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ABSTRACT This paper deals with investigating the closed-loop stability boundary of the highly flexible
aircraft with structural flexibility and input saturation constraint. A method is presented to analyze the stable
region based on the system features of the open-loop instability. In this paper, a dynamic model of highly
flexible aircraft is made and the dynamic characteristics are analyzed and the long period mode and stability
are investigated in terms of the trimmed model. Considering the saturation constraint of elevator deflection,
the closed-loop stability boundary of the system under saturation constraint is discussed by combining
the open-loop instability features of highly flexible aircraft. The analysis indicates that the boundary is
related to the left eigenvector consistent with the amplitude constraint and the unstable poles of the control
signals. Based on the long period instability of the aircraft, the formula of closed-loop stability boundary is
analytically obtained. The convergence region of highly flexible aircraft is verified in terms of the LQR
controller. The influence of structural flexibility and saturation constraint amplitude of elevator on the
stability boundary of highly flexible aircraft is analyzed based on state constraints, which is also compared
with the rigid aircraft. The simulation results show that the closed-loop stability of the system is restricted
by the open-loop characteristic of the system and the control input saturation constraint.

INDEX TERMS Highly flexible aircraft, stability boundary, saturation constraint.

I. INTRODUCTION
High-altitude long-endurance (HALE) aircraft are able to
continuously collect and transmit data in real time. They
can be used extensively in military and civilian applica-
tions, such as communication support, disaster monitoring,
environmental research, and meteorological data monitor-
ing, attracting a great deal of interest [1], [2]. Perfect high-
altitude long-endurance aircraft can maintain a high altitude
of over 20,000 meters for several months. They need to have
a lift-drag ratio that is as large as possible to decrease energy
consumption and to achieve the objective of staying at high
altitudes for a long time. Hence, this type of aircraft has a
very large wing aspect ratio, and its structure must be very
light. Because of their slenderness, the wings may undergo
large deformations under normal conditions, resulting in
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geometrically nonlinear behavior. Therefore, these wings
have a highly flexible structure [3], [4].

In the past several years, many scholars have car-
ried out many studies on large-scale flexible aircraft,
including nonlinear aeroelastics [5]–[8], coupling dynamics
modeling [9], [10], model reduction [11], [12], stability anal-
ysis [13], [14], trajectory tracking [1], [15], flutter suppres-
sion and gust alleviation [16]–[18]. These studies strongly
promote investigations of the dynamic characteristics of
highly flexible aircraft. Based on the results of highly flexible
aircraft model analysis, one of the main problems in the con-
trol system design is to ensure the closed-loop stability of the
aircraft when actuator saturation constraints exist [19], [20].
When there are unstable poles in the open-loop system,
the conditions of closed-loop stability are more stringent.
Therefore, it is necessary to consider the effect of the
open-loop features on the closed-loop control performance
to promote the preliminary design of aircraft with a more
reliable control performance.
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In numerous controller design methods of current control
theory, it is assumed that the system control input can be
infinitely large, which ignores the saturation constraints of
the actuator [21], [22]. In the real control design and engi-
neering process, the input constraints andmodel uncertainties
limit the aircraft in achieving a perfect control performance
[23]–[25]. Hence, based on ideal assumptions, the closed-loop
performance of the designed control system may not be
completely guaranteed [26], [27]. The actuators of highly
flexible aircraft are conventional control mechanisms such
as elevators that are normally limited by the response band-
width and saturation constraints. Therefore, it is essential
to analyze the stability performance of the aircraft system,
design the control system reasonably, and investigate the
stability boundary in order to reach the performance limit of
the system in terms of these actuator constraints [28].

For systems with saturation constraints, the con-
cept of the domain of attraction was proposed to
approximate the system performance [29]. Previously,
Schmitendorf and Barmish et al. investigated the null control-
lability of linear systems under control saturation constraints.
They provided the sufficient and necessary conditions for
global controllability under constraints and the necessary
and sufficient circumstances for the existence of admissible
control considering that a given initial point can return to the
origin in finite time [30]. In analyzing the stabilization prob-
lem of unstable systems, Goman and Demenkov proposed
that determining the size of the controllable region is the key
to studying control saturation, and the size of this region can
be considered a measure of the allowable level of external
disturbance [31].

In the study of designing discrete control systems,
Kouvaritakis et al. proposed necessary and sufficient con-
ditions for bounded input/bounded output (BIBO) stability
in discrete systems [32]. In addition, it was noted that the
stability condition is consistent with the physical constraints
of the open-loop stabilization system. However, an unsta-
ble system needs much stronger constraints, according to
which the conditions for guaranteeing the stability of the
closed-loop system can be considered. Moreover, Derong Liu
and A. N. Michel provided sufficient conditions for the null
controllability of discrete-time linear systems under certain
conditions of the input and state constraints [33]. Further-
more, Corradini et al. proposed an iterative characterization
of the null controllable region for discrete-time linear systems
with unstable eigenvalues [34].

To analyze the continuous-time control system, Tingshu
Hu investigated the accessibility of the inverse time system of
the state equation under admissible control signals. In addi-
tion, the concrete form of the null controllable region was
defined by the form of a set of extremum trajectories for
unstable systems [35]. Meanwhile, focusing on a high-order
system with two unstable poles, a linear feedback saturation
controller was designed to verify that the attraction domain of
the closed-loop feedback system can only be a subset of the
null controllable region [36]. Moreover, Lin et al. converted

the solution of the contraction ellipse invariant set under
the saturation constraint to a linear matrix inequality (LMI)
constraint optimization problem to straightforwardly obtain
the system convergence domain [37].

The majority of studies on null controllable regions under
saturation constraints are focused on linear systems. For
instance, assuming a lack of uniform controllability for a
group of time-dependent linear control systems, Fabbri et al.
investigated the dimension, topological structure, and other
dynamical features of the sets of null controllable points and
reachable point sets [38]. Darup andMonningmann presented
a technique for the exact computation of null controllable
sets for single-input bilinear systems with input and state
constraints [39]. In comparison with linear systems, much
less research exists on the null controllable regions of non-
linear systems. A method was presented by Homer et al. for
the control of input-constrained nonlinear systems that pro-
vided guaranteed stabilization in the entire null controllable
region [40], [41]. Nonlinear systems are more difficult to
study and require more attention [42], [43].

