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ABSTRACT Currently, many kinds of LiDAR-camera-based 3D object detectors have been developed with
two heavy neural networks to extract view-specific features, while a LiDAR-camera-based 3D detector
with only one neural network has not been implemented. To tackle this issue, this paper first presents an
early-fusion method to exploit both LiDAR and camera data for fast 3D object detection with only one
backbone, achieving a good balance between accuracy and efficiency. We propose a novel point feature
fusion module to directly extract point-wise features from raw RGB images and fuse them with their
corresponding point cloud with no backbone. In this paradigm, the backbone that extracts RGB image
features is abandoned to reduce the large computation cost. Our method first voxelizes a point cloud into a 3D
voxel grid and utilizes two strategies to reduce information loss during voxelization. The first strategy is to
use a small voxel size (0.05m, 0.05m, 0.1m) in X-axis, Y-axis, and Z-axis, respectively, while the second one
is to project the feature (e.g. intensity or height information) of point clouds onto RGB images. Numerous
experiments evaluated on the KITTI benchmark suite show that the proposed approach outperforms state-
of-the-art LiDAR-camera-based methods on the three classes in 3D performance (Easy, Moderate, Hard):
cars (88.04%, 77.60%, 76.23%), pedestrians (66.65%, 60.49%, 54.51%), and cyclists (75.87%, 60.07%,
54.51%). Additionally, the proposed model runs at 17.8 frames per second (FPS), which is almost 2× faster
than state-of-the-art fusion methods for LiDAR and camera.

INDEX TERMS LiDAR-camera-based 3D detector, single stage, one backbone, point-wise fusion, KITTI
benchmark.

I. INTRODUCTION
With the rapid development of autonomous vehicles,
three-dimensional (3D) object detection has become more
important, whose purpose is to perceive the size and accurate
location of objects in the real world. Currently, an intelligent
car is equipped with at least one LiDAR apparatus, one radar
and one RGB camera. Note that radar is now widely used
in companies, however, only a few researchers use it to val-
idate a new algorithm. Hence, this paper focuses on LiDAR
and camera for 3D object detection. LiDAR is employed to
collect the surrounding 3D data, referred to as a point cloud,
and the camera is used to capture a high-resolution RGB
image. The two devices provide two important and different
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types of data. However, it is non-trivial to highly efficiently
and quickly extract and fuse the features of the point cloud
and RGB image.

Recently, feature extraction [1]–[4] with deep