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ABSTRACT Physical Unclonable Functions (PUFs) have gained a great interest for their capability to
identify devices uniquely and to be a lightweight primitive in cryptographic protocols. However, several
reported attacks have shown that virtual copies (mathematical clones) as well as physical clones of PUFs
are possible, so that they cannot be considered as tamper-resistant or tamper-evident, as claimed. The
solution presented in this article is to extend the PUFs reported until now, which are only physical, to make
them Behavioral and Physical Unclonable Functions (BPUFs). Given a challenge, BPUFs provide not
only a physical but also a behavioral distinctive response caused by manufacturing process variations.
Hence, BPUFs are more difficult to attack than PUFs since physical and behavioral responses associated to
challenges have to be predicted or cloned. Behavioral responses that are obtained from several measurements
of the physical responses taken at several sample times are proposed. In this way, the behavioral responses can
detect if the physical responses are manipulated. The analysis done for current PUFs is extended to allow for
more versatility in the responses that can be considered in BPUFs. Particularly, Jaccard instead of Hamming
distances are proposed to evaluate the similarity of behavioral responses. As example to validate the proposed
solution, BPUFs based on Static Random-Access Memories (SRAM BPUFs), with one physical and one
behavioral responses to given challenges, were analyzed experimentally using integrated circuits fabricated
in a 90-nm CMOS technology. If an attacker succeeds in cloning the physical responses as reported, but
does not attack the way to obtain the behavioral responses, the attacker fails on SRAM BPUFs. The highest
probability to succeed in cloning the behavioral responses with a brute-force attack was estimated from
experimental results as 1.5 · 10−34, considering the influence of changes in the operating conditions (power
supply voltage, temperature, and aging).

INDEX TERMS Hardware security, multimodal biometrics, physical unclonable functions, SRAM.

I. INTRODUCTION
The protection of information is of crucial importance, espe-
cially when dealing with sensitive data. To achieve a consid-
erable degree of protection, information security has to be
conceived from the design of the cryptographic algorithms
until its implementation into cryptographic circuits [1]. It is
at this time when the creation of a secret key, its storage, and
use are especially critical. Military communications are an
example of critical applications in which the highest level
of security is required. Tampering, which consists in perma-
nently manipulating an entity with the objective of carrying
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out an unauthorized operation, should be particularly avoided
in the case of cryptographic circuits [2]. Multiple solutions to
improve anti-tampering were proposed, most of them focused
on specific watermarking designs that prove the intellectual
property rights of the producers and owners of the chips [3].
Other solutions focus on generating tamper evidences and
tamper resistances against attacks [4].

In 2002, Pappu et al. introduced a new type of
tamper-resistant one-way functions called physical one-way
functions [5], which were later named physical unclonable
functions (PUFs) after the article of Gassend et al. in the same
year [6]. A physical unclonable function (PUF) is a phys-
ical construction that exploits the variations produced dur-
ing the manufacturing process to generate unique responses
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(or outputs) to given challenges (or inputs). Due to the uncon-
trollable nature of manufacturing process variations, each
manufactured instance of a PUF can be identified conve-
niently by the unique challenge-response pairs of the PUF.
Therefore, if the variations are not controllable, physical
unclonability results from the impossibility to create two
instances that, given the same challenges, provide similar
responses. The tamper resistance provided by PUFs are based
on the impossibility to modify a manufactured PUF so that it
could continueworking and providing responses in a different
way to its intrinsic nature.

Some of the PUFs that have been studied in greater depth
are the electronic PUFs, and among them, those which pre-
dominate in the state of the art are memory-based (such
as PUFs based on static random access memories, SRAM
PUFs) [7] and delay-based (such as the so-called arbiters [6]
and PUFs based on ring oscillators, RO PUFs [8]). In all of
them, challenges and responses are binary. The challenges are
the binary vectors that address the set of two theoretically
identical constructions that are the basic unit of the PUF.
For example, the challenges of SRAM PUFs address the bit
memory cells considered; the challenges of RO PUFs address
the pairs of ring oscillators to compare; the challenges of
arbiter PUFs address the pairs of paths to evaluate, and so on.
The achievement or not of a physical condition is evaluated
to obtain a binary response.

If the relationship between the number of challenge-
response pairs with the number of PUF basic units (for exam-
ple, the delay components in arbiter PUFs or thememory cells
in SRAM PUFs) is small, the PUFs are called weak PUFs,
while those that provide a large relationship are called strong
PUFs. Similar to the definition of a one-way function in cryp-
tography, which can be seen in [9], it is considered that a PUF
is infeasible to invert (in an average-case sense). That is, any
feasible algorithm that tries to find the challenges associated
to the responses may succeed only with negligible probability
(where the probability is taken uniformly over the choices of
the challenges and the algorithm’s coin tosses). Due to this
fact, mathematical unclonability is another property of PUFs
because a virtual copy of the PUF (its challenge-response set)
is infeasible to find.

The properties of PUFs have been exploited to identify
devices uniquely (like a biometry for devices), which in turn
have been employed in several lightweight authentication
protocols [7], [8], [10], [11]. Concerning challenges and
responses, human biometrics is similar to weak PUFs, since,
for example, humans have at most 10 different fingerprints in
their hands.

However, several attacks have been reported on PUFs,
which call into question the security of the proposals made to
date [12]. The work in [13] shows that machine learning tech-
niques, based on Artificial Neural Networks and Evolution
Strategies, applied to challenge-response pairs and additive
linear models are successful to generate virtual copies of sev-
eral arbiter and ring oscillator PUFs. More recently, the work
in [14] proposes a general framework for machine learning

attacks on strong PUFs and presents two Artificial Neural
Network structures to approximate their challenge-response
pairs, particularly of multiplexer-based PUFs and XOR
arbiter PUFs. Regarding memory-based PUFs, there have
been shown that bias [15] as well as spatial correlation [16]
exist in many SRAM PUF conventional architectures, which
makes them predictable (thus mathematically clonable) to
some extent. In addition, using optical semi-invasive attacks
from the chip backside (photonic emission analysis, laser
fault injection, and optical contactless probing), the work
in [17] demonstrates that the responses generated by a PUF
can be predicted, manipulated and directly probed with-
out affecting the behavior of the PUF, so that they cannot
be considered as tamper-evident or tamper-resistant. This
is demonstrated also in [18] by using laser stimulation for
semi-invasive, backside, single-trace readout of logic states
in SRAMs. Moreover, the works in [19], [20] show that
SRAM PUFs can be not only fully characterized and emu-
lated but also cloned physically. They used a Focused Ion
Beam circuit edit and produced a fully-functional second
instance with identical responses of a first instance SRAM
PUF. Moreover, the works in [21] and [22] show that hybrid
strategies that combine side-channel attacks with machine
learning techniques based on Evolution Strategies are suc-
cessful even if the attacker does not have direct access to the
challenge-response pairs.