The influence of flexibility on the stability of aircraft was
discussed in previous studies, and numerous performance
optimizations were presented for the system [6], [44], [45].
Nevertheless, the influence of flexibility on controllability
was not studied specifically, particularly under saturation
constraints. This article proposes a method of analyzing the
effect of control saturation and structural flexibility on the
stability radius of highly flexible aircraft. The computational
formula of the closed-loop stability boundary is provided
based on the long-period instability features of highly flexible
aircraft. With the performance limitations incorporated into
the design phase, another method is provided to increase the
controllability of highly flexible aircraft.

This paper studies the stability boundary of highly flex-
ible aircraft with structural flexibility and input saturation
constraints. In general, the main contributions include the
following.

1) An approach is proposed to analyze the influence of
control saturation and structural flexibility on the sta-
ble radius of highly flexible aircraft. According to the
long period instability characteristics of highly flexible
aircraft, the computational formula of closed-loop sta-
bility boundary is given.

2) With the performance limitations incorporated into
the design phase, this paper brings one more way to
broaden the controllability of highly flexible aircraft.

The paper is organized as follows: a dynamic model
of highly flexible aircraft is constructed, and the dynamic
characteristics are analyzed in Section II. Based on the
trimmed model, the stability and long-period mode are stud-
ied. In Section III, by studying the null stability boundary and
controllability of the 1st-order and 2nd-order unstable modes,
the influence of the saturation constraints on the local stability
of the closed-loop system is discussed. Next, the stability
boundary of highly flexible aircraft is provided. In Section V,
the effect of the structural flexibility and saturation constraint
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amplitude of the elevator on the stability boundaries of highly
flexible aircraft is analyzed and compared with that of rigid
aircraft. Finally, concluding remarks are given in Section V.

FIGURE 1. The geometry of the flying wing model.

II. DYNAMIC MODEL OF HIGHLY FLEXIBLE AIRCRAFT
The object of this study is a flying wing flexible aircraft, the
geometric model of which is shown in Figure 1. The wing
length of this flying wing flexible aircraft is 72.8 m with a
half-chord length of 2.44 m. The outboard, one-third of the
wing semispan, has a dihedral angle of 10◦. Five propulsive
units exist, with three pods located at the middle span and
one at two-thirds of the semispan on each side. The pods in
the center of the aircraft have masses of 27.23 kg, within the
range of 0 (light) to 227 kg (heavy). The pods on the edges
have masses of 22.70 kg. The properties of the aircraft are
listed in Table 1 [46]. The aerodynamic derivatives Clα , Clδ ,
Cd0, Cm0, and Cmδ are all in units of rad−1. The L.E. is the
abbreviation of leading edge.

TABLE 1. Relevant properties of the flying wing.

In this study, a coupling dynamic model of highly flexible
aircraft is constructed based on the finite element method
and Lagrange equation by combining the fully geomet-
rically exact model of nonlinear flexible beams and the
unsteady aerodynamic model. In contrast to the traditional

finite element model, this model considers the spanwise
expansion deformation of a highly flexible wing and the
coupling with the spanwise bending deformation. The model
can reflect the interaction among the flight dynamics, struc-
tural dynamics, and aerodynamics of highly flexible aircraft
well [47]. For the structural model, Euler-Bernoulli beam
model equations are used to describe the characteristics of the
slender flexible structures. For easier study, the kinetics of the
three-dimensional beam are simplified into one-dimensional
nonlinear beam motion and two-dimensional beam defor-
mation. Based on the finite element method, the motion of
each structural node is described by its displacement and
velocity along three axes. After dividing the wing into n finite
elements, the system states are defined as

x =
[
Vx Vz q θ h dspi(1 : nf ) veli(1 : nf )

]T (1)

where Vx and Vz are the horizontal velocity and vertical
velocity of the center of mass, respectively. The velocity V ,
the rate of pitch angle q, the pitch angle θ and the altitude h
express the rigid-body motion of highly flexible aircraft. The
value of nf is related to the finite element number n, and the
equation can be described as nf = (n + 1) × 3. The motion
of each node is given in terms of the nodal displacement and
velocity along the three axes. These are denoted as dspi and
veli, respectively.
The control input of a large flexible aircraft is defined as

u2×1 = [δe δT ], where δe and δT are the elevator angle and
thrust input, respectively.

In real flight, flexible deformation and elastic vibration
mean that the wing is affected by unsteady aerodynamic
forces. Based on the structural characteristics of slender
flexible beams, the unsteady aerodynamic loads used in the
current study are based on the 2-D finite state inflow theory
provided in [48], [49]. This theory calculates aerodynamic
loads on a thin airfoil section undergoing large motions in an
incompressible inviscid subsonic flow [46].

FIGURE 2. Local airfoil aerodynamic schematic.

Figure 2 presents a two-dimensional thin airfoil. b is the
semi-chord length, ab is the distance of the mid-chord in
front of the reference axis ra, and a is the percentage of ab
in the semi-chord. The reference axis ra after the midpoint
is defined as positive, and thus the motion of the wing can
be described as the variational displacement h (where down
is positive) and pitch angle displacement α (where up is
positive) of point ra.
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Based on the Grossman theory of unsteady aerodynamic
forces and [49], the lift Lcg , drag Dcg and pitching moment
Mcg can be given by

Lcg = ClαρV
2b[α +

ḣ
V
+ (

1
2
− a)b

α̇

V
]+ ClδaρV

2bδa

Mcg = (
1
2
+ a)bLcg −

1
2
πρVb3α̇ + 2ρV 2b2(Cm0 + Cmδa δa)

Dcg = ρbV
2Cd0 (2)

where δa is the angle of deflection of the aileron surface
and Clα is the slope of the lift curve. Clδa is the slope of
the lift curve, and Cmδa is the slope of the pitching moment,
both of which are determined by the control surface. Cd0 and
Cm0 directly represent the resistance coefficient and pitching
moment of zero incidence.

