lift force on the lower surface minus the lift
force on the upper surface is equal to the strip gravity,
the strip will floats in air cushion furnace. By adjusting
the pressure Pj of air boxes, the strip floating height h is
controlled within a reasonable range, thus the efficiency of
air cushion furnace and the surface quality of product can be
guaranteed.

B. LOW DISCREPANCY EXTREME LEARNING MACHINE
Low discrepancy sequences (LDSs), is a points distribu-
tion sequence [34], also known as quasi random sequences
(QRSs) [35]. The LDSs, such as the Halton, the Sobol and
the Niederreiter, are gradually used in graphics rendering.
Figure 2 shows the spatial distribution of 512 samples in 2-D
unit cube obtained separately from a Halton LDSs and a pure
random sequence. It can be clearly seen that the Halton LDSs
sampling (Figure 2(a)) covers the space more evenly than
random sequence (Figure 2(b)).

FIGURE 2. The spatial distribution of samples in 2-D unit cube: (a) halton
LDSs, (b) random sequence.

Different from the traditional ELM, the weights and bias
of the hidden layer in low discrepancy extreme learning
machine (LDELM) are assigned by LDSsmethod. It has been
proved that the LDELM has better prediction accuracy than

ELM [17]. For sample set {O, T}, where O = [o1, o2,. . . ,
oK ]T and T = [t1, t2, . . . , tK ]T . The output of LDELM with
N hidden nodes can be represented by

f (ok ) =
N∑
n=1

βnG (an, bn, ok) = tk k = 1, · · · ,K (1)

where, ok = [o1,k , o2,k ,. . . ,od,k ]T is the kth sample. an =
[a1,n, a2,n, . . . , ad,n]T denotes the weight column vector
connecting the nth hidden node and input layer. bn is bias of
the nth hidden node. G(∗) represents the activation function.
βn is output weight of the nth hidden node. d is the number of
features or dimensions of sample.K is the number of samples.

Discrepancy is an indicator to measure the uniformity of
spatial distribution of point set. However, traditional formula
of discrepancy has weaker description ability in high dimen-
sion space. In this paper, the discrepancy of the network
parameters is measured by modified L2-norm method [36].
The calculation formula of discrepancy is shown as follow.

M2,N (S)2 =
(
4
3

)D
−

21−D

N

N∑
n=1

D∏
m=1

(
3− S2n,m

)
+

1
N 2

N∑
n=1

N∑
j=1

D∏
m=1

[
2−max

(
Sn,m, Sj,m

)]
(2)

where S = [S1, S2,. . . , SN ]T is a point set in D dimension
space, which generated by the Halton. Sn = (an, bn) is the
nth point in S. N is the number of points in S. D = d + 1
is the number of dimensions. Sn,m represents the value of the
mth dimension of the nth point in S, Sn,m ∈ [0, 1].

C. DUAL MUTATION STRATEGY COLLABORATION
DIFFERENTIAL EVOLUTION
Differential evolution (DE) was developed by Storn and
Price [37]. In the DE, the selection of mutation strategy
and evolutionary parameters has a greater impact on perfor-
mance of algorithm. Thus, Li et al. introduced a dual muta-
tion strategy collaboration differential evolution (DMCDE)
to obtain the balance between global exploration and local
exploitation [23]. The DMCDE mainly includes three parts:
1) mutation, 2) crossover and 3) selection.

1) MUTATION
The mutation strategy DE/e-rand/2 and DE/e-best/2 are pre-
sented by introducing the elite guidance mechanism and

shown in Equation (3).

Mi,g+1 =



C
SPg
r1,g + Fi,g(C

SPg
r2,g − C

IPg
r3,g)

+Fi,g(C
SPg
r4,g1−C

IPg
r5,g)

if rand(0, 1) ≤ GPg
Cbest,g + Fi,g(C

SPg
r2,g − C

IPg
r3,g)

+Fi,g(C
SPg
r4,g − C

IPg
r5,g)

else

(3)

GPg =
1

1+ e1−(G/g)2
(4)
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where g is the index of current generation. Fi,g ∈ [0, 1]
is scale factor of ith individual in gth generation. NPOP
is the size of population. The indices r1, r2, r3, r4 and
r5 are mutually exclusive integers randomly generated within
[1, NPOP]. rand(0,1) obeys a uniform distribution and gen-
erates random number within [0, 1]. G is the number of
maximum generation. GPg is the selection probability of
DE/e-rand/2 and DE/e-best/2 in gth generation. The superior
population (SPg) and inferior population (IPg) are formed
by dividing the gth population POPg = [C1,g, C2,g, . . . ,
CNPOP,g] based on the fitness of individuals. The CSPg is
selected from SPg and the C IPg is selected from IPg. Cbest,g
is the best individual in gth generation.