The above mentioned attacks reveal the need to improve
the security of reported PUFs. The solution proposed in this
article is to add another layer of security by making PUFs
multimodal in the same way as multimodal biometric sys-
tems improve the security of unimodal biometric systems
against attacks. Multimodal biometrics employs two or more
biometric characteristics of the same individual instead of a
single one. In the same line, the PUFs proposed herein allows
for multimodal authentication, thus increasing the security of
the PUFs reported till now, which only allow for unimodal
authentication.

Unimodal biometric systems usually employ physical
innate human features such as fingerprints, vein patterns etc.
Recently, multimodal biometric systems also use behavioral
features such as the electric activity generated by the heart
and measured by electrocardiograms or the blood volume
change in veins measured by photoplethysmography. Behav-
ioral biometrics is interesting because it provides proofs of
liveness. That is, they can detect from several measurements
taken at several sample times if the subject is alive or lifeless
(the electric activity generated by the heart changes or not
over time, the blood volume in veins changes or not over
time, and so on). This avoids typical attacks at unimodal
physical systems like fake silicone or gelatin fingerprints in
the case of fingerprint recognition. In the same line, the mul-
timodal PUFs proposed herein exploit inherent behavioral
and physical features of the manufactured devices that are
caused by manufacturing process variations. Hence, they will
be referred to as BPUFs (Behavioral and Physical Unclonable
Functions).
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FIGURE 1. Parallelism between electronic BPUFs (on the right) and
multimodal biometric systems based on veins (on the left).

The main features of the proposed BPUFs are:

• They exploit the variations produced during the man-
ufacturing process to generate not only one unique
response but two or more unique responses to one
given challenge. Hence, while a PUF is defined by
its challenge-response pairs, a BPUF is defined by its
challenge-response tuples (triplets in the simplest case).

• A BPUF provides not only a physical response that
results from one measurement taken at a given sample
time, but also a behavioral response that results from
several measurements taken at several sample times.

• The attacks to BPUFs are more complex than to PUFs
since, on the one side, more responses have to be pre-
dicted or cloned for an arbitrary challenge and, on the
other side, the behavioral responses proposed can detect
if the physical responses are alive (they show changes
over time) or lifeless (they are always the same). In this
sense, we will say that the proposed BPUFs are able to
detect liveness.

• The constructions currently employed for electronic
PUFs can be used in general for BPUFs. For example,
BPUFs based on SRAMs are illustrated in detail in this
article.

Figure 1 illustrates the parallelism between electronic
BPUFs and multimodal biometric systems that analyze the
veins as challenges and provide, as a static response, a result
from analyzing the vein patterns, and, as a dynamic response,
a result from analyzing the change over time in the blood
volume of the veins.

The article is structured as follows. Section II summarizes
the main properties and metrics widely employed in current
unimodal PUFs. Section III introduces BPUFs, describing
their features and the most adequate metrics to evaluate them.
Section IV describes how BPUFs increase security compared
with unimodal PUFs. SectionV provides experimental results
obtained from SRAM BPUFs that confirm the models and
proposals given in Sections III and IV. Finally, conclusions
are given in Section VI.

II. BACKGROUND
An instance of a unimodal PUF provides a unique response
vector ux to a given challenge vector x. Binary challenges and

responses are used in the most well-known PUFs so that ux
and x are considered herein as vectors with 1’s and 0’s. Since
several measurements can be made of the responses, the i-th
measurement of the response ux will be denoted herein as uix .
A PUF should feature high reproducibility. It is achieved

if the response vectors of a given PUF instance measured
multiple times for the same challenge vector are very similar.
A PUF must also feature high uniqueness, which means that
for the same challenge vector, the response vectors of two
different instances must be very dissimilar regardless the
measurement. In addition, the response vectors of a PUF
must be unpredictable because there should be no method
to predict the response provided by an instance to a new
challenge.

A. RESPONSE SIMILARITY: HAMMING DISTANCE
Similarity between PUF responses is measuredwith theHam-
ming distance. The Hamming distance (HD) between two
binary vectors of the same length, N , is calculated as the
number of changes that are needed to convert one vector into
the other. It is calculated by XORing the bits of the vectors as
follows:

HD(u, v) =
N−1∑
b=0

(u[b]⊕ v[b]) (1)

where u[b] represents the b-th bit of the vector u.
The fractional Hamming distance (FHD) is calculated as

FHD = HD/N .
Hamming distances evaluated between responses of the

same instance to the same challenges at different mea-
surements (genuine population) are called intra Hamming
distances. Intra Hamming distances of a PUF instance with
perfect reproducibility are zero. However, perfect repro-
ducibility does not happen since there are always some
response bits that change from one measurement to another
(known as flipping bits), which generates noise.

Hamming distances evaluated between responses of differ-
ent instances to the same challenges (impostor population)
are called inter Hamming distances. If the number of 1’s and
0’s in the PUF responses are the same (unbiased responses)
and their positions are perfectly random, the average inter
FHD is 0.5, as will be seen in Section III.