The nonlinear dynamic model of highly flexible aircraft is
derived based on the Lagrange method. The kinetic energy,
potential energy and generalized external forces are summed
across all wing elements. Additionally, the kinetic energy
indicates the translational, rotational and elastic oscillations
of the wing structure as well as the coupling action among
them. The potential energy includes the bending, stretching
and torsional deformation potential energy of the wing struc-
ture. The dynamic equations of the system can be written as
follows [47]:[

MBB(p) MBF (p)
MFB(p) MFF

] [
β̇g
p̈

]
+

[
0 0
0 KFF

] [
bg
p

]
+

[
CBB(p,βg) CBF (ṗ, p,βg)
CFB(p,βg) CFF (βg)

] [
βg
ṗ

]
=

[
QBB(ṗ, p,βg)
QFF (ṗ, p,βg)

]
(3)

where MBB, MBF , MFB, and MFF are the components of the
generalized mass matrix. CBB, CBF , CFB, and CFF represent
the generalized damping. KFF is the generalized stiffness
matrix. bg describes the linear and angular displacements. βg
represents the linear and angular velocities. p is related to
the strain on each finite element. QBB integrates the external
moments and external forces; however, QFF represents the
generalized force acting on the wing.

In contrast to conventional aircraft, the nonlinear dynamic
model adds the factors of wing deformation, which bring
additional alterations in the aerodynamic characteristics.
Moreover, the unique flightmotionwill in turn affect thewing
deformation.

Trimming is performed by iterative calculations, which
consider the coupling of aerodynamic force calculations and
structural finite element static force analysis. In each iterative
calculation, first, the aerodynamic model is updated based
on the deformation results of the last calculated structure.
Second, on the basis of the deformed configuration, the trim
parameters are calculated (such as the angle of attack of the
rigid body α, angle deflection of the control surface δ, and
thrust T ), and aerodynamic loads are obtained under related

conditions. Last, letting the trimming loads act on the unde-
formed structure and setting the deformation level as the cri-
terion of iterative convergence, convergent trimming results
can be obtained. The trimming process is shown in Figure 3.

FIGURE 3. Block diagram of trimming process.

TABLE 2. The trim results of the flying wing aircraft.

The nonlinear dynamic model is trimmed by calculating
the coupling iteration of the static aeroelastic deformations
and aerodynamic load to assess the effect of the payload
on the stability of the flexible aircraft. The highly flexible
aircraft is set to fly at a speed of 12.19 m/s at sea level,
and the angle of attack, thrust of the balanced state, and
elevator deflection are trimmed and are shown in Table 2.
The table lists the trimmed findings for this aircraft with
the other four authoritative teams. Patil et al. established the
computing package of the Nonlinear Aeroelastic Trim and
Stability of HALE Aircraft (NATASHA) [50]. The Univer-
sity of Michigan’s Nonlinear Aeroelastic Simulation Tool-
box (UM/NAST) was developed by Professor Cesnik and
collaborators [46]. NWPU/ZZ was proposed by Professor

21672 VOLUME 9, 2021



L. Xu et al.: Study on Stability Boundary of Highly Flexible Aircraft With Saturation Constraint

Zhou Zhou and collaborators at Northwestern Polytechni-
cal University [3]. Professor Jinwu Xiang and collabora-
tors at Beihang University used BUAA/ZJ to determine the
calculation result [51]. Figures 4-7 show the variations in
the trimmed angle of attack, elevator deflection, and thrust
per motor with different payloads. The figures also present
the trimmed results for rigid aircraft under the same cir-
cumstances. The heavier the payload is, the higher the lift
required. Thus, the required angle of attack and lift increase
by increasing the payload.

FIGURE 4. The deformed image of the trim aircraft with different
payloads.

FIGURE 5. The trim angle of attack with a varying payload mass.

FIGURE 6. The trim elevator deflection with a varying payload mass.

FIGURE 7. The trim thrust per motor with a varying payload mass.

Figure 4 shows a comparison of the deformed shapes of the
trim aircraft with payloads of 0 kg (light), 120 kg, and 227 kg
(heavy). The trim shapes in these cases are very different,
even though the flight conditions, material and inertial prop-
erties of the three models are identical [52]. In the case of the

227 kg configuration superimposed on the undeformed shape,
the bending displacement of the wing tip reaches 13.11 m,
which reflects its high flexibility.

The lateral aerodynamic component of the outer wing
segment gradually increases owing to the larger bending
deformation of the wing. At the same time, the lift force
along the wingspan direction decreases. Thus, the aircraft
should increase the angle of attack to provide sufficient lift
force and ensure that the aircraft flies flat. To guarantee
that the resultant force along the vertical axis is zero, the
balancing thrust of the propulsion system should be increased
accordingly. Simultaneously, based on the calculation results
in Figure 6, the trim deflection angle of the elevator deflection
increases with increasing payload mass. In comparison with
highly flexible aircraft, the state variables and the trim input
of the rigid aircraft vary with flat trend, and the thrust force
is unchanged.

Utilizing the obtained trim states to linearize the model,
the short-period and long-period modes with various pay-
loads are obtained. Considering an element number of 24,
the linearized matrices are A ∈ R155×155, B ∈ R155×2,
C ∈ R155×155, andD ∈ R155×2, where I is the identity matrix.
Based on the linearized model, the eigenvalues of the system
are presented in Figures 8. The analysis shows that most
of the eigenvalues of highly flexible aircraft are distributed
near the origin; hence, the motion is mainly characterized
by the long-period mode characteristics. The model does not
show the short-period mode, which is a longitudinal mode
exhibiting a higher frequency and damping ratio than the
phugoid. Instead, there is a longitudinal pair of stable, real
eigenvalues. This behavior was also seen in literature [52].

FIGURE 8. The eigenvalues near the origin of axes.

Increasing the payload from 0 to 227 kg, the eigenvalues of
the long-period mode of highly flexible aircraft are compared
with those of rigid aircraft, which are provided in Table 3 and
Figure 9.

Table 3 and Figure 9 show that by increasing the payload
mass, the eigenvalues of the long-period mode gradually
approach the imaginary axis. When the payload is heavier
than 28 kg, the eigenvalue passes through the imaginary
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TABLE 3. The eigenvalues of long-period mode with a varying payload
mass.

FIGURE 9. The eigenvalues of long-period mode with a varying payload
mass.

axis into the unstable right half-plane. At this time, the air-
craft mode becomes unstable, indicating that the payload
mass directly affects the dynamic stability of highly flexible
aircraft; however, the long-period mode of rigid aircraft is
always in a stable region.

