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ABSTRACT Knowledge graph completion (KGC) is the task of predicting missing links based on known
triples for knowledge graphs. Several recent works suggest that Graph Neural Networks (GNN) that exploit
graph structures achieve promising performance on KGC. These models learn information called messages
from neighboring entities and relations and then aggregate messages to update central entity representations.
The drawback of existing GNN based models lies in that they tend to treat relations equally and learn fixed
network parameters, overlooking the distinction of each relational information. In this work, we propose a
Relation Aware Graph ATtention network (RAGAT) that constructs separate message functions for different
relations, which aims at exploiting the heterogeneous characteristics of knowledge graphs. Specifically,
we introduce relation specific parameters to augment the expressive capability of message functions, which
enables the model to extract relational information in parameter space. To validate the effect of relation
aware mechanism, RAGAT is implemented with a variety of relation aware message functions. Experiments
show RAGAT outperforms state-of-the-art link prediction baselines on standard FB15k-237 and WN18RR

datasets.

INDEX TERMS Knowledge graph completion, knowledge graph embedding, graph attention networks.

I. INTRODUCTION

Since Google Knowledge Graph [1] was proposed in 2012,
knowledge graphs (KGs), a.k.a. knowledge bases, have
aroused considerable research interest. The structured knowl-
edge called facts in KGs is organized in triples (subject entity,
relation, object entity) or short (s, 7, 0). Some real-world
knowledge graphs like Freebase [2], WordNet [3], YAGO [4],
DBpedia [5] have been utilized in a wide range of appli-
cations, such as question answering [6], recommender sys-
tems [7], and dialog systems [8]. However, most KGs suffer
from incompleteness [9], which motivates the task of pre-
dicting missing links called Knowledge Graph Completion
(KGC, also referred to as link prediction).

A mainstream approach for KGC is known to be Knowl-
edge Graph Embedding (KGE) based methods. In general,
they embed entities and relations to low-dimensional dis-
tributed representations based on existing triples in KGs.
Entity embeddings and relation embeddings are obtained by
optimizing a scoring function defined on each fact (s,r,0)
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to measure its plausibility. These models can be broadly
classified into three categories: translational distance mod-
els [10]-[13], bilinear models [14]-[17], and neural net-
works based [9], [18], [19]. Translational distance models
treat relations as translations from subject entity s to object
entity o [10]. Bilinear models utilize product-based score
functions to match latent semantics of entity and relation
embeddings [14].

Shallow models of translational distance methods and
bilinear methods like TransE [10] and RESCAL [14] suffer
from learning less expressive features. As noted in [20],
one way to alleviate this issue is to increase the size of
embeddings, which is impractical to the large scale KGs with
numerous entities and relations. To increase the expressive-
ness of models while keeping the embedding size, neural
network architectures have been used to learn knowledge
graph embeddings like NTN [18].

Graph Neural Networks (GNN) have recently been applied
to obtain knowledge graph embeddings [21], which achieve
significant performance improvement. A GNN based model
performs as an encoder used to capture graph information,
and thereafter, a Convolutional Neural Networks (CNN)
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FIGURE 1. A subgraph of a knowledge graph. Different entities are linked
to a central entity with different relations.

Ian McKellen

married

TABLE 1. Summary of message functions utilized in GNN-based models.
Here, ey, er, ey denotes embeddings of entity u, relation r, and entity v.
W, denotes a separate weight matrix for each relation. «, is a relation
weight scalar. W represents a fixed weight matrix and W () is defined
for different relation directions.

Models Message Function ¢ (e, er, €y)
R-GCN [21] W ,e,
VR-GCN [24] W((eu — €r) or (ey + €r)]
SACN [22] Ware,
KBGAT [25] Wleu; eu; er]

COMPGCN [26] W air(r) (€0 x er)

based model is employed as a decoder to predict scores. For
instance, SACN [22] takes a Weighted Graph Convolutional
Network (W-GCN) as encoder and a convolutional network
called Conv-TransE as decoder. Most of these GNN based
models can be seen as instantiation of Message Passing
Neural Networks (MPNN) [23] framework. Message embed-
dings are constructed from neighboring entity and relation
embeddings and then are aggregated to update central entity
embeddings.

We notice that neighboring entities under dissimilar rela-
tions share distinctive characteristics specific to the relation.
Fig. 1 shows a running example of an entity and its neighbor-
hood. Entity Peter Jackson is connected to The Lord of the
Rings with three different relations directed, screenwriter_of
and acted_in. Entity Peter Jackson affects the central entity
variously when combined with particular relations. Such fea-
tures are shared with entities under the same relations. Enti-
ties like {Peter Jackson, lan McKellen, Viggo Mortensen},
linked to relation acted_in are all actors. Fran Walsh and
Peter Jackson are connected to The Lord of the Rings with
relation screenwriter_of, in which they write scripts. The role
of actors and screenwriters is different in The Lord of the
Rings.