B. AUTHENTICATION BASED ON PUFs
Authentication of PUF-based systems requires two opera-
tion phases: registration and verification. During registration,
a measurement of the challenge-response set is taken. Let
us denote the registered response to the challenge x as u0x .
During verification, another measurement of the response,
uix is taken. Ideally, the responses of genuine PUF instances
are similar to the registered response due to reproducibility
property and impostor responses are very different due to
uniqueness property. Hence, the instance is verified if the
distance (considered as the number of errors) between the
responses is below a threshold, HD(uix , u

0
x) ≤ HD

max .
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In [23], Bösch et al. modeled errors in the PUF response
as a random variable E of N independent bits that behaves
as a binary symmetric channel. This is demonstrated experi-
mentally in [24] and [25] for the case of SRAM PUFs. The
probability distribution selected to model the occurrence of
exactly t bit errors in theN bits ofE is a binomial distribution,
as follows:

P (E = t) =
(
N
t

)
pte(1− pe)

N−t (2)

where pe is the bit error probability, which is the same for a
0 that changes to 1, and for a 1 that changes to 0 (because it
is assumed a symmetric model).

Under these circumstances, the probability that the genuine
response contains more than HDmax errors (false rejection
due to maximum errors threshold) is given by:

PG
(
E > HDmax

)
= 1−

HDmax∑
i=0

(
N
i

)
pieG(1− peG)

N−i (3)

The bit error probability in the genuine responses, peG,
can be estimated experimentally as the bit error rate (BER)
considering genuine responses or as the maximum intra FHD
(if the worst case is considered). The bit error rate (BER)
in a set of R responses, {u0x , . . . , u

R−1
x }, is calculated as the

average ratio of the number of bit errors in the total number
of bits, N . The BER represents the average FHD (FHD) as
follows:

BER(u0x , . . . , u
R−1
x ) = FHD(u0x , . . . , u

R−1
x )

=
2

R (R− 1)

R−2∑
i=0

R−1∑
j=i+1

HD(uix , u
j
x)

N
(4)

BER is normalized by the number of FHDs that can be
calculated using R responses, which is equal to R · (R− 1)/2.
Once peG is estimated, the threshold HDmax can be

selected, using Equation 3, so as to ensure a small false
rejection rate, PG (E > HDmax) < ε, with ε = 10−6, for
example.

III. PROPOSAL OF BPUFs
A BPUF generates two or more reproducible, unique and
unpredictable responses to given challenges, exploiting
the variations produced during the manufacturing process.
Hence, BPUFs evaluate more distinctive features than uni-
modal PUFs. In addition, the distinctive features evaluated
are not only physical but also behavioral.

As summarized in the Introduction, electronic PUFs con-
tain a set of units made of two theoretically identical con-
structions. SRAM PUFs contain a set of memory cells (each
cell with two theoretically identical inverters), RO PUFs
contain a set of RO pairs (each pair with two theoretically
identical ROs), and so on. The physical condition evaluated
in the memory cell of an SRAM PUF is if one of the two
theoretically identical inverters wins or not at power up so
as to impose a logic 1 or 0 in the corresponding bit of the
response. In the case of an RO PUF, the bit of the response is

1 or 0 if the difference between the oscillation frequencies of
the first and the second ring oscillators in the pair considered
is positive or negative.

In general, we can say that the b-th bit of the BPUF physical
response at measurement i to a challenge x that addresses the
unit b is:

uix[b] =

{
1 if unit b meets a physical condition
0 otherwise

(5)

In general, the b-th bit of the BPUF behavioral response at
measurement i to a challenge x that addresses the unit b is:

ϑ ix[b] =

{
1 if unit b meets a behavioral condition
0 otherwise

(6)

Concerning behavioral features, let us focus on features
that are evaluated with several measurements of a given
physical response. The b-th bit of the response to a challenge
x associated with a behavioral feature of responses ux at
measurement i is as follows:

ϑ ix[b] =

{
1 if {u1x[b], . . . , u

R
x [b]} meet a condition

0 otherwise
(7)

For example, BPUFs based on ROs can evaluate if the
frequency difference of a pair of ring oscillators is always
positive in several measurements or not. Similarly, BPUFs
based on SRAMs can evaluate if the start-up value of a cell is
always the same in several measurements or not (the start-up
value shows or not bit flipping). In these cases, Equation 7 is
particularized as follows:

ϑ ix[b] =


1 if

R∑
j=1

(
u0x[b]⊕ u

j
x[b]

)
> 0

0 otherwise

(8)

Instead of the challenge-response pairs {x, ux} of uni-
modal PUFs, BPUFs have triplets of challenge-responses
{x, ux , ϑx}. BPUFs are strong or weak if the relationship
between the number of challenge-response triplets with the
number of basic elements are large or small.

The physical conditions usually evaluated in unimodal
PUFs give unbiased responses, that is, responses with the
same number of 1’s and 0’s. The fractional Hamming weight
(FHW ) of a binary vector measures the normalized percent-
age of 1’s and 0’s as follows:

FHW (r) =
1
N

N−1∑
b=0

r[b] (9)

The average FHW of unbiased responses is 0.5 (FHW =
0.5). In order to allow for more versatility, the conditions
considered herein for BPUFs can provide biased responses,
that is, with different numbers of 1’s and 0’s. Without loss of
generality, let us assume that the number of 1’s, M , is equal
or smaller than half of the bits, M ≤ N/2, that is FHW =
M/N ≤ 0.5. This happens to the above commented example
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of flipping bits in SRAM PUFs, which usually are around
10% of the start-up values, thus making FHW ' 0.1 in those
BPUF behavioral responses.

It is known in binary codes that the average FHD between
two independent binary vectors, y and z, is related to the
average FHW, FHW , as follows [26]:

FHD(y, z) = FHW (y)+ FHW (z)

− 2 · FHW (y) · FHW (z) (10)

If the average FHW of both binary vectors isM/N , then:

FHD(y, z) =
2M (N −M )

N 2 (11)

Applying that to the usual unimodal PUF responses with
FHW = 0.5, M = N/2, it results in a FHDinter = 0.5.
In the other side, since biased responses of BPUFs can have,
for example, FHW = 0.1, it can result in a FHDinter = 0.18.
Hence, genuine and impostor distributions analyzed with
Hamming distances, are closer if the responses are biased
than if they are unbiased.