Thus, the long-period mode of flexible aircraft possesses
an unstable characteristic root, causing some difficulties in
the closed-loop control design of the system. The accessibil-
ity of the closed-loop system is affected by control saturation
and other constraints. In this paper, the positive characteristic
roots are obtained by solving the high-dimensional model of
highly flexible aircraft. Moreover, by changing the payload,
the aircraft possesses unstable modes over a long period.
Hence, the effect of flexibility on the controllable perfor-
mance of the aircraft system is investigated along with the
control saturation constraints.

III. NULL CONTROLLABLE REGION
The nonlinear dynamic model of highly flexible aircraft has
strong coupling characteristics, which makes it difficult to
study the stable boundary. In addition, the model of highly
flexible aircraft has higher dimensionality and more unstable
eigenvalues than the rigid-body system. Due to the high
dimensionality of aircraft, the calculation of the stable bound-
ary requires a great deal of computation based on invari-
ant sets. If the system is not controllable and observable,
the stable boundary may have no feasible solution. Many
studies have suggested that the system characteristics of
highly flexible aircraft can be analyzed through linearization

models [5-6,11]. Hence, this paper measures the convergence
region of the aircraft with the stability radius and determines
the closed-loop stability boundary under control saturation
and state constraints in terms of the linearizedmodel of highly
flexible aircraft.

The dynamic model of highly flexible aircraft is explained
in the form of Jacobian linearization:

ẋ(t) = Ax(t)+ Bu(t) (4)

where x ∈ Rn represents system state. u ∈ Rm shows
the control input with saturation constraints satisfying the
condition. It is assumed that the input saturation constraint
has a symmetric form |ū−| = |ū+| = ū. Moreover, for
∀t > 0, the control input satisfies the condition:

u2i (t) < ū2i , i = 1, 2, · · · ,m (5)

Through the scale transformation of the B matrix, the ampli-
tude limit of the input signal is limited ū = 1.
Definition 1: ∀t > 0, the actuator of the system meets

the condition (5). If the control signal u(t) always satisfies
the above circumstances, it is termed admissible control
at the saturated constraint, and the set of all the admissible
control signals is represented as Ua [35].
Definition 2: For the primary state x0, if there exit a finite

time T > 0 and an admissible control signal u(t) ∈ Ua, let the
state trajectory satisfies x(T , x0, u) = 0, then the x0 is known
as the null controllable state. The set of all null controllable
states is termed the null controllable region denoted asC [35].
For the null controllable region C [35], there exist several

propositions such that:
1) If the matrix A is semi-stable, then C = Rn;
2) If the matrix A is anti-stable, then C is a convex open

set including the origin;
3) If

A =
[
A1 0
0 A2

]
,

with A1 ∈ Rn1×n1 anti-stable and A2 ∈ Rn2×n2 semi-
stable, and B is partitioned accordingly as

B =
[
B1
B2

]
,

then,

C = C1 × Rn2×n2 ,

where C1 is the null controllable region of the anti-
stable system

ẋ1 = A1x1 + B1u.

4) IfB = [b1, ·, bm], and the null controllable region of the
subsystem ẋ = Ax+biui isCi, then the null controllable
region of the system is:

C =
m∑
i=1

Ci = {x1 + · · · + xm : xi ∈ Ci} (6)
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Considering the above schemes, the high-order mul-
tivariable system can be simplified to a single input
anti-stable system (A > 0). The null controllable region
of a single input linear system is provided by an integral
form of admissible control stated as [53]

C̄ =
{
x|x =

∫
∞

0
e−AτBu(τ )dτ, u ∈ Ua

}
(7)

where C̄ is the closure of C , and ∂C is the boundary of
the null controllable region C .

Definition 3: For the dynamic system (4), the radius sta-
bility is defined as the least 2-norm of the points at the null
controllable region boundary ∂C :

Dc = min {‖x‖2 |x ∈ ∂C} (8)

For the radius stability, there is a property exist:

∀ ‖x0‖2 < Dc, x0 ∈ C

Hence, the null controllable region of the system is
obtained by the above properties and definitions, and the
range of the null controllable region of the system can be
determined through the stability radius.

A. STABILITY RADIUS OF 1ST ORDER SYSTEM
Consider a 1st order unstable system with control saturation
and the equation of

ẋ(t) = ax(t)+ bu(t), |u(t)| ≤ 1 (9)

where a > 0. Assuming that the system control is symmetry
constraint. Without loss of generality, assume that b > 0.
Definition 4: For the 1st order system (9) and the initial

state x0, considering the control signal u(t) = −1, the state
trajectory is explained as the lower bound trajectory, given as
x(t, x0). Following the same process with the condition of the
control signal u(t) = 1, the state trajectory is explained as the
upper bound trajectory of x0, given as x̄(t, x0).

Under the action of any admissible control signal u ∈ Ua,
the state trajectory meets the following circumstances:

x (t, x0) ≤ x (t, x0, u) ≤ x̄ (t, x0) (10)

There is a conclusion based on literature [29]. Regarding the
first-order system (9) with the limitation of input saturation,
keep initial value x0 > 0 (x0 < 0), when the time T > 0 does
not exist for satisfying x(T , x0) ≤ 0(x(T , x0) ≥ 0), then the
system is diverging. The null controllable region is restricted
by the value of the unstable pole λ. For a 1st order system,
there is a relation that the system pole λ = a. Then, the system
stability radius is DC = b/a.

B. STABILITY RADIUS OF 2ND ORDER SYSTEM
In the case of the second-order system and where the unstable
pole is a pair of complex conjugate numbers, then the basic
form of the system is written as[
ẋ1
ẋ2

]
= A

[
ẋ1
ẋ2

]
+ Bu =

[
σ −ω

ω σ

] [
ẋ1
ẋ2

]
+

[
b1
b2

]
u (11)

When the system pole includes a pair of complex con-
jugate numbers, it has periodical behavior. To qualitatively
analyze the 2nd order periodic equation, the basic way is to
investigate the solution after one period with any initial value.
Thus, the Poincare map is utilized by

P(x0) = x(T , x0) : R2→ R2 (12)

If the period is T = 2π/ω and the initial phase is φ0, then
the periodic limit control is obtained as

uT (t, φ0) = sign[sin(ωt + φ0)] (13)

Theorem 1: When the system takes a fixed point of
Poincare map as the initial value, the system trajectory under
the action of periodic limit control (13) is a closed orbit,
which is the boundary ∂C of the system’s null controllable
region.