Most existing GNN methods learn fixed weight matrices
for all entities in graphs, as summarized in Table 1, which
makes models fail to capture such relation specific features.
For example, VR-GCN [24] obtains messages by applying
W(e, —e,) or W(e, + e,) when entity u takes the role of tail
or head regarding relation . W is sharing across different
locations and local structures, which can filter out various
topological structures’ common characteristics. Furthermore,
W is fixed for every entity regardless of what type of rela-
tions are linked, making the model imperceptive to relations.
Though R-GCN [21] defines a separate weight matrix for
each relation, which results in R-GCN prone to overfitting,
it has no relation representations involved. Besides, R-GCN
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performs even worse than CNN based models like ConvE for
link prediction, as reported in [20].

We propose a new graph neural network, named Relation
Aware Graph ATtention network (RAGAT), to alleviate the
problems mentioned above. The key idea is to construct
relation aware message functions. Concretely, beyond weight
matrices shared across diverse relations, we define relation
specific network parameters to extract relational informa-
tion from neighboring entities in parameter space. To val-
idate our hypothesis, we leverage relation specific param-
eters to enhance the expressive power of several existing
message functions. Besides, we explore a new way to con-
struct messages based on interaction embeddings proposed
by CrossE [27]. We further give a new insight of CrossE
in an algebraic perspective. RAGAT also follows MPNN
framework: (1) RAGAT first combines entity and rela-
tion embeddings grouped with identical relation to generate
relation-entity hidden embeddings. Thereafter weight matri-
ces shared over the graph are used to transform relation-entity
embeddings into messages. (2) Then, we adopt multi-head
attention with different learned network parameters to aggre-
gate messages, which allows the model to attend to infor-
mation from different representation subspaces jointly. After
these two phases, the representation for each entity can be
updated.

The contributions of our work are summarized as follows:

1) We propose RAGAT, a GAT based method that intro-
duces relation specific network parameters to learn
information from neighboring entities under different
relations adaptively.

2) We implement RAGAT based on existing message
functions integrated with relation specific parameters.
Further, we present a new message function to learn
interaction embeddings, where an intuitive explanation
is provided.

3) Our extensive experiments on link prediction task with
benchmark datasets show that RAGAT outperforms
state-of-the-art KGE methods and demonstrates the
effectiveness of constructing relation aware message
functions.

Il. RELATED WORK
A. NON-NEURAL
Starting with TransE [10], many shallow non-neural
approaches have been proposed, which can be classified
as translational distance and bilinear models. TransE [10]
regards relations as translations from subject entities to object
entities. The embedding of object entity e, should be close
to the embedding of head entity e plus relation embedding
e, if (s, r, 0) holds. Extensions of TransE have been devel-
oped like TransH [12], TransG [11], TransR [13]. Bilinear
models exploit similarity-based scoring functions. These
models include RESCAL [14], DistMult [15], HolE [16], and
Complex [17].

CrossE [27] is a shallow model that learns crossover
interactions. It simulates the fact that relation affects the
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information of entities to be selected, and information of
entity affects the relation path to be chosen for inferring
whether (s, r, 0) is valid.

B. NEURAL NETWORK BASED

Neural Tensor Network (NTN) [18] projects entities to their
vector embeddings in the input layer. Then embeddings of
head and tail entity are combined by relation specific ten-
sor and given as input to a non-linear layer for computing
scores. Multi-Layer Perceptron (MLP) [9] is another simple
model where each relation and entity is associated with a
single vector and embeddings are concatenated to feed into
a non-linear layer. Neural Association Model (NAM) [19]
conducts semantic matching with a deep architecture. Such
simple neural network based methods suffer from overfitting.
Therefore, a vast number of complex neural networks-based
models have been proposed, including Convolutional Neural
Networks [20], Recurrent Neural Networks [28], and Graph
Neural Networks [21].

C. CONVOLUTION BASED

Convolutional Neural Network has been utilized in KGE
for its properties of parameter effective and fast to
train. ConvE [20] uses convolutional feature filters over
matrix reshaped from subject and relation embeddings.
InteractE [29] improves the performance of ConvE by fea-
ture permutation, checkered reshaping, and circular convo-
lution. More CNN based approaches include ConvKB [30],
ConvR [31], CapsE [32].