In order to better distinguish between genuine and impos-
tor distributions using BPUF biased responses, a metric based
on Jaccard instead of Hamming distance is proposed in the
following.

A. RESPONSE SIMILARITY: JACCARD DISTANCE
Similarity between BPUF responses is measured with Jac-
card distance (JD). The Jaccard distance between two binary
vectors is calculated as follows:

JD(y, z) =
M01(y, z)+M10(y, z)

M01(y, z)+M10(y, z)+M11(y, z)

=

∑N−1
b=0 (y[b]⊕ z[b])∑N−1

b=0 (y[b]⊕ z[b])+
∑N−1

b=0 (y[b] ∧ z[b])

=

∑N−1
b=0 (y[b]⊕ z[b])∑N−1
b=0 (y[b] ∨ z[b])

(12)

where ∨ represents the OR operation, ∧ the AND operation,
M01(y, z) the number of bits that are 0 in y and 1 in z,M10(y, z)
the number of bits that are 1 in y and 0 in z, and M11(y, z)
represents the number of bits that are 1 in both y and z.

The difference between Jaccard and fractional Hamming
distance (FHD) is that JD does not add M00(y, z) in the
denominator, which represents the number of bits that are 0 in
both y and z.

The numerator in Equation 12 is the Hamming distance
between the two vectors. The denominator in Equation 12
counts the number of 1’s that are only in one of the vectors or
in both. This is equivalent to sum the number of 1’s in each
vector and subtract the number of 1’s in both:

M01(y, z)+M10(y, z)+M11(y, z) = HD(y, z)

+M11(y, z) = HW (y)+ HW (z)−M11(y, z) (13)

Hence,M11(y, z) can be expressed as:

M11(y, z) =
HW (y)+ HW (z)− HD(y, z)

2
(14)

FIGURE 2. Example to illustrate the JD and the FHD of two vectors.

The mathematical relation between JD and FHD can be
found by substituting M11(y, z) as expressed in Equation 14
into Equation 12 and reordering:

JD(y, z) =
HD(y, z)

HD(y, z)+ HW (y)+HW (z)−HD(y,z)
2

JD(y, z) =
2 · FHD(y, z)

FHW (y)+ FHW (z)+ FHD(y, z)
(15)

Hence, while the range of FHD is 0 ≤ FHD(y, z) ≤
minimum(1,FHW (y) + FHW (z)), which can be small if the
FHWs are small, the range of JD is always 0 ≤ JD(y, z) ≤ 1,
independently of the FHWs.

Figure 2 shows an example to illustrate the FHD and JD of
two vectors.

Jaccard distance evaluated between responses of the same
instance to the same challenges at different measurements
(genuine population) is called intra Jaccard distance. Intra
Jaccard distances of a BPUF response with perfect repro-
ducibility are zero. The relation between average intra JD
and BER can be obtained from Equation 15. For example,
if FHW = 0.1 and assuming FHDintra = 0.01, JDintra =
0.095.

Jaccard distance evaluated between responses of different
instances to the same challenges (impostor population) is
called inter Jaccard distance. The relation between average
inter JD and average inter FHD can be obtained from Equa-
tion 15 and Equation 11. Considering two independent binary
vectors y and zwith averageFHW equal toM/N , whose aver-
age FHD is given by Equation 11, their average JD, JDinter ,
can be approximated by 2(N−M )/(2N−M ), which is closer
to 1 as N is greater than M .1 For the same example above,
if FHW = M/N = 0.1, which makes FHDinter = 0.18
(according to Equation 10), JDinter = 0.947. It can be seen in
this example that the distance between genuine and impostor
distributions is longer using JDs (JDinter − JDintra = 0.852)
than FHDs (FHDinter −FHDintra = 0.17), which is better for
authentication purposes.

1The same result to JDinter is obtained applying the expected value of the
Jaccard similarity, M/(2N −M ).
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B. AUTHENTICATION BASED ON BPUFs
Like a multimodal biometric system, which registers physical
and behavioral responses for a given individual, the registered
responses of a BPUF for a challenge vector x are physical
and behavioral, {u0x , ϑ

0
x }. During verification, the distances

between the measured responses {uix , ϑ
i
x} and the registered

ones are calculated. As in multimodal biometric systems,
distances can be combined with several operators to compute
a global distance or individual distances can be considered.
The latter option is considered herein to extend the work
already done in unimodal PUFs that use Hamming distances.

As commented above, Hamming distances are adequate
for unbiased physical responses. Hence, let us maintain the
same condition summarized in Subsection II-B to verify the
BPUF physical responses, that is, if HD(uix , u

0
x) ≤ HDmax ,

the BPUF physical responses are authentic. The security
improvement with BPUFs is that another condition should
be met by the BPUF behavioral responses. Since BPUF
behavioral responses can be biased, our proposal is to use
Jaccard distances for that condition. Thus, a BPUF instance
is verified if the distances of its responses are below selected
thresholds,HDmax and JDmax , that is, ifHD(uix , u

0
x) ≤ HD

max

and JD(ϑ ix , ϑ
0
x ) ≤ JDmax . Since the authentication with

physical responses is well known and was summarized in
Subsection II-B, this subsection is focused on the authenti-
cation with behavioral responses, analyzing the peculiarities
of using Jaccard distances.