2) CROSSOVER
The trial individualUi,g+1 is created by carrying out binomial
crossover operation on the parent individual Ci,g and muta-
tion individualMi,g+1 in Equation (5) [38].

U j
i,g+1 =


M j
i,g+1 if rand(0, 1) ≤ CRi,g or

j = jrand (jrand ∈ [1,ND])

C j
i,g else

(5)

where CRi,g is the crossover rate of ith individual in gth gen-
eration within [0, 1]. jrand is a integer and randomly chosen
from [1, ND]. ND is the number of genes in chromosome.
j = 1, 2, · · · ,ND.

3) SELECTION
If the Ui,g+1 is better than Ci,g, the Ui,g+1 will replace the
Ci,g to enter the next generation POPg+1 = [C1, g+ 1,
C2, g+ 1, . . . , CNPOP,g+1], and the NESi = 0 is set; else,
the Ci,g is remained and the NESi = NESi+ 1 is set. Mean-
while, the Fi,g+1 and the CRi,g+1 are updated by Equation (7)
and (8)

Ci,g+1 =

{
Ui,g+1 if f (Ui,g+1) ≤ f (Ci,g)
Ci,g else

(6)

Fi,g+1 =


Fupper + rand(0, 1)
(Fupper − Flower ) if NESi ≥ MNES
Fi,g else

(7)

CRi,g+1 =


CRlower + rand(0, 1) if NESi ≥ MNES
(CRupper − CRlower )
CRi,g else

(8)

where f (∗) is the fitness function. NESi is a counter to record
the number of evolution stagnation of Ci,g. MNES is the
maximum number of evolution stagnation. Fupper = 0.5 and
Flower = 0.1 are the upper bound and lower bound of Fi,g,
respectively. CRupper = 0.5 and CRlower = 0.1 are the upper
bound and lower bound of CRi,g, respectively.

III. CONSTRUCTION OF MECHANISM MODEL
The mechanism model is derived based on ground effect the-
ory and force equilibrium equation. Considering the influence

FIGURE 3. The schematic diagram of pressure test device.

of jet impinging angle on the floating height, the equation of
pressure ratio given by Bradbury is

Pc
Pj
=

2 (cos θ + cos γ )
h
b +

1
2 cos θ + cos γ

(9)

where Pj is the pressure of air boxes. γ is jet impinging angle
between extended jet centerline and horizontal plane of strip.
Pc is the cushion pressure. θ is the jet ejection angle. h is
the floating height of strip. b is the width of slot nozzle. The
horizontal force balance of the air jet requires

ρbV 2
j =

Pch
1+ cos θ

(10)

where ρ is the air density and Vj is the jet velocity of the air.
The lift force per unit length of air bar is obtained by

F = Pcw+ 2ρbV 2
j sin θ (11)

where w is the distance between two slot nozzles. By elim-
inating Pc and ρbV 2

j from (11) using (9) and (10), we can
obtain

F =
(
w+

2h sin θ
1+ cos θ

)(
2 (cos θ + cos γ )

h
b +

1
2 cos θ + cos γ

)
Pj (12)

The pressure of the lower air boxes and the upper air boxes
are denoted by PDj and PUj , respectively. The jet impinging
angle on the lower surface of the strip is set as γD, and the
jet impinging angle on the upper surface is set as γU . Finally,
the lift force on the lower surface of strip FU and lift force on
the upper surface FD is calculated as follows:

FU =
(
w+

2h sin θ
1+ cos θ

)
×

(
2
(
cos θ + cos γD

)
h
b +

1
2 cos θ + cos γD

)
nDPDj (13)

FD =
(
w+

2 (d − h) sin θ
1+ cos θ

)
×

(
2
(
cos θ + cos γU

)
d−h
b +

1
2 cos θ + cos γU

)
nUPUj (14)

where d is the distance between the upper air boxes and lower
air boxes. nU and nD represent the number of the upper and
the lower air boxes in the air cushion furnace, respectively.
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FIGURE 4. The modeling process of γ D and γ U . (the solid arrows indicate the variables of input and output. The
hollow arrows indicate the trained data driven model. The dotted arrows represent the output of the data driven
model.)