D. GRAPH NEURAL NETWORK BASED

Graph Neural Networks are exploited in KGE to address the
limitations of conventional neural network architectures like
CNN that are constrained to handle only Euclidean data [26].
R-GCN [21] introduces Graph Convolutional Networks
(GCN) [33] and develops GCN to handle multi-relational
data characteristic of realistic knowledge graphs. SACN [22]
utilizes W-GCN which learns weights that adapt the amount
of information from neighbors. One most recent GNN based
model is COMPGCN [26], a framework that generalizes
KipfGCN [33], R-GCN [21], D-GCN [34], and W-GCN [22].
COMPGCN takes composition-based GCN as encoder along
with ConvE [20] as decoder.

For GCNes, all neighbors share fixed weights and thus con-
tributing equally during information passing. To address this
shortcoming, graph attention networks (GAT) [35] are intro-
duced, assigning varying importance levels. KBGAT [25] is
the first model to learn graph attention based embeddings
on KGs and is claimed to outperform other existing KGE
methods. However, there is a bug in the leakage of test
triples during negative sampling and the evaluation protocol
of KBGAT is not rigorous, as reported in [36].

IIl. RAGAT: MODEL DESCRIPTION
In this section, we provide details of our model RAGAT.
The overall architecture is depicted in Fig. 3. We denote
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knowledge graph as G = (£, R, T), where £ denotes the set
of entities, R denotes relations, 7 is the set of edges. Each
edge (s, r, o) represents the relation r € R existing from
entity s to o. Following previous works [21], [26], we allow
information in directed knowledge graphs flow in three direc-
tions: original, inverse, and self-loop. Hence, the sets of edges
and relations are extended as

T/:Tu{s,r,o_l |(s,r,o)e{T}}U{S,T,s|se€}
R = RU Ry U (T}

where R, = {r‘llr € R} and T denotes the inverse and
self loop relations, respectively.

As summarized in Table 1, we utilize message function to
represent how information from neighboring nodes and edges
is learned. If entity u is connected to entity v with relation r,
then their distributed representations are combined as

Cu,r,v)y = ¢(eus €, ev) (1)

where e, e, € R% denotes entity embeddings and e, € R%
is relation embeddings. ¢(-) is a combining operator utilized
to incorporate relation embeddings into entity embeddings.
Then network parameters 8, shared over the whole graph are
learned to generate messages:

me, vy = M(c(u,r,v)a 0g) (2)

Here my,,,,y) is the message from entity u to v. , is shared
across different locations and local structures, which can
filter out the common characteristics on various topological
structures. When entities are linked with different relations,
it plays different roles to the central entity v, as discussed
in Section I. Following this intuition, we propose Relation
Aware Graph ATtention network, RAGAT for short. Con-
cretely, RAGAT defines relation aware message functions
parameterized by relation specific network parameters 6,.
Fig. 2 depicts an illustration of our core idea. To obtain
messages, now we have:

czu,r,v) = ¢r(eu, €, €, 0’,) (3)
mey ry)y = M(cfugr)v), 0,) @)

where 6, is learned to extract relation specific characteristics.
Neighboring entity embeddings and relation embeddings are
grouped and fed into varied message functions.

A. RELATION AWARE MESSAGE FUNCTIONS

The most intuitive approach to obtain @, is to learn an inde-
pendent weight matrix for each relation. Considering exper-
iments are conducted with different encoders and decoders,
0, is restricted to be a diagonal matrix for low computation
complexity.

0, =W, =diag(w,) 5)

where W, € R%>do v c R9*1 9. canbe extended to more
parameterized forms as discussed in Section VI. This work
shows how @, can improve existing message functions even
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FIGURE 2. The core idea behind RAGAT. ¢ is introduced to reflect
relational information in parameter space.

with a simple definition of diagonal matrix. We expect more
complex and flexible formulations for €, can be researched
to obtain more performance improvements.

Now we present how to apply W, into current message
functions. To capture the common features associated with
specific relation, the transformation operation over entities
under the same relation r is performed as following:

€(ru) = Wreu (6)

where e, represents the transformed hidden embedding of
relation r to entity u. Then, to deal with relation embedding
e, we experiment with several enhanced variants of existing
message functions.

1) SUB-GAT
Inspired by TransE, several models learn relational infor-

mation from entity u# with subtraction operation like
VR-GCN [24], TransGCN [37] defined as:

Cu,rv)y = € — € (7)
where operator — is modeling feature interaction between
entity embedding and relation embedding. We replace e, with
€(ru):

Clurvy = Wre, — € ®
It results in e, having multiple representations of features
corresponding to relation r. Every entry ; in e,,, is multiplied

by w; and subtracted with r;, which is more expressive than
previous method.