According to Equation 12, the numerator of JD(ϑ ix , ϑ
0
x ),

M01(ϑ ix , ϑ
0
x ) +M10(ϑ ix , ϑ

0
x ), measures the number of errors,

eϑ , between ϑ ix and ϑ0
x . In the denominator, M11(ϑ ix , ϑ

0
x )

measures the number of bits that are 1 in both responses,
which are considered as the number of successes, sϑ . Hence,
JD(ϑ ix , ϑ

0
x ) can be expressed as:

JD(ϑ ix , ϑ
0
x ) =

eϑ
eϑ + sϑ

=
1

1+ sϑ/eϑ
(16)

The threshold JDmax is associated with aminimum number
of successes, smin, and a maximum number of errors, emax ,
as follows:

JDmax =
1

1+ smin/emax
(17)

Therefore, JDmax is selected depending on both con-
straints, smin and emax .
Concerning emax , the procedure is like the selection of

HDmax for the physical responses. The value of emax is
selected so as to ensure a small false rejection rate of the
genuine behavioral responses, PG (E > emax) < ε, with
ε = 10−6, for example (like in Equation 3). The bit error
probability of the genuine behavioral responses (like peG in
Equation 3) can be estimated experimentally as the bit error
rate, BER (in Equation 4), considering genuine behavioral
responses, that is, FHDintra of behavioral responses.
Concerning smin, the procedure requires modeling suc-

cesses. The successes of a genuine behavioral response can
be modeled as a random variable S of N independent bits in

which each bit has a bit success probability of psG. Under
these circumstances, the probability that the genuine behav-
ioral response contains less than smin successes (false rejec-
tion due to minimum successes threshold) is given by:

PG (S < smin) =
smin−1∑
i=0

(
N
i

)
pisG(1− psG)

N−i (18)

The bit success probability in the genuine behavioral
responses, psG, can be estimated experimentally as the bit
success rate (BSR) considering genuine behavioral responses.
Similarly to the BER, the bit success rate (BSR) in a set of R
responses, {ϑ0

x , . . . , ϑ
R−1
x }, is calculated as the average ratio

of the number of bit successes in the total number of N bits,
as follows:

BSR(ϑ0
x , . . . , ϑ

R−1
x )

=
2

R (R− 1)

R−2∑
i=0

R−1∑
j=i+1

M11(ϑ ix , ϑ
j
x)

N

=
2

R (R− 1)

R−2∑
i=0

R−1∑
j=i+1

∑N−1
b=0 ϑ

i
x[b] ∧ ϑ

j
x[b]

N
(19)

Once psG is estimated, the threshold smin is selected so as
to ensure a small false rejection rate of the genuine behavioral
responses, PG

(
S < smin

)
< ε, with ε = 10−6, for example.

From smin and emax , JDmax is calculated.

IV. SECURITY IMPROVEMENT WITH BPUFs
In general, BPUFs are more difficult to attack than PUFs
since given a challenge, not only the physical response but
also the behavioral response associated to that challenge
have to be predicted or cloned. In addition, if the behav-
ioral response is obtained from measurements of the physical
response, as shown in Equation 7, the behavioral response can
detect if the physical response has been manipulated. This is
detailed in the following.

A. RESISTANCE TO REPORTED ATTACKS
The reported attacks based on machine learning tech-
niques to generate virtual clones of PUFs employ static
challenge-response functional relationships to approximate
the challenge-response pairs [13], [14]. In fact, Artificial
Neural Networks with feed-forward architectures and static
neural units are static approximators [27]. If static approxima-
tors are used to replace PUFs, the physical responses provided
for the challenges do not change over time. In this sense,
we can say that these so cloned PUFs are lifeless.

The physical attacks reported to generate physical clones
of PUFs fix the physical responses to the registered
ones [17], [18]. Hence, the physical responses provided for
the challenges do not change over time, as in the virtual
clones above. Again, we can say that these so cloned PUFs
are lifeless.

If the behavioral responses are obtained from several
measurements of the physical responses taken at several
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sample times, as shown in Equation 7, the behavioral
response can detect if the physical responses are alive (they
change over time) or lifeless (they are always the same).
In particular, if the behavioral responses are obtained as
shown in Equation 8, and the physical responses are provided
by the above mentioned virtual or physical clones, all the
bits of the resulting behavioral responses are zero because
fake physical responses never flip. As will be explained in
the following subsection and confirmed experimentally in
Section V, behavioral responses must have a minimum num-
ber of bits equal to 1 to be accepted as genuine. A behavioral
response with all the bits zero is rejected as impostor. In this
sense, we can say that the behavioral responses of BPUFs are
able to detect liveness.

In the other side, the physical cloning attacks reported
in [19], [20] would have a low success rate in the proposed
BPUFs since cloning physical responses that are not static but
change over time (flip) is much more difficult.

The hybrid attack proposed in [21] and [22] uses the
information provided by the response bits that sometimes
flip as an indirect way to evaluate which virtual copies of
the PUF under attack are the most accurate, i.e., provide the
best static challenge-response pairs. They apply Evolution
Strategies to select the best models as parents for the next
generation and repeat this process to improve the accuracy
of the children models. The work in [22] demonstrates how
these attacks, named as reliability-based machine learning
attacks, are successful to break several protocols where the
challenge-response pairs are not available to the attacker,
but the obfuscated data managed leak information about
the flipping or unreliable bits in the physical responses.
In the proposed BPUFs, the attacker should not know the
challenge-response triplets that define the BPUF. This means
the attacker should not have information not only about the
physical responses but also about their reliability, which is
associated with the behavioral response. Reliability-based
machine learning attacks cannot be applied to BPUFs since
the attacker should not know reliability information.

The protocols attacked in [22] cannot be used with BPUFs
since they leak information about behavioral responses.
The behavioral responses cannot be used like the physical
responses to generate helper data that obfuscate an encoded
secret by XORing it with the behavioral response, since
information about the secret is leaked from those helper data
(due to the bias of behavioral responses). Other protocols and
algorithms should be used with BPUFs but they are outside
the scope of this work. Prior to develop particular protocols,
the following subsection analyzes the resistance of BPUFs
to false acceptance attacks or brute-force attacks, since these
attacks are generic for any protocol.