If the difference of lift force FU minus lift force FD is equal
to gravity G of strip, the strip will suspend in the air. Based
on the force equilibrium equation, the force on the strip can
be expressed as

FU − FD = G (15)

By combining Equation (13), (14) and (15), themechanism
formula of floating height can be obtained and shown in
Equation (16).

Ah2 + Bh2 cos γU + Ch2 cos γD + Dh

+Eh cos γU + Fh cos γD + Hh cos γU cos γD

+I cos γU cos γD + J cos γU + K cos γD + L = 0 (16)

The strip floating height h is calculated by solving Equa-
tion (16). In addition, the coefficient A, B, C , D, E , F , H , I ,
J , K and L in Equation (16) are shown in Equation (17-27).

A = 16b sin θ cos θ
(
nUPUj − n

DPDj
)

+4 (1+ cos θ)G (17)

B = 16b sin θnUPUj (18)

C = −16b sin θnDPDj (19)

D =
[
8b2 sin θ cos2 θ − 8wb cos θ (1+ cos θ)

]
(
nDPDj + n

UPUj
)
+ 16db sin θ cos θ(

nDPDj − n
UPUj

)
− 4d (1+ cos θ)G (20)

E = 8b2 sin θ cos θ
(
2nDPDj + n

UPUj
)

−8wb (1+ cos θ) nUPUj − 16db sin θnUPUj
−4b (1+ cos θ)G (21)

F = 8b2 sin θ cos θ
(
2nUPUj + n

DPDj
)

−8wb (1+ cos θ) nDPDj + 16db sin θnDPDj
+4b (1+ cos θ)G (22)

H = 16b2 sin θ
(
nDPDj + n

UPUj
)

(23)

I = 8wb2 (1+ cos θ)
(
nDPDj − n

UPUj
)

−16db2 sin θnUPUj − 4b2 (1+ cos θ)G (24)

J = 4wb2 cos θ (1+ cos θ)
(
2nDPDj − n

UPUj
)

−8db2 sin θ cos θnUPUj
−2b2 cos θ (1+ cos θ)G (25)

K = 4wb2 cos θ (1+ cos θ)
(
nDPDj − 2nUPUj

)
+8wdb (1+ cos θ) nDPDj
−16db2 sin θ cos θnUPUj

−

(
4db+ 2b2 cos θ

)
(1+ cos θ)G (26)

L = 4wb2 cos2 θ (1+ cos θ)
(
nDPDj − n

UPUj
)

+8wdb cos θ (1+ cos θ) nDPDj
−8db2 sin θ cos2 θnUPUj
−b cos θ (2d + b cos θ) (1+ cos θ)G (27)
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FIGURE 5. The framework of serial hybrid soft sensor model.

It can be seen from Equation (16) that the calculation pre-
cision of mechanism formula is affected by the γD and γU .
So it is very important to accurately predict the jet impinging
angle γD and γU .

IV. CONSTRUCTION OF DATA DRIVEN MODEL FOR γ D

AND γ U

A. ACQUISITION OF PRESSURE TEST DATASET
In order to obtain pressure test dataset, a pressure test device
has been developed and the experiments are carried out on
this device. The schematic diagram of pressure test device is
shown in Figure 3.

In Figure 3, the pressure test device is mainly composed
of a single lower air box and a pressure measure plate. The
lower air box is composed of the slot nozzles, inlet and flow
equalization board. The flow equalization board is installed
inside the lower air box and can make the air more evenly

distributed. The pressure measure plate is placed above the
lower air box. The 7 pressure test points are placed on the left
side of the pressure measure plate.

The center line of the pressure measure plate coincides
with the center line of the lower air box. The geometry
size of the lower air box and the pressure measure plate are
symmetrically distributed along center line so that pressure
distribution on the lower surface of pressure measure plate
is mirror-image symmetrical along center line. The height h∗

is the distance between the lower surface of pressure mea-
sure plate and the upper surface of lower air box, which
can be changed by adjusting support points along vertical

direction. The height h∗ corresponds to the strip floating
height h. Based on the pressure test device, the experiments
are implemented and the values of cushion pressure can be
obtained under the different pressure of lower air box and
height h∗.