2) MULT-GAT
Inspired by DistMult, multiplication has been experimented
in COMPGCN to get messages defined as:

Cu,r,vy = €, 0€ (9)

o denotes Hadamard product. In Mult-GAT, cfu’r, v is
obtained analogously to Sub-GAT:

cfu,r,v) = (W;e,)oe, (10)
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FIGURE 3. Overview of RAGAT with a single graph attention layer along
with 3 heads. Updated embeddings of entities and relations are then
given into decoder to compute scores.
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3) CORR-GAT

COMPGCN finds that the model with circular correlation
proposed by HolE [16] achieves the best performance for link
prediction task. The corresponding enhanced formulation is
given as:

cfu’r’v) = (W,e,) xe, (11)

Circular correlation can be interpreted as a compression of
the tensor product, hence Corr-GAT has a much higher com-
putational complexity than Sub-GAT and Mult-GAT.

4) CONCAT-GAT

A variety of GNNs concatenate entity embeddings and rela-
tion embeddings as input and then feed them into neural net-
works [25], [38], [39]. The number of parameters for model
with concatenation is twice as many as the aforementioned
Sub-GAT, Mult-GAT, and Corr-GAT. No feature interaction
between e, and e, is captured explicitly. We take [e,; e,] as a
whole feature input:

czu,r,v) =W,[e,; e ] (12)

5) CROSS-GAT
Further, inspired by model CrossE [27] which aims at sim-
ulating crossover interaction between entities and relations,
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we propose a new message function termed Cross. CrossE
learns multiple triple specific embeddings called interaction
embeddings which are generated via relation specific variable
¢, € R%. The representation of interaction for entity and
relation is written as:

u =c,oe, (13)
I =uoe, (14)

where u; is called interaction embedding from relation r
to entity s and ry is interaction embedding from entity s to
relation r. Now, the combined representation of crossover
interaction is given as:

qQur = Uy + 17 (15)
=c,ro0e,+croe,08€, (16)

Following this pattern, we replace interaction variable ¢, with
W,., which results in the form:

cfu,r,v) =W,e, + W;,(e,0¢,) (17)

Interestingly, this formulation provides us a new explanation
of CrossE.

6) AN ALGEBRAIC PERSPECTIVE ON CrossE

One issue about CrossE is that little intuition behind ¢, is
explained in original paper and no independent experiments
regarding ¢, have been carried out. The distinction between
¢, from e, is ambiguous. The score function used in CrossE
for calculating the probability of triple (s, 7, 0) is defined as:

f(s,r,0) =o(e tanh(c, oe;+c,o0es0e.)  (18)

Inspired by 17, we treat ¢, as diagonal matrix diag(c,) €
R _Similar to TransR [13], diag(c,) projects e, and esoe,
to same relation space:

Vs = diag(cy)es (19)
Vrs = diag(c,)(es o ey) (20)

¢, is used to represent relation specific space, and e, is per-
formed as a scaling transformation for e;. The entity-relation
combined embedding called crossover interaction in CrossE
is obtained by adding two projected vectors vy and v,;. Now
the combined embedding and target entity embedding e, is
not in the same space, in which case non-linear function
tanh is used to ensure the combined representation share the
same distribution interval with entity representation. Output
score is computed by measuring the similarity between com-
bined embedding and target entity embedding. The process
of generating the representation of crossover interaction is
illustrated in Fig. 4.

Since original, inverse and self-loop relations are three
types of edges with different direction, similar to [26],
we define separate filters for each of them:

M, v) = Wair(r)Cy ) (21)
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FIGURE 4. The process of generating the representation of crossover
interaction applied in CrossE.

where relation-type specific weight W) € R4 x R is
defined as follows:

Wo ifreR
Wairy = { Wy ifr € Ry (22)
Ws ifre{T}

Here, O, I, and S denote original, inverse, and self-loop
directions. Thus, RAGAT learns neighboring information in
three directions.