B. RESISTANCE TO FALSE ACCEPTANCE ATTACKS
As commented in Subsection III-B, the authentication thresh-
olds HDmax and JDmax are selected to guarantee that the
BPUF will not suffer from false rejection except with a
negligible probability. However, another consideration to take

into account is the false acceptance, that is, the probability
that an attacker could be authenticated as genuine. Let us
assume a scenario in which the attacker had been successful
in discovering the physical response of the BPUF instance,
so that he/she is able to meet HD(uix , u

0
x) ≤ HDmax . Let us

also assume that it is not checked if the behavioral response
meets or not Equations 7 or 8. That is, the attacker can
try a behavioral response without relation with the physical
responses. Even in that case, the attacker should also have to
provide a behavioral response, ϑ ix , able to meet JD(ϑ ix , ϑ

0
x ) ≤

JDmax .
Let us assume that the registered behavioral response of N

bits, ϑ0
x , had M bits equal to 1, i.e., HW (ϑ0

x ) = M , and that
the attacker knows N , M , and JDmax (otherwise the attack is
further complex). The attacker tries to authenticate with an
N -bit response, ϑ ix , that have n bits equal to 1, HW (ϑ ix) =
n. In this case, let us assume that the attacker succeeds in
choosing sϑ bits equal to 1, that is M11(ϑ ix , ϑ

0
x ) = sϑ .

It can be deduced that the total number of errors, eϑ , of this
authentication trial is given by the number of 1’s wrongly
selected, that is M10(ϑ ix , ϑ

0
x ) = n − sϑ , plus the number of

unselected 1’s, M01(ϑ ix , ϑ
0
x ) = M − sϑ (assuming M ≥ sϑ ).

Hence, the total number of errors is:

eϑ = M + n− 2 · sϑ (20)

The attack is successful if:
1

1+ sϑ
M+n−2·sϑ

≤ JDmax

sϑ ≥ (M + n) ·
1− JDmax

2− JDmax
= sattack (21)

Therefore, the minimum number of bits equal to 1, nmin,
that the attacker should try to succeed is given by:

nmin ≥ sϑ ≥ (M + nmin) ·
1− JDmax

2− JDmax

nmin = M · (1− JDmax) (22)

In the other side, taking into account that the maximum
number of successes cannot be greater thanM , it follows that
the maximum number of n, nmax , that an attacker should try
to succeed is given by:

M ≥ sϑ ≥ (M + nmax) ·
1− JDmax

2− JDmax

nmax =
M

1− JDmax
(23)

In summary, the attacker will try with a response that have
n bits equal to 1, with nmin ≤ n ≤ nmax . The probability
of success is the probability that an attacker generates an
N -bit response with n 1’s of which sattack (in Equation 21) or
more bits are successfully selected. The feature of behavioral
responses that minimizes this probability is that any of the N
units in the BPUF (SRAM for example) can meet the behav-
ioral condition, that is, the probability of success is minimum
if the attacker does not know which units to select because
all of them can be valid. This is the desired unpredictability
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feature of the behavioral response: given a challenge (the
address of a SRAM cell), the behavioral response cannot be
known (the cell cannot be known to be reliable or not). If the
behavioral response is so unpredictable, the probability of
success is given by the cumulative hypergeometric distribu-
tion function as follows:

PI (S ≥ sattack) =
n∑

s=sattack

(
M
s

)(
N −M
n− s

)
(
N
n

) (24)

This probability can be quite small, as shown in the follow-
ing section with experimental results of SRAM BPUFs.

A way to prove the unpredictability of the behavioral
response is to consider for simplicity that N is a power of 2,
that is, N = 2Q. Hence, each of the M units (SRAM cells
for example) that meets the behavioral condition is identified
by a code with Q bits, so that all the possible Q-bit codes are
employed to identify all the units. If any unit can meet the
behavioral condition then any Q-bit code can appear in the
registered responses of the genuine BPUF instances. From
the point of view of the attacker, discovering a registered
behavioral response with M bits equal to 1 is equivalent
to discovering a sequence with M codes of Q bits, that is,
a sequence of M · Q bits. Of course, the Q-bit codes should
be assigned randomly to each unit so as not to reveal any-
thing about the unit. If they follow an order, for example the
position of the SRAM cell in the SRAM, the attacker would
know that the first cells would have many 0’s and the last
ones many 1’s, thus being somewhat predictable. Also, once
the codes are assigned, the same codification is used for all
the instances.

Considering a set of BPUF instances, the registered
sequences of M · Q bits should be unpredictable to the
attacker. Standard tests that evaluate the unpredictability of
a set of sequences are included in the NIST Statistical Test
Suite [28]. The basic condition that the sequences should
meet is to have the same appearance probability of 1’s and
0’s, that is, their average fractional Hamming weight should
be 0.5, which is evaluated by the frequency test. In addition,
subsequences of an unpredictable sequence should also be
unpredictable, which is evaluated by the block, cumulative
sums and runs tests. These will be the tests employed in the
following Section to evaluate the unpredictability of behav-
ioral responses.

V. EXPERIMENTAL RESULTS OF SRAM BPUFs
BPUFs based on SRAMs were analyzed experimentally
in order to validate the proposals described in Section III
and evaluate quantitatively the security improvement ana-
lyzed in Section IV. The SRAMs analyzed were low-power
dual-port 8-transistor TSMC (Taiwan Semiconductor Manu-
facturing Company) IP (Intellectual Property) SRAMs that
were included in ASICs (Application Specific Integrated
Circuits) fabricated in the 90-nm CMOS technology from

TSMC. Results corresponding to 8 IP blocks are shown
herein, each block with capacity for 4096 words of 60 bits.

The well-known start-up values of SRAM cells were
measured as physical response. The physical responses
considered have a maximum of 7296 bits (128 words
of 57 bits). Behavioral responses were measured as described
by Equation 8, evaluating the behavior of 20 measurements
(R = 20) of the physical responses. Hence, behav-
ioral responses have a maximum of 7296 bits (128 words
of 57 bits). Since start-up values of SRAM cells of the
same and different IP blocks show uniqueness, as shown
in [24], 128 different physical and behavioral responses of
the same size were analyzed (16 responses/IP in 8 IPs).
The distribution of genuine responses was analyzed using
1280 comparisons (for each of the 128 responses, a mea-
surement is compared against 10 measurements of the same
response). The distribution of impostor responses was ana-
lyzed using 8128 comparisons (the different pairs between
the 128 responses).

The results shown in the following focus on behavioral
responses since physical responses have been already illus-
trated in many other works.