B. MODELING PROCESS OF γ D AND γ U

In fact, a strong coupling relationship is existed between γD

and γU in air cushion furnace. If information of the coupling
relationship is not reflected in the dataset, the accuracy of
the prediction model will be deteriorated. In order to let the
samples in dataset contain the coupling information, the fol-
lowing experimental procedures are carried out and it can be
seen in Figure 4.

In Figure 4, the prediction model of γD is represented
by MD(∗) and the prediction model of γU is represented
by MU (∗). The MD(∗) and MU (∗) are constructed based on
ground effect theory, lift force formula and force equilibrium
equation.

The modeling process of MD(∗) is as follows. First,
by bringing the variables PDj , θ , h, b and Pc from pressure
test dataset into Equation (9), the jet impinging angle γD

is calculated. Then, the variables PUj , P
D
j , θ , b as the input

variables and the γD as the target variable are selected to
train the model MD(∗). Finally, the estimated value γD

′

can
be obtained by the built prediction modelMD(∗).
The modeling process of MU (∗) is as follows. According

to the builtMD(∗), the γD
′

is estimated by using the variables
PUj , P

D
j , θ and b from floating process dataset. Then, the lift
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FIGURE 6. The procedure of NDMCDE for optimizing the network parameters.

force FU is obtained by bringing the variable PDj , θ , w, n
D, h,

b and γD
′

into Equation (13). The lift force FD is calculated
by force equilibrium equation. Using variables PUj , θ , w, n

U ,
h, d , b and FD, the γU can be calculated by Equation (14).
Subsequently, the variables PUj , P

D
j , d , b, θ as the input

variables and the γU as the target variable are selected to train
the MU (∗). Finally, the estimated value γU

′

can be obtained
based on the built prediction modelMU (∗).

V. SERIAL HYBRID SOFT SENSOR MODEL
A. FRAMEWORK OF SERIAL HYBRID SOFT SENSOR
MODEL
The framework of serial hybrid soft sensor model is shown
in Figure 5.

In the serial hybrid soft sensor model, two data driven
models are connected before the derivedmechanismmodel in
serial way. The low discrepancy heuristic evolution extreme
learning machine (LDHEELM) is proposed as the data driven
model to estimate the jet impinging angles, γD

′

and γU
′

. The
prediction value of strip floating height h′ can be obtained by
mechanism model according to the floating process data and
the estimated γD

′

and γU
′

.

The serial hybrid soft sensor model mainly consists of
three phases: 1) Initialization phase. 2) Parameter estimation
phase. 3) Floating height prediction phase. In the initializa-
tion phase, the floating process data is collected from the
actual working conditions. In the parameter estimation phase,
The γD

′

is estimated by inputting the variables PUj , P
D
j , θ

and b into the model MD(∗), while the value of γU
′

is also
estimated by the modelMU (∗) according to the variables PUj ,
PDj , d , b and θ . In the floating height prediction phase, based
on the variables PUj , P

D
j , θ , w, d , b from the floating process

data and the estimated γD
′

and γU
′

, the prediction value of the
strip floating height h′ is calculated by the derivedmechanism
model.

B. LOW DISCREPANCY HEURISTIC EVOLUTION EXTREME
LEARNING MACHINE
In this subsection, the LDHEELM is proposed. Different
from the traditional ELM, the weights and bias of hidden
layer in LDHEELM are assigned by LDSs method, which
can guarantees the universal approximation property of the
algorithm. Furthermore, a novel dual mutation strategy col-
laboration differential evolution algorithm (NDMCDE) is
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proposed to optimize the performance of LDHEELM. The
NDMCDE can avoid the destruction of the low discrepancy
of the weights and bias in hidden layer.

In order to further improve the universal approximation
property, the discrepancy is introduced into the fitness func-
tion. The fitness function is shown in Equation (28).