Consider that the initial phase of the periodic limit control
signal is 0 and the period is T = 2π/ω. Then, the Poincare
map of the initial state x0 is

P(x0) = eAT x0 + (eA
T
2 − I )A−1B (14)

where A represents the state matrix and B shows the control
matrix of the system. The fixed point of the Poincare map is
obtained by

xp =
(1+ eπσ/ω)
(1− eπσ/ω)

A−1B (15)

The closure of the periodic system is symmetric about the
origin. Hence, the null controllable region can be investigated
by solving the trajectory of the fixed point of the Poincare
map in the half period. The fixed point of Poincare map (xp)
is provided as

x(t, xp) = [eAt
2

1− eπσ/ω
− I ]A−1B, t ∈ [0,T/2] (16)

Thus, the stability radius of the 2nd order unstable system
is explained by calculating the minimum 2-norm of Poincare
mapping fixed point trajectory as

Dc = min
t∈[0,T/2]

||x(t, xp)||2 (17)

C. STABILITY RADIUS OF HIGHLY FLEXIBLE AIRCRAFT
The dynamic model of highly flexible aircraft based on the
finite element method includes the high dimensions mak-
ing is difficult to analyze the system controllability. Hence,
the general low-order system stability radius analysis strategy
is not applicable. In this paper, the null controllable region of
highly flexible aircraft is studied based on the eigenvectors
and eigenvalues.

To compare the dynamic responses of different element
numbers, numerical simulations of literature [47] show that
the 47 states could be used to represent the dynamics of highly
flexible aircraft. When the basic number of finite elements
is 6, then the dynamic system dimension is n = 47. Consider
an n order state matrix A with stable characteristic roots
wi, i = 1, · · ·m, unstable characteristic roots, qi, 1, · · · , k ,
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and k + m = n. The arbitrary state of the system is decom-
posed into the complex field with the geometric multiplicity
of all the eigenvalues of the matrix A equal to algebraic
multiplicity.

x =
n∑
i=1

kiλi (18)

where x ∈ R47 represents the system state, λi ∈ C47 shows
the eigenvector equivalent to the eigenvalues pi = σi + iωi
respectively, and ki ∈ C is component of the system state on
the eigenvector λi. For the complex conjugate, the conjugate
relationship is satisfied by eigenvalues and their correspond-
ing eigenvectors, hence, the system states are in the real linear
space.

Based on the literature [29], it is indicated that for the
n × n matrix A, the right eigenvectors are orthogonal to left
eigenvectors equivalent to various eigenvalues [28], as

ηHj · λi = 0, i 6= j (19)

where ηHj represents the conjugate transpose of the vector ηj.
By using the component form of state, the dynamic system

is transformed into a differential equation of the component of
state along the eigenvector. Therefore, the differential equa-
tion of highly flexible aircraft can be written as

n∑
i

k̇iλi =
n∑
i

k̇iAλi + Bu =
n∑
i

k̇ipiλi + Bu (20)

Pre-multiplying equation (20) by the left eigenvector ηHj of
the unstable eigenvalue, the differential equation of the com-
ponent ki of system state along λj is found by equation (19),
as

k̇j = pjkj +
ηHj B

ηHj λj
u (21)

Hence, by solving the component kj, the radius stability issue
is simplified. For the real eigenvalue qj ∈ R, kj ∈ R, therefore,
the system (21) is a 1st order system. For the complex eigen-
value qj = σj + iωj, σj, ωj ∈ R, kj = xj + iyj, xj, yj ∈ R,
the system (21) is provided as a 2nd order system in real
number field as[

ẋj
ẏj

]
=

[
σj −ωj
ωj σj

] [
xj
yj

]
+

[
bx
by

]
u (22)

where, bx , by denote the real and imaginary sections of the
control input coefficient in the system (21), respectively and
expressed as

bx + iby =
ηTj B

ηTj λj
(23)

The stability of highly flexible aircraft is analyzed from the
component kj of states and the eigenvectors, therefore, the
high-order system is translated into simpler 1st or 2nd order
anti-stable mode. For the high-order system, set the radius of
convergence of the ith unstablemodeDCi . Hence, the stability

radius of the full system is not larger than each sub-model’s
stability radiuses.

Dc ≤ min
i

{
Dc,i

}
(24)

Therefore, the stability radius of highly flexible aircraft
under the control input saturation constraints is obtained.

IV. NUMERICAL SIMULATIONS
When the control system design is not taken into account,
the closed-loop stability boundary of highly flexible air-
craft is associated only with the open-loop features of the
dynamic system and the control signal saturation constraints.
If the specific form of the closed-loop feedback controller
is defined, then the closed-loop stability boundary of highly
flexible aircraft will shrink. After adding the state con-
straint of the aircraft, the null controllable region will further
decrease. In this paper, two control inputs are considered
for highly flexible aircraft, namely, elevator deflection and
engine thrust. In this section, elevator deflection is taken as
an example, considering the saturation constraint of elevator
deflection to study the influence of the control constraints
on the null controllable region of highly flexible aircraft.
By applying the method of Newmark α, setting the step size
in the simulation as 1t = 0.025s and limiting the spectral
radius to ρ∞2 = 0.99, numerical simulations are performed
based on the linear model.

A. STABILITY BOUNDARY OF HIGHLY FLEXIBLE AIRCRAFT
WITH CONTROL SATURATION |δe| ≤ 10◦

By setting the highly flexible aircraft to fly at a speed
of 12.58 m/s at sea level with a 0 kg payload, the stability
boundary is investigated in terms of the equilibrium state.
To increase the stability of the system, a feedback controller
is designed based on a linear-quadratic regulator (LQR). The
stability of the closed-loop control system is studied when
the initial state deviates from the equilibrium state. Then, it is
analyzed whether the stability augmentation system (SAS)
can achieve the controllability of thewhole system under state
constraints and saturation constraints.