A. HAMMING WEIGHT OF RESPONSES
It was verified that the Hamming weight of the behavioral
responses is smaller than that of the physical responses.
This difference is apparent in the graphic representations of
Figure 3 and 4, which illustrate both responses organized as
squared maps with 32 × 32 bits. The response bits equal
to 0 are white and those equal to 1 are not white (blue
if they are associated with a genuine instance and red if
they correspond to an impostor instance). All the responses
shown in Figure 3 and 4 were taken under nominal operating
conditions.

The Hamming distances between responses of genuine
instances and between genuine and impostor instances
are shown, respectively, in Figure 3(b) and 4(b), and in
Figure 3(d) and 4(d). It can be observed that when the
responses were generated by genuine instances the number
of bits that changed or had errors (colored in black) is much
smaller.

Although in both kind of responses it is possible to dis-
tinguish if the comparison is made between genuine and
impostor instances, there are significant differences between
the Hamming distance corresponding to physical responses
(Figure 3(d)) and behavioral responses (Figure 4(d)) because,
as discussed above (Equation 10), fractional Hamming
weight is around 0.5 for physical responses and around 0.1 for
behavioral responses.

B. JACCARD VERSUS HAMMING DISTANCE
In order to make a more exhaustive analysis of the
genuine and impostor instances, the metric of the Jaccard
distance introduced in Subsection III-A was used in com-
parison with the fractional Hamming distance and responses
with 7296 bits were considered. For the physical responses,
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FIGURE 3. Physical responses of a genuine instance (a), (c), physical response of an impostor instance (e), and bitmap of their Hamming
distances (b), (d).

FIGURE 4. Behavioral responses of a genuine instance (a), (c), behavioral response of an impostor instance (e), and bitmap of their Hamming
distances (b), (d).

Figure 5(a) shows, on the left, in blue, the distribution of the
FHDs between genuine instances (using 1280 comparisons)
and, on the right, in red, the distribution of the FHDs between
genuine and impostor instances (using 8128 comparisons).
Analogously, Figure 5(b) shows the same probability distri-
butions but using the JD.

As claimed in Section III, it can be seen that although
the FHD-based metric shows a good separation between
both populations, the use of JD allows further distancing the
genuine population (which is attracted towards the ideal value
of 0) from the impostor (which is attracted to the ideal value
of 1, instead of 0.5 as in the FHD).

For the behavioral responses, similar results are shown
in Figure 6 with the genuine (on the left, in blue) and
impostor populations (on the right, in red), also using
1280 and 8128 comparisons, respectively. In this case, it is
more evident that the use of JDs represents in a much
more significant way the distance between the genuine and
impostor populations (Figure 6(b)) compared to the FHDs
(Figure 6(a)).

C. REPRODUCIBILITY AND UNIQUENESS OF
BEHAVIORAL RESPONSES
Once the advantages of the Jaccard versus the Hamming
distance were verified, JDs were used to analyze the repro-
ducibility and uniqueness of the behavioral responses as
proposed in Section III. To carry out an exhaustive anal-
ysis, measurements of the 7296-bit responses were taken
in 6 different operating conditions (see Table 1) that include
the cases that generate the most significant changes in the

TABLE 1. Conditions evaluated.

physical responses, such as voltage changes in the power
supply (C2 and C3), changes in the ambient temperature
(C4 and C5), and aging (C6). The ASICs were working
continuously during 96 hours under accelerating aging at a
temperature of 75◦C. A climatic chamber ACS-EOS 200TC
was used to carry out aging. Details about how the experi-
ments were carried out can be seen in [24].

In order to illustrate the reproducibility of behavioral
responses, 1280 comparisons using the Jaccard distance were
used per operating condition to generate the distribution of
the genuine population associated with each condition (from
C1 to C6). Figure 7 shows these distributions, as well as the
distribution representing the impostor population calculated
using 8128 Jaccard distance comparisons in all the conditions
(from C1 to C6).

The average value of each JD distribution is shown
in Table 2, as well as the average value of the same dis-
tributions if the metric used to evaluate the comparisons
were the FHD. As can be seen, all the values are similar
for the impostor distributions (JDinter and FHDinter ) and the
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FIGURE 5. Distributions of FHDs (a) and JDs (b) of genuine and impostor populations of physical responses. The vertical axes represent the fractional
number of comparisons.

FIGURE 6. Distributions of FHDs (a) and JDs (b) of genuine and impostor populations of behavioral responses. The vertical axes represent the fractional
number of comparisons.

distances between genuine and impostor distributions are
smaller using FHD than in the case of using JD metric.
The JD metric completely separates the impostor from the
genuine distributions in all the operating conditions.

D. RESULTS ON SECURITY IMPROVEMENT
Let us analyze quantitatively the resistance of these SRAM
BPUFs to false acceptance attacks in the behavioral
responses. As explained in Subsection III-B (Equation 17),
the authentication threshold JDmax is selected from the max-
imum number of errors in the genuine responses, emax ,
and the minimum number of successes in the genuine
responses, smin.

TABLE 2. JD and FHD of the genuine and impostor populations of
behavioral responses at different operating conditions.

The values of emax for each operating condition were
selected by imposing a false rejection rate of 10−6,
PG(E > emax) < 10−6, estimating the bit error probability
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FIGURE 7. Distributions of the JDs of the genuine and impostor
populations of behavioral responses at different operating conditions.
The vertical axes represent the fractional number of comparisons.

TABLE 3. Bit error and success probabilities, maximum errors, minimum
successes, and JD thresholds.

as the BER of the genuine responses. The second column
in Table 3 shows the BER obtained experimentally for each
operating condition. They are equal to the FHDintra shown in
the fourth column of Table 2. The values of emax calculated
for each operating condition are shown in the fourth column
of Table 3. For operating condition C1, Figure 8 illustrates
with bars the distribution of the random variable E , that is,
the normalized number of errors

∑N−1
b=0 ϑ

i
x ⊕ ϑ

0
x /N in the

genuine responses. The continuous red line in Figure 8 rep-
resents a binomial distribution (Equation 2) with N = 7296
bits and peG = 0.0561 (the bit error probability as the value
of BER in condition C1). It can be seen how experimental
results confirm the model employed.