Minimize : f (ok) = 1
2

K∑
k=1

∥∥hk − h′k∥∥2+P (S) (28)

where hk is the actual floating height at the kth sample. h′k is
the floating height prediction value of serial hybrid soft sensor
model at the kth sample. S is a point set which composed
of network parameters. P(S) is the penalty function of the
discrepancy and expressed as:

P (S) =

{ ∣∣M2,N (S)
∣∣ if

∣∣M2,N (S)
∣∣ ≤ ξ

R otherwise
(29)

where R is the penalty value. ξ is the threshold.
In addition, some researches show that adding physical

constraints in training process can improve the generalization
performance of the neural network algorithm [39], [40]. In air
cushion furnace, the size of lower impinging angle slowly
increases with the pressure of lower air boxes increases. The
expression of inequality constraint can be derived by solving
partial derivative of the γD

′

with respect to input variable PDj
from Equation (1) and is represented by

∂γD
′

∂PDj
=

L∑
i=1

βiHi (1− Hi) a2,i > 0 (30)

The procedure of NDMCDE for optimizing the network
parameters is shown in Figure 6.

In the parameters optimization process, first, the initial
population is created by encoding the network parameters.
Subsequently, the trial individuals are created based on Equa-
tion (3) and (5). To avoid uniformity of parameters from being
destroyed, the discrepancy is detected. The trial individu-
als whose discrepancy is less than δ are regarded as supe-
rior trial individuals; otherwise they are regarded as inferior
trial individuals. If the trial individual is inferior, it will be
replaced with new trial individual that is recreated by Equa-
tion (3) and (5). Then, the fitness of individuals is calculated
by Equation (28). And the selection strategy is tournament
method. Based on the fitness of individuals, the next popu-
lation can be generated using the Equation (6). Meanwhile,
the F and CR are updated based on the Equation (7) and (8)
to promote the generation of new offspring. When the ter-
mination condition is satisfied, the optimal solution will be
obtained by decoding the best individual in last population.

VI. EXPERIMENT AND ANALYSIS
A. PRESSURE TEST DEVICE
The pressure test device is independently designed and man-
ufactured. In addition, the experiments are carried out on
the pressure test device to obtain the pressure test data. The
physical diagram of pressure test device is shown in Figure 7.

FIGURE 7. The physical diagram of pressure test device. (a) front view;
(b) oblique view.

In the Figure 7, the pressure test device is comprised of
lower air box, pressure measure plate, hoses and pressure sen-
sors. The pressure measure plate is placed above the lower air
box. The center line of the pressure measure plate coincides
with the center line of the lower air box. The 7 pressure test
points are installed on the left of center line of the pressure
measure plate. In addition, the pressure sensors and the pres-
sure test points are linked through yellow hoses.

In the experiments, the air flows impinge on the lower
surface of pressure measure plate when the lower fan is
working. Subsequently, the cushion pressure Pc is obtained
by the sensor with the change of the lower pressure PDj and
the height of pressure measure plate. Finally, the pressure test
data can be obtained.

B. INTRODUCTION OF EXPERIMENT EQUIPMENT
The proposed serial hybrid soft sensormodel is verified on the
self-development air cushion experiment platform. The struc-
tural diagram of platform is shown in Figure 8(a). The phys-
ical diagram of platform is shown in Figure 8(b). The air
cushion experiment platformmainly consists of furnace body,
upper air container, lower air container, upper fan, lower fan,
slot nozzles, and air-seal devices. The size of platform is
3 m × 3 m × 2.2 m. The SIEMENS MM440 inverter is
used to control the platform working. The laser range finder
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FIGURE 8. The physical diagram of the air cushion experiment platform. (a) the structural diagram of platform; (b) the physical
diagram of platform.

is LOD2-250W150 and the resolution is 75µm. The width of
aluminum strip is 300mm. The thickness of aluminum strip is
1.5 mm and 2 mm. The pressure of the nozzles is determined
by the speed of the fans. The speeds of the upper and lower
fans are controlled separately by the frequency converters.

During the operation process of the air cushion furnace,
it took about 25 days to collect 1650 samples under the four
specified working conditions in stable state. Among them,
26 samples are used to verify the effectiveness of the proposed
model.

C. EVALUATION STANDARD
The root mean square error (RMSE) and the mean absolute
error (MAE) are scoring rules. LowRMSE andMAE indicate
that the model has excellent predictive precision. In this
paper, the RMSE and MAE as evaluation standard will be
employed to measure the performance of proposed serial
hybrid soft sensor model. The formulas of RMSE and MAE
are shown in Equation (31) and (32).

RMSE =

√√√√ 1
K

K∑
i=1

(
yi − y′i

)2 (31)

MAE =
1
K

K∑
i=1

∣∣yi − y′i∣∣ (32)

where K is the number of samples, yi is the actual value of ith
sample, y′i is the prediction value of ith sample.