Designing LQR control parameters as Q =

diag(λ1, λ2, λ3, λ4, λ5, λ6, · · · , λ26, λ27, · · · , λ47), where
λ1 = λ2 = 10, λ3 = λ4 = λ5 = 1, λ6 = · · · = λ26 =

0.2, λ27 = · · · = λ47 = 0.01,R = diag(1, 5), the feedback
control matrix K2×47 is obtained as

K =
[
−1.8495 −4.8728 9.9486 57.6156
0.0993 0.0208 −0.0369 −0.2349

· · · 0.9881 0.0082 0.0337 −0.0060
· · · 0.0689 −0.0002 −0.0027 0.0007

· · · −910.8005 189.5156 −36.8356 −0.2829
· · · 0.0052 −0.0242 0.0804 0.0001

· · · −0.0814 −8.0881 0.0004 2.9873
· · · −0.0141 0.0002 0.0000 −0.0117

· · · 0.0028 0.2836 −0.0835 8.0933
· · · −0.0000 −0.0000 −0.0141 −0.0002
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· · · 910.8103 189.5135 36.7728 −0.0081
· · · −0.0052 −0.0242 −0.0804 −0.0001

· · · 0.0295 −0.0077 0.1340 0.7552
· · · −0.0027 −0.0008 0.0001 0.0005

· · · 1.3590 0.0661 0.7096 0.3370
· · · 0.0006 0.0001 0.0006 −0.0000

· · · −0.0066 0.2737 −0.2254 −0.0005
· · · −0.0000 0.0007 0.0001 0.0000

· · · 0.2773 0.0002 0.0065 0.2735
· · · 0.0008 0.0000 0.0000 0.0005

· · · 0.2250 −0.0662 0.7099 −0.3367
· · · −0.0000 −0.0000 0.0006 0.0000

· · · −0.1340 0.7552 −1.3590
· · · −0.0000 0.0005 −0.0006

]
(25)

In this paper, the saturation constraint of the elevator
deflection of highly flexible aircraft is considered. In general,
a relaxed constraint range of elevator deflection is more ben-
eficial for designing feedback control to achieve the control
objectives and system stability. To better study the effect of
the saturation constraint on the null controllable region of the
system, this section considerably reduces the saturation con-
straint of elevator deflection to obtain the strictly convergent
null controllable region. The trajectory of the initial state from
this region will also tend to be stable over a finite time when
the saturation constraint is relaxed.

Let the saturation constraint of the elevator deflection be
|δe| ≤ 10◦. Considering the airspeed and pitch angle as
objects reflecting the long-period mode, the influence of
the amplitude of the two state variables deviating from the
equilibrium state on the system’s controllability is investi-
gated. Based on the technique for determining the stability
boundary, the convergence region of the system under the
stability augmentation system (23) in the equilibrium state is
obtained, as shown in Figure 10.

FIGURE 10. The convergence region of the system under saturation
constraint of |δe| ≤ 10◦.

Figure 10 shows the null controllable region of the airspeed
and increased pitch angle under the saturation constraint
|δe| ≤ 10◦. The area contained in the curve is the conver-
gence region. Based on the initial states (such as the circles
in Figure 10) in this region, the equilibrium state will be

created in the system motion followed by the stability aug-
mentation system effect in a finite time. The initial states from
outside the region (such as the crosses in Figure 10) tend to
diverge after a certain period.

An actual highly flexible aircraft includes restrictions on
the flight states in addition to constraints on the elevator
deflection. Therefore, the null controllable region of the real
system will shrink further. Considering the actual state con-
straints and performance requirements, the main parameters,
such as the angle of attack, speed and thrust, are chosen for
investigation. For this paper, the stall angle of attack is set
to 15◦, which is close to those obtained in reference [52]
(αstall = 15◦) and reference [51] (αstall = 14◦). In addition,
the stall speed is calculated as 6m/s based on the stall angle of
attack. Finally, the constraints of the highly flexible aircraft
are defined as follows:

6m/s < V

−10◦ < α < 15◦

0 < T < 100N (26)

The equilibrium states of the aircraft are considered to be

V0 = 12.58m/s α0 = 2.8◦ θ0 = 2.8◦

δe0 = 4.9◦ T0 = 36.6N (27)

After transformation, the constraints on the control inputs
and the states of highly flexible aircraft can be obtained as

−6.58m/s < 1V

−12.8◦ ≤ 1α ≤ 12.2◦

−14.9◦ ≤ 1δe ≤ 5.1◦

−36.6N < 1T ≤ 63.4N (28)

FIGURE 11. The convergence region under state constraints.

Based on the system convergence domain estimation
and stability radius method and considering the con-
straint of equation (28), the closed-loop stability boundary
under the constraint conditions is obtained by solving the
LMI constraint equations (Figure 11). The colored region
in Figure 11 is the closed-loop stable convergence domain
of the system under the comprehensive consideration of the
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FIGURE 12. Response of aircraft under saturation constraints and state constraints. –––––– 1θ = 5◦,1V = 3m/s; – – – – –
1θ = 5◦,1V = 11m/s; . . . . . . . . . . 1θ = 5◦,1V = 21m/s.
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system thrust constraint and the state constraints (28). The
dashed line is the lower bound of the closed-loop stable
boundary equivalent to each state constraint of the highly
flexible aircraft, and the solid line represents the upper bound
of the closed-loop stable boundary corresponding to each
state constraint. For the initial values of the velocity and pitch
angle limited to the colored domain, the transient response
of highly flexible aircraft tends to stabilize in a finite time.
In contrast, for an initial value outside the green domain,
the transient response tends to diverge under the stability
augmentation system.

Based on Figure 11, the colored region is the stability
boundary of the closed-loop system. The convergence region
under the state constraints and input constraints will shrink
substantially considering a highly flexible aircraft system
with practical significance. To verify this closed-loop stability
region, this section chooses the initial states1θ = 5◦,1V =
3m/s,1θ = 5◦,1V = 11m/s and 1θ = 5◦,1V = 21m/s.
The initial value of1V = 3m/s is limited to the convergence
region, and the initial value of 1V = 11m/s exceeds the
case with a constraint of 1α = 12.2◦. When the initial value
is 1V = 21m/s, the case with the constraints of unsta-
ble eigenvalues and inputs will be active. Then, the numer-
ical simulations operate on the linear model. The output
responses under the stability augmentation system are shown
in Figure 12.