The values of smin for each operating condition were
selected by imposing also a false rejection rate of 10−6,
PG(S < smin) < 10−6, estimating the bit success probability
as the BSR of the genuine responses (Equation 19). The third
column in Table 3 shows the BSR obtained experimentally
for each operating condition. The values of smin calculated
for each operating condition are shown in the fifth column
of Table 3. For operating condition C1, Figure 9 illustrates
with bars the distribution of the random variable S, that is,
the normalized number of successes

∑N−1
b=0 ϑ

i
x ∧ ϑ

0
x /N in

the genuine responses. The continuous blue line in Figure 9
represents a binomial distribution with N = 7296 bits and
psG = 0.1390 (the bit success probability as the value of

FIGURE 8. Error distribution of the genuine responses.

FIGURE 9. Success distribution of the genuine responses.

BSR in condition C1). It can be seen how experimental results
confirm the model employed.

Table 3 shows that the minimum number of bits equal
to 1 in the behavioral responses to not be rejected, smin,
is always greater than zero. Hence, behavioral responses with
all their bits zero (resulting, for example, from fake physical
responses that do not flip as mentioned in Subsection IV-A)
would be rejected.

With the values of emax and smin for each operating condi-
tion, the thresholds JDmax were calculated with Equation 17.
They are shown in column 6 of Table 3. As expected from
the distributions in Figure 7, more restrictive thresholds from
an impostor point of view are set for the operating conditions
with fewer errors (C1, C2, C3 and C6), while the conditions
with the highest number of errors (temperature variations,
C4 and C5) have the least restrictive thresholds in order to
provide a low false rejection rate.

As explained in Subsection IV-B, from the point of view
of the attacker, discovering a registered behavioral response
withM bits equal to 1 is equivalent to discovering a sequence
with M codes of Q bits, that is, a sequence of M · Q bits.
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TABLE 4. Results for the uniformity of P-values and the proportion of passing sequences for the 128 registered behavioral responses.

TABLE 5. Optimal number of n and minimum s to perform a false
acceptance attack with the highest probability PI .

To prove that the registered sequences of M · Q bits are
unpredictable, we considered for simplicity that N was a
power of 2, that is, N = 2Q, with Q = 12, and the codi-
fication assigned to the cells was fixed. In this experiment,
the 128 BPUF instances were registered with sequences of
596 · 12 bits (M = 596), since a minimum of 596 cells
out of the total 212 cells provided flipping bits in all the
128 instances, each cell identified by the codification fixed
prior to the experiment. The NIST tests were applied to these
128 sequences with 7152 bits. As shown in Table 4, all the
tests were passed with a significance level of α = 0.01.
Hence, Equation 24 can be applied to calculate the probabil-
ities of the attacker to succeed.

If the attacker knows JDmax and M for each operating
condition, he/she will try with a behavioral response with n
bits equal to 1, withM · (1− JDmax) ≤ n ≤ M/(1− JDmax).
The highest probabilities to succeed obtained by the attacker
for each condition (PI (S ≥ sattack )) are shown in the fourth
column of Table 5 (applying Equation 24). They correspond
to nattack bits equal to 1 (second column in Table 5), which
in turn correspond to the minimum number of successes
required to be authenticated, sattack (Equation 21), shown in
the third column of Table 5.

It can be concluded by observing Table 5 that thresh-
old JDmax greatly affects security. A designer can choose
a more restrictive threshold defined by conditions C1, C2,
C3 and C6 in order to make the system more secure at the
expense of accepting that the system will be less robust to
temperature variations (because higher false rejection rate
may occur). In the other side, the designer can choose a
less restrictive threshold to make the system robust at any
operating condition, such as the one determined by condition
C5, at the expense of making the system less secure against
false acceptance attacks. Even in that case (JDmax = 0.8013),
the highest probability of false acceptance is 1.5 · 10−34,

which is equivalent to a security of more than 2113 bits, quite
enough for a BPUF even in the case of its physical response
were successfully attacked.

VI. CONCLUSION
Since the proposed behavioral responses of BPUFs are
obtained from several measurements of the physical
responses taken at several sample times, they can detect
if the physical responses are provided by the virtual or
physical clones resulting from the machine learning and
physical attacks reported to current PUFs. In this sense,
the BPUFs proposed in this article are tamper-resistant and
tamper-evident to those PUF attacks.

Physical clones of BPUFs are more challenging to obtain
since cloning physical responses that are not static but change
over time (flip) is much more difficult. Virtual clones are also
more challenging to obtain because more responses have to
be predicted or cloned for an arbitrary challenge in BPUFs.
In addition, hybrid attacks like the reliability-based machine
learning attacks cannot be applied to BPUFs since the attacker
should not know reliability information, which is associated
with the behavioral responses.

While Hamming distance is employed to measure the
similarity of current PUF responses, this article shows that
Jaccard distance is more suitable for evaluating similarity of
behavioral responses. The BPUF behavioral responses ana-
lyzed provide enough reproducibility and uniqueness so as to
provide negligible rates of false rejection and false acceptance
when fixing an authentication threshold based on the Jaccard
distance. Moreover, the behavioral responses provide enough
unpredictability so as to provide very high resistance to false
acceptance or brute-force attacks.

Many constructions currently employed for PUFs can be
used for BPUFs. As example, SRAM BPUFs are presented
in this article. SRAM BPUFs were characterized experimen-
tally using low-power dual-port 8-transistor SRAMs fabri-
cated in 90-nm CMOS technology, considering nominal and
non-nominal operating conditions (changing power supply
voltage and temperature as well as aging the circuits). From
these experimental results, the highest probability estimated
for an attacker to succeed in mathematically cloning the
behavioral responses of SRAM BPUFs with a brute-force
attack (allowing that fake behavioral and physical responses
could have no relation), in any operation condition, is as low
as 1.5 · 10−34.

The use of BPUFs in cryptographic protocols is a research
line of our future work.
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