B. ATTENTION-BASED INFORMATION AGGREGATION
In order to obtain the new embedding for node v, the update
function applied in GCN based models can be written as:

e{; =f Z amgy, r,y) (23)

(u,r)eN ()

where N (v) is the set of immediate neighboring entities and
relations of central entity v, f is a non-linear activation func-
tion. All messages are summed with fixed importance coeffi-
cient a like |N'(v)| applied in R-GCN. It is sensible to assign
a varying level of importance to messages. As suggested by
GAT [35], the attention mechanism applied in our approach
is a single layer feedforward neural network parameterized
by weight matrix Wy; € R!*% and applying LeakyReLU
non-linearity.

bu,r = LeakyReLU(Wattm(u,r,v)) (24)

b, , denotes absolute attention coefficient of each message
e, . To get relative attention value, softmax is applied over
by,

oy,r = softmax(by,r)

exp(b
_ P(bu,r) 25)

ZieM, ZreRivu exp(bi,r)
where R;, represents the set of relations connecting entity
u and i. Then, normalized attention coefficients are used to
compute a linear combination of all messages corresponding
to them, to obtain updated output for entities:

e,=f D cwrmury (26)

(u,r)eN )
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Multi-head attention has been employed in [25], [40] to
stabilize the learning process and boost performance. In this
work, we adopt multi-head attention to allow the model to
attend to information from different relation parameter sub-
spaces jointly. Now, the final message embedding in attention
head & is computed as

h h h
m(u,r,v) = Wdir(r)cr (27)

Considering the large size of parameters, we employ aver-
aging instead of concatenation applied in [35] to M inde-
pendent attention heads, resulting in the following output
representation of entity v:

H
1
h h
e, =f ﬁz D (28)
h=1 (u,r)eN,

Function f is chosen to be ranh.
Further, relation embeddings are also transformed to allow
relation embeddings to have the uniform embedding size as
/
€.

¢ = Wye, (29)

where W,,; € R4 %4 is a learnable weight matrix that
projects relations to the same embedding space as entities.

C. DECODER

In this work, we utilize two different decoders to validate
our model’s effectiveness: ConvE [20] and InteractE [29].
ConvE is one of the most commonly used decoders to esti-
mate probabilities for triples. ConvE models the interac-
tions between input entities and relations by convolutional
and fully-connected layers. Given (s, r, o) triple, ConvE first
reshapes the embedding of s and r into 2D tensors and then
applies standard convolution operation on the reshaped ten-
sors to compute triples scores. In ConvE, the triple is scored
as:

Ds,r.0) = ReLU (vec (ReLU([es; e,] * w)) W)e, (30)

InteractE augments the expressive power of ConvE through
three key ideas: feature permutation, checkered feature
reshaping, and circular convolution. For input (ey, e;), ?-
random permutations are generated first.

Po=e €D )] (31)

Next, InteractE employs checked reshaping operation
¢Cl1k(e5‘3 er), Vie {ls R t}

bk (P) = [doel e, pa(el )] (32)

The method of estimating probability for triple (s, r, 0) imple-
mented in InteractE can be written formally as:

Ps.r0) = 8 (vee (f (denk(Pr) ® w)) W) e, (33)

where vec (-) denotes flattening tensor into vector and ®
denotes depth-wise circular convolution. @ represents convo-
lutional filters. W is a weight matrix. f and g are chosen to
be ReLU and sigmoid, respectively.
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To train the model, standard cross entropy loss with label
smoothing is optimized:

1
L= _ﬁ zl: (ti - log(pi) + (1 — 1) - log(1 — p;)) (34)

where t; is the label of triple i and p; is the corresponding
score.

IV. EXPERIMENTAL SETUP

A. DATASETS

FB15k and WN18 are the two generally used datasets for link
prediction introduced by TransE [10]. Nevertheless, previous
works [20], [41] suggest that a simple reversal rule-based
model can achieve state-of-the-art results on these two
datasets. To this end, following [20], we use two correspond-
ing improved datasets: FB15k-237 [41] and WN18RR [20].
The details of these datasets are shown in Table 3.

o FB15k-237: A subset of FB15k dataset [10] where all
inverse relations are removed to resolve the reversible
relation problem.

o WNI18RR: WN18RR is created from WN18 dataset [10]
with deleted relations similar to FB15k-237, a dataset
featuring lexical relations between words.

B. IMPLEMENTATION DETAILS
We implement our model using Pytorch [43] with Adam [44]
optimizer. Final parameters of RAGAT are determined
according to the mean reciprocal rank (MRR) evaluated on
validation set. The hyperparameters we find work well are
as follows: learning rate 0.001, label smoothing 0.1, 1 layer
of GNN, 2 graph attention heads, initial embedding size
100, output embedding size 200, and batch size 1024 for
FB15k-237, batch size 256 for WN18RR.

The source code of RAGAT have been made available at
https://github.com/liuxiyang64 1/RAGAT.

C. EVALUATION PROTOCOL

The link prediction evaluation follows the same protocol as
previous works [20], in which for each test triple (h, r, t), h
and ¢ are replaced by all entities in dataset to calculate scores.
Then, following [10], we apply the filter setting where valid
triples already existing in train, valid, and test set are filtered
before ranking. Our evaluation protocol is similar to RAN-
DOM evaluation protocol proposed by [36], which is rigorous
and fair for knowledge graph completion task to deal with
triples with same scores. Three standard metrics are reported
to evaluate performance, mean reciprocal rank (MRR), mean
rank (MR), and the proportion of ranking scores within N of
all test triples (Hits@N) for N = 1, 3, and 10.

D. BASELINES

To evaluate RAGAT, we compare a variety of non-neural and
neural baselines.

« Non-neural: Methods that use translation distance
based or semantic matching based score functions. For
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TABLE 2. Link prediction results of RAGAT and various models on FB15k-237 and WN18RR. We find that RAGAT outperforms all other baselines 4 out of 5
metrics on FB15k-237 and 3 out of 5 metrics on WN18RR. Please refer to Section V-A for more details.

FB15k-237 WNI18RR
MRR MR Hit@l Hit@3 Hit@l0 | MRR MR Hit@l Hit@3 Hit@10

TransE [10] 0.294 357 - - 0.465 0.226 3384 - - 0.501
DistMult [15] 0241 254 0.155 0.263 0.419 0.43 5110 0.39 0.44 0.49
ComplEx [17] 0.247 339 0.158 0.275 0.428 044 5261 0.41 0.46 0.51
ConvE [20] 0325 244 0.237 0.356 0.501 0.43 4187 0.40 0.44 0.52
RotatE [42] 0338 177  0.241 0.375 0.533 0476 3340  0.428 0.492 0.571
ConvR [31] 0.35 - 0.261 0.385 0.528 0.475 - 0.443 0.489 0.537

R-GCN [21] 0.248 - - - 0.417 - - - 0.137 -

VR-GCN [24] 0.248 - 0.159 0.272 0.432 - - - - -
SACN [22] 0.35 - 0.26 0.39 0.54 0.47 - 0.43 0.48 0.54

CrossE [27] 0.299 - 0.211 0.331 0.474 - - - - -
KBGAT [25] 0.157 270 - - 0.331 0412 1921 - - 0.554
InteractE [29] 0354 172 0.263 - 0.535 0.463 5202 0.43 - 0.528
TransE-GCN [37] | 0.315 - 0.229 0.324 0.477 0.233 - 0.203 0.338 0.508
G2SKGE [39] 0.342 - 0.253 0.374 0.515 0.447 - 0.424 0.467 0.493
A2N [38] 0.317 - 0.232 0.348 0.486 0.45 - 0.42 0.46 0.51
COMPGCN [26] | 0.355 197 0.264 0.39 0.535 0479 3533  0.443 0.494 0.546
RAGAT 0.365 199 0.273 0.401 0.547 0.489 2390  0.452 0.503 0.562

TABLE 3. Datasets statistics of FB15k-237 and WN18RR.

Dataset €] [R| Train Set  Valid Set  Test Set
FB15k-237 14,541 237 272,115 17,535 20,466
WNISRR 40,943 11 86,835 3,034 3,134

instance, TransE [10], DistMult [15], ComplEx [17],
RotatE [42], CrossE [27].

o Neural: Methods that leverage non-linear neural net-
works like convolutional neural networks and graph
neural networks to estimate scores. CNN based method
includes ConvE [20], ConvR [31], InteractE [29].
For a fair comparison, we compare against several
recent GNN baselines: R-GCN [21], SACN [22],
VR-GCN [24], A2N [38], KBGAT [25], G2SKGE [39],
TransE-GCN [37] and COMPGCN [26].

V. RESULTS

A. PERFORMANCE COMPARISON

The results of RAGAT compared against existing knowl-
edge graph embedding methods are summarized in Table 2,
where the best performance of Cross-GAT with InteractE as
decoder is reported. The scores of all baselines reported are
directly taken from previous papers [26], [27], [29], [38],
[39]. Sun et al. [36] investigated the inappropriate evaluation
problem that occurred in KBGAT. Hence, we take the results
from [36] for KBGAT.

GNN based methods generally achieve better performance
than conventional models like TransE and RAGAT improves
upon CrossE’s MRR by a margin of 22%, Hit@10 by a
margin of 15.1% on FB15k-237, which shows the effect of
leveraging graph structures. Compared to other baselines,
RAGAT outperforms all other methods 4 out of 5 metrics
on FB15k-237 and 3 out of 5 metrics on WN18RR, which
indicates the whole effectiveness of our model. Compared
with KBGAT, A2N, and G2SKGE which also utilize atten-
tion to aggregate messages, the improvement of RAGAT
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demonstrates the performance of our proposed enhanced
message functions.

B. COMPARISON OF MESSAGE FUNCTION VARIANTS
Next, we evaluate the effectiveness of RAGAT with its five
message construction variants discussed in Section III-A.
In our results, X + Y denotes that method X is used as
an encoder and Y is performed as a scoring function. The
statistic results are given in Table 4. The results of variants
with InteractE as scoring function are generally better than
utilizing ConvE to predict scores. InteractE has the same
input, training strategy, and output as ConvE, in which it
can be easily adapted to previous works like COMPGCN to
augments the expressive power.

(Cross-GAT + InteractE) gives the best performance
and (Concat-GAT + InteractE) as well as (Corr-GAT +
InteractE) achieves sub-optimal results. The results show
that more complex combining function ¢, (-) outperforms or
performs comparably to simpler functions. This is consistent
with the observations in COMPGCN attributed to the hypoth-
esis that complex operations can provide more expressive
power. Besides, comparing the results of Cross-GAT with
Concat-GAT which increases network parameters by just
concatenating vector input, we learn that it is reasonable to
achieve better performance without introducing new parame-
ters by designing more suitable ways to increase feature inter-
action between entity and relation embeddings like circular
correlation and Cross.

C. ANALYSIS OF RELATION SPECIFIC PARAMETERS
To further analyze the impact of learning relation specific
parameters, we compare the effect of corresponding RAGAT
variants where W, is removed.

o X 4 Y: RAGAT with relation specific parameter W,..

e X+Y — w/o W,: RAGAT without W,..
To ensure a fair comparison, the same RAGAT variants are
implemented with the same hyperparameters.
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TABLE 4. Effect of different ways of message construction and scoring functions evaluated on FB15k-237 dataset. X + Y denotes that method X is used as
an encoder and Y is performed as a scoring function. Overall we find that Cross-GAT + InteractE gives the best performance.

Scoring Function (=Y)— ConvE InteractE
Encoders X| MRR MR Hit@l Hit@3 Hit@l0 | MRR MR Hit@l Hit@3 Hit@I0
Sub-GAT+Y 0.363 163 0.272 0.397 0.545 0.363 163 0.271 0.398 0.546
Mult-GAT+Y 0.362 170 0.271 0.398 0.546 0.363 202 0.272 0.398 0.548
Corr-GAT+Y 0.362 191 0.271 0.395 0.544 0.364 192 0.272 0.400 0.547
Concat-GAT+Y 0.363 161 0.270 0.398 0.546 0.364 194 0.272 0.400 0.547
Cross-GAT+Y 0.363 194 0.271 0.397 0.544 0.365 199 0.273 0.401 0.547
X+ConvE-w/o W, mX+ConvE X+InteractE-w/o W, = X+InteractE

0.366 0.274

0.272

0.
0.268
0.266

0.364

N
[

0.362

0.

W
=N

0.358

0.402

0.4
0.398
0.396
0.394

0.392

0.55
0.548
0.546
0.544
0.542

0.54

Sub  Mult Corr Concat Cross Sub  Mult Corr Concat Cross
MRR Hit@1
(a) (b)

FIGURE 5. The effect of relation specific parameters evaluated on FB15k-237.

Sub Mult Mult Corr Concat Cross

Hit@10
(@)

Corr Concat Cross Sub

Hit@3
©

TABLE 5. Results on link prediction by relation category on FB15k-237 dataset. Following TransH, relations were classified into four categories based on
the average number of tails per head and heads per tail: 1-1, 1-N, N-1, and N-N. We observe that RAGAT is more capable of modeling complex relations.

Refer to Section V-D for more details.

InteractE RotatE COMPGCN RAGAT
MRR MR H@l10 | MRR MR H@I0 | MRR MR H@I0 | MRR MR H®@I0
1-1 | 0386 175 0547 | 0498 359 0593 | 0457 150 0.604 | 0.474 197  0.593
Head Pred I-N | 0.106 573 0.192 | 0.092 614 0.174 | 0.112 604 0.190 | 0.131 772  0.218
N-1 | 0.466 69 0.647 | 0471 108 0.674 | 0471 99 0.656 | 0.478 89 0.662
N-N | 0276 148 0476 | 0261 141 0476 | 0275 179 0474 | 0.287 156  0.487
1-1 0.368 308 0.547 | 0.484 307 0.578 | 0453 193 0.589 | 0.451 236  0.588
Tail Pred 1-N 0.777 27 0.881 0.749 41 0.674 0.779 34 0.885 0.790 27 0.890
N-1 | 0.074 625 0.141 0.074 578 0.138 | 0.076 792  0.151 0.077 657  0.155
N-N | 0.395 92 0.617 | 0.364 90 0.608 | 0.395 102 0.616 | 0.403 92 0.624

The results are shown in Fig. 5, where MRR and Hit@1, 3,
10 are reported. We can find that our enhanced message func-
tions achieve constant superiority over their corresponding
functions without W, that is widely used in previous works.
This demonstrates the validity of introducing relation specific
parameters module into our GNN-based models. Moreover,
operations with more computational complexity applied in
¢(-) like Corr, Concat underperforms simple functions like
Sub in conventional ways. However, these complex formula-
tions can obtain more performance improvement by learning
W,.. It shows that altering conventional complex message
functions to be relation aware may improve the expressive
capability of models more significantly even though they
have more parameters.

D. EVALUATION ON DIFFERENT RELATION CATEGORIES

Further, we analyze the performance of RAGAT on differ-
ent relation categories of FB15k-237. Following [12], rela-
tions are classified into four categories based on the average
number of tails per head and heads per tail: one-to-one,
one-to-many, many-to-one, and many-to-many. As shown

VOLUME 9, 2021

in Table 5, we present the results for different relation
types. The results of RotatE, InteractE, and COMPGCN are
taken directly from [26], [29], [42]. We notice that both
COMPGCN and RAGAT outperform InteractE on all four
relation types, which indicates that GNN based encoder helps
handle both simple and complex relations. RAGAT is more
effective at modeling complex relation categories like one-
to-many, many-to-one and many-to-many. However, RotatE
captures simple relations like one-to-one better, which can be
attributed to the fact that RotatE can infer various relation
patterns, including symmetry/antisymmetry, inversion, and
composition. The number of edges with relation type of one-
to-one is much fewer than other edges with complex relations,
explaining why our model’s effect is improved.

VI. DISCUSSION

Comparison with R-GCN First, R-GCN has no vector-
ized relation embedding involved, limiting the model’s
expansibility. For instance, relation embeddings can repre-
sent additional information like semantics in textual words
describing relations [18]. Relation embedding also performs
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a vital role in KGE based multi-relational network align-
ment [24]. RAGAT explicitly models relation embeddings,
which can be applied in more areas. Second, to limit the total
number of parameters, R-GCN introduces two separate reg-
ularizing strategies: basis decomposition and block-diagonal
decomposition. Basis decomposition is defined as:
B
W, => "anVy, V,eRI*D (35)
b=1
In the block-diagonal decomposition, W, is defined through
the sum over a set of low-dimensional matrices:

W, = diag(Qi,, ..., Qp,), Qpr € RA/BX/B)  (36)

In implement of RAGAT, relation specific parameter 8, can
be seen as an instantiation of block-diagonal decomposition
where Qp, has dimension 1 with B = d. 0, can be further
modified with basis decomposition formulation to adapt to
more complicated knowledge graphs.

Variants of relation specific parameters 6, RAGAT
restricts 6, to be W, for training speed. In fact, 6, can
be extended to more parameterized forms like multi-Layer
perceptron, convolution kernel [31], etc. More interestingly,
we find our idea associated with two most recent works,
ParamE [45] and CoPER [46]. In ParamE, subject entity
embeddings, relation embeddings, and object entity embed-
dings are regarded as the input, parameters, and output of a
neural network, respectively. CoPER proposes a contextual
parameter generator (CPG) component which takes relation
embeddings as input and outputs network parameters to be
performed over entity embeddings. Comparing to ParamE,
we learn relation embeddings and relation specific param-
eters simultaneously. Compared with CoPER, there is no
straight transformation operation between relation embed-
ding and 0,. This strategy makes our method more gen-
eralized and it can be extended with various modifications
towards 6,. 8, can be implemented as the same architecture
of ParamE-Gate proposed in ParamE, or it can be generated
by relation embedding e, as in CoPER, which we defer for
future work.

VII. CONCLUSION

In this paper, we propose RAGAT, a novel graph attention
based knowledge graph embedding method with relation
aware message functions that are perceptive to neighbor-
ing relations. We analyze how to integrate relation specific
parameters in previous message functions. What’s more,
inspired by CrossE, we explore a new message construction
method to learn interaction embeddings. We further pro-
vide a theoretical understanding of CrossE, which can be
associated with translational distance methods like TransR.
Through empirical studies on knowledge graph completion,
we demonstrate the effectiveness of the proposed RAGAT on
FB15k-237 and WN18RR datasets. It is worth noting that
there are several ways in which our model can be extended.
In the future, we intend to integrate more well-designed neu-
ral networks into the RAGAT model. Besides, we are going
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to devise a transition structure between relation embeddings
and relation specific parameters.
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