Figure 12 shows the motion responses of the highly flex-
ible aircraft in three initial states. Figure 12 (h) shows the
change in the elevator deflection angle under the saturation
constraint. The flight state of the highly flexible aircraft is
stable, and all the state responses meet the constraint require-
ments when the initial state is 1θ = 5◦,1V = 3m/s. The
aircraft can reach the equilibrium state under the action of the
controller when the initial state is 1θ = 5◦,1V = 11m/s.
However, the angle of attack exceeds the upper bound during
the motion and no longer meets the performance require-
ments. When the initial state is 1θ = 5◦,1V = 21m/s,
the region diverges after a certain period. Then, the controller
can no longer ensure the stability of the system under the state
constraints and saturation constraints.

In conclusion, the simulations of Figure 12 confirm the
effectiveness of the obtained closed-loop stability boundary
in terms of the proposed technique. The influence of the
initial variables, such as the pitch angle and velocity, on the
null controllability region of the aircraft system is shown.
Constraint requirements for the initial state increments of
highly flexible aircraft are proposed.

B. STABILITY BOUNDARY OF HIGHLY FLEXIBLE AIRCRAFT
WITH CONTROL SATURATION |δe| ≤ 20◦

Given that the saturation constraint of the elevator
|δe| ≤ 10◦ is strictly conservative, in this section, the
saturation constraint is set to 20◦ to further study the effect
of the relaxed elevator deflection constraint on the conver-
gence region of highly flexible aircraft. When the state con-
straints and other control input constraints are unchanged, the

FIGURE 13. The comparison of convergence domains between |δe| ≤ 10◦
and |δe| ≤ 20◦.

closed-loop stable convergence domain of the system is
solved considering the LQR feedback control under the
saturation constraint |δe| ≤ 20◦. The comparison of the
convergence domain between the constraint conditions |δe| ≤
10◦ and |δe| ≤ 20◦ is provided in Figure 13.
In Figure 13, the black solid line represents the closed-loop

stability boundary under the single constraint |δe| ≤ 10◦, and
the orange region is the strict convergence domain satisfying
all constraint conditions under the constraint |δe| ≤ 10◦.
The black dashed line shows the convergence domain under
the single saturation constraint |δe| ≤ 20◦, and the blue
region is the strict convergence domain meeting all constraint
circumstances under the constraint |δe| ≤ 20◦.
In Figure 13, the black solid line is the closed-loop sta-

ble boundary under the constraint |δe| ≤ 10◦, and the
black dashed line in the figure is the upper part of the
closed-loop stability boundary under the constraint |δe| ≤
20◦. When the saturation constraint of the elevator is relaxed
to |δe| ≤ 20◦, the null controllable region of the sys-
tem significantly increases, and the closed-loop convergence
domain completely includes the domain under the constraint
|δe| ≤ 10◦. Considering state constraints such as airspeed and
angle of attack and control input constraints such as elevator
deflection and engine thrust, the closed-loop stable conver-
gence domain of highly flexible aircraft shrinks substantially.
Figure 13 indicates that the orange region of |δe| ≤ 10◦ is
completely surrounded by the blue region of |δe| ≤ 20◦.
The constraint condition of the angle of attack imposes a
higher requirement on the increasing speed of highly flexible
aircraft and defines the upper bound of the speed increment
in the equilibrium state. Simultaneously, it is observed that
when the saturation constraint on the elevator is relaxed,
the lower bound of the speed increment is broadened from
the blue dashed line to the pink dashed line. For both cases of
|δe| ≤ 10◦ and |δe| ≤ 20◦, the lower bound of the null
controllable regions is confirmed by the stall speed.
To verify the closed-loop stability region of |δe| ≤ 10◦

and |δe| ≤ 20◦, this section chooses the initial state
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FIGURE 14. Comparison of response between |δe| ≤ 10◦ and |δe| ≤ 20◦. –––––– |δe| ≤ 10◦; – – – – – |δe| ≤ 20◦.
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1θ = 10◦,1V = 8m/s. The simulation responses are
provided in Figure 14. According to the simulation figures,
when the saturation constraint of the elevator deflection is
|δe| ≤ 20◦, the aircraft state can be guaranteed to converge to
the equilibrium state, and the performance constraints are met
by all the states and the control trajectory in the whole motion
procedure, which is consistent with the results in Figure 13.
Focusing on the saturation constraint |δe| ≤ 10◦, the motion
process of the aircraft gradually diverges, indicating that the
constraints on the actuator greatly influence the controllabil-
ity of the system.

When the actuator dynamics are considered, the saturation
constraint may be defined for the state derivative (rate limit).
Research on this case is very important. To analyze the con-
straint for the state derivative, the stability boundary has been
studied under varying input rates. The related research pro-
cess is based on literature [54]. The research shows that the
elevator rate can directly affect the controllability of highly
flexible aircraft. When the rate of change of the elevator is
too great, the aircraft system may not be able to stabilize in a
finite time.

C. STABILITY BOUNDARY INFLUENCED BY DAMPING
Unlike conventional aircraft, a structural flexibility of
|δe| ≤ 10◦ brings unique features to highly flexible aircraft,
affecting system controllability and performance. It is essen-
tial to theoretically analyze the influence of flexible parame-
ters on the stability boundary [6]. In this section, the damping
factor is chosen as the research object to analyze its effect on
the stability boundary of highly flexible aircraft. The damping
factor is the coefficient between the damping and stiffness
matrix in the equation C = cK , where C , c and K are
the damping matrix, damping factor and stiffness matrix,
respectively. Considering that Equation (28), the constraint
condition, remains unchanged and selecting damping factors
of c = 0.02 and c = 0.04, the closed-loop stable convergence
domain of the system is determined under the elevator con-
straint |δe| ≤ 10◦ based on the stability augmentation system
in this section. The comparison of the convergence domains
for c = 0.02 and c = 0.04 is provided in Figure 15.

In Figure 15, the black solid line represents the closed-
loop stability boundary corresponding to the damping factor
c = 0.02, and the green region is the strict convergence
domain that satisfies all constraint circumstances with the
damping factor c = 0.02. The black dashed line shows
the convergence domain equivalent to each state constraint
condition with the damping factor c = 0.04, and the orange
region is the strict convergence domain meeting all constraint
circumstances with the damping factor c = 0.04.
The black line represents the stability boundary of the

system corresponding to the damping factors c = 0.02 and
c = 0.04 without considering the state constraints. The
boundary is related only to the zero-pole position, the con-
trol input saturation constraint, and the LQR control design.
Therefore, the closed-loop stable boundary reflects the essen-
tial characteristics of the system. Compared with c = 0.02,

FIGURE 15. The comparison of stability boundary between c = 0.02 and
c = 0.04.