D. RESULTS AND ANALYSIS
In our experiment, the pressures of upper air box were fixed
at 70 Pa and 150 Pa. The floating heights of strips with two
thicknesses of 1.5 mm and 2 mmwere measured under differ-
ent pressures of lower air box. The 6 independent experiments
were performed on the experiment platform, and the average
of the 6 prediction results was used as the final experiment
result.

The prediction accuracy of the proposed serial hybrid
soft sensor model (SHSSM) was compared with the bag-
ging ensemble model of CART (BEMC), extreme learn-
ing machine model (ELM) and mechanism model (MM).
In this experiment, the values of parameters are set as
follow: NPOP = 30,G = 100,F = 0.6,CR =

0.3,Size(SP)/Size(IP) = 1,MSPE = 3. Furthermore,

VOLUME 9, 2021 28913



S. Hou et al.: Low Discrepancy Heuristic Evolution ELM and Ground Effect Theory-Based Serial Hybrid Soft Sensor Model

FIGURE 9. The diagram of prediction results and actual floating height. (a) thickness = 1.5 mm, upper pressure = 70 Pa; (b) thickness =

1.5 mm, upper pressure = 150 Pa; (c) thickness = 2 mm, upper pressure = 70 Pa; (d) Thickness = 2 mm, upper pressure = 150 Pa.

FIGURE 10. The diagram of best fitness value population for each
generation.

the best hyper-parameters and the best network structure are
determined through grid searching with cross-validation.

All the algorithms are implemented in a PC with Intel Core
i7 CPU (3.80 GHz) and 32GB RAM. The experiment results
of strip floating height are shown in Figure 9. Moreover,

the best fitness value of the population for each generation
is recorded in Figure 10.

In order to compare the prediction effect of proposed
methodwith others threemodels clearly, the RMSE andMAE
of prediction results are shown in Table 1 and Table 2. The
minimums of RMSE and MAE are bold font under different
work condition.

It can be seen from Table 1 and Table 2, the total RMSE
and MAE of SHSSM are 4.4561 and 4.2169. The RMSE and
theMAE of the BEMC are 15.1343 and 14.0856 respectively.

The RMSE and MAE of the ELM are 18.097 and 16.4409.
The total RMSE and MAE of the MM are 29.2219 and
27.8715.

The performance of SHSSM is the best among four algo-
rithms. The reason may be, for one thing, the proposed
SHSSM combined the strong generalization ability of mech-
anism model and the strong learning ability of data driven
model. For another, the mechanism model more compre-
hensively considered the influence factors of floating height
and the performance of data driven model was improved
by introducing the physical constraint and the indicator of
discrepancy. The RMSE and MAE of BEMC and ELM are
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TABLE 1. The RMSE values of different algorithms.

TABLE 2. The MAE values of different algorithms.

both larger than the SHSSM. The main reasons may be that
the pure data driven model does not fully integrate the strong
generalization of the mechanism model. The performance
of BEMC is better than ELM. The reason may be that the
BEMC is a strong learner and the ELM is single learner. The
performance of ensemble model is better than single model.
The performance of ELM is better than MM, the reason may
be the size of jet impinging angles is set in MM by means
of artificial experience, which has greater uncertainty and
reduces the calculation accuracy of the model.

VII. CONCLUSION
The high-quality metal strips play an important role in
the national economic construction. The floating height has
directly influence on the product quality and production effi-
ciency of the strip. In order to achieve the accurate prediction
of the floating height in air cushion furnace, a low discrepancy
heuristic evolution ELMand ground effect theory based serial
hybrid soft sensor model was proposed in this paper. Based
on the ground effect theory and force equilibrium equation,
the mechanism model was constructed, which reveals the
mapping relationship between floating height and process
variables. Subsequently, the two LDHEELM models were
established to effectively estimate the lower and the upper
jet impinging angles in the mechanism model. Furthermore,
in order to guarantee the low discrepancy and physical appli-
cability of data driven model, LDHEELM was improved by
proposed NDMCDE. The experimental results showed that
the SHSSM gets higher accuracy than BEMC, ELM andMM
on the self-developed air cushion experiment platform. The
proposed serial hybridmodelingmethod has certain reference
value for the theoretical study of air cushion furnace. In addi-
tion, the research contents of this paper have practical sig-
nificance for guaranteeing the surface quality and production
efficiency of high-quality metal strips.
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