FIGURE 16. The comparison of stability boundary between rigid aircraft
and flexible aircraft.

the null controllable region of c = 0.04 is much larger. The
green null controllable region of c = 0.02 is completely
surrounded by the orange region of c = 0.04. This shows
that when the damping factor of a highly flexible aircraft
is smaller, there will be higher constraint requirements on
the velocity and pitch angle. If the allowable increment
of the velocity and pitch angle exceeds the controllable range,
the motion process of the aircraft will tend to diverge.

Figure 15 shows that considering the actual state con-
straints of highly flexible aircraft, the stability boundary of
the damping factor c = 0.02 is smaller than the boundary
of the damping factor c = 0.04. It is indicated that the
convergence domain will be reduced when the structural
flexibility of the aircraft is more obvious, bringingmore strin-
gent requirements for the aircraft state deviation and greater
difficulty to the control system design.

D. COMPARISON OF STABILITY BOUNDARY BETWEEN
RIGID AND FLEXIBLE AIRCRAFT
To further compare the stability boundaries of rigid and flexi-
ble aircraft, the rigid aircraft model is obtained by eliminating
the flexibility from the highly flexible aircraft model in this
paper, and the stable boundary is solved for both aircraft.
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FIGURE 17. Comparison of response between rigid aircraft and flexible aircraft. –––––– Highly flexible aircraft;
– – – – – Rigid aircraft.

The state constraints and control input constraints remain
unaffected. The closed-loop stable convergence domain of the
system is calculated considering the LQR feedback control in
this paper. The LQR gains for the rigid aircraft are obtained
directly by a partition of the gain matrix of equation (25).
With the first 5 orders of equation (25), which reflect the rigid
motion, the dimension of the control matrix Krigid ∈ R2×5 is
chosen. A comparison of the stability boundaries of the rigid
aircraft and highly flexible aircraft is shown in Figure 16.

In Figure 16, the green area is the strict convergence
domain satisfying all the constraints of the highly flexible
aircraft. The gray region is the strict convergence domain
meeting all the constraints of the rigid aircraft. According
to the calculation results, the convergence domain of the
rigid aircraft is much wider than that of the highly flexible
aircraft. Without considering constraints such as state con-
straints, the system convergence domain completely contains
the closed-loop stability region of the highly flexible aircraft.
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Therefore, the system convergence domain of the rigid air-
craft is not shown in Figure 16. According to Table 3, the
rigid aircraft is open-loop stable in the long-period mode for
all payload values. Therefore, the convergence domain of
the rigid aircraft without state constraints is infinite. When
performance constraints such as system states are taken into
account, the convergence domains of the rigid-body aircraft
and highly flexible aircraft are shown in the color rendering
region in Figure 16. For the rigid aircraft, the constraint on
the angle of attack has a specific constraint for the speed and
pitch angle. After considering the state constraints, the over-
all stability boundary of the rigid aircraft still completely
contains the null controllable region of the highly flexible
aircraft.

To further verify the system convergence domain of the
highly flexible aircraft and rigid body aircraft, simulations
are performed on the two aircraft with the initial state
1θ = 8◦,1V = 2m/s, and the corresponding response
curves are obtained as shown in Figure 17. According to
the simulation diagrams, the response curves of the rigid
body aircraft are flat and can converge to the equilibrium
state. Moreover, the states and control trajectories satisfy all
constraints in the whole motion process, which is consistent
with the results in Figure 16. The motion process gradu-
ally diverges for the highly flexible aircraft. The flexibility
influences the null controllable region of the system, neg-
atively impacting the controllability of the highly flexible
aircraft.

The thrust constraint has an important effect on the stability
boundaries of the highly flexible aircraft. The closed-loop
stability boundary under the constraint conditions is obtained
by solving the LMI constraint equations, which include
the thrust constraint. Under the LQR stability augmenta-
tion system, the numerical simulations in this paper do not
reach the upper limit of 100 N. However, the thrust con-
straint is still an important factor in determining the stability
boundary.

V. CONCLUSION
The dynamic system of highly flexible aircraft gener-
ates unstable modes by increasing the payload. Therefore,
the controller is required to meet the closed-loop stability
condition. Because of the amplitude saturation constraint in
the control signal, the global stability of the system may not
be ensured. In this paper, the open-loop characteristics of the
system are analyzed, and a closed-loop system is designed
based on an LQR. The stability boundary of the closed-loop
system is quantitatively determined under the control sig-
nal saturation constraint. The theoretical analysis concludes
that the stability boundary is defined by the position of the
unstable pole in the system’s open loop, the left eigenvector
equivalent to the unstable pole, the B matrix of the equation,
and the margin of control. Moreover, the stability radius is
utilized to quantitatively analyze the local stability of the
system.

Considering the fast time-varying dynamic features of
highly flexible aircraft, the flexibility characteristics will
certainly influence the control design of the aircraft. When
saturation constraints exist in the actuator of the system,
the stability boundary of the system will decrease further.
Moreover, the degree of reduction is associated with the
amplitude of the control input saturation constraint and the
position of the unstable pole.

Ultimately, the effect of the controller saturation constraint
on the closed-loop stability boundary is obtained quantita-
tively through numerical analysis. Given the dynamic fea-
tures of a highly flexible aircraft with unstable poles and the
limitation of the elevator deflection angle, the closed-loop
stability boundary based on the LQR controller is investigated
alongwith the state constraints. The effect of the damping fac-
tor on the null controllable region of the aircraft is analyzed,
and the convergence regions of the highly flexible aircraft
and rigid aircraft are compared. The simulations indicate that
the convergence domain will be reduced as the structural
flexibility of the aircraft increases, bringing more stringent
requirements for the aircraft state deviation and greater dif-
ficulty for the control system design. In summary, our study
can be utilized as a reference for the initial design and analysis
of aircraft, which requires the evaluation of stability and con-
trollability. Future interesting topics include the optimization
design of dynamic modeling and integrated control for highly
flexible aircraft [45], [55], [56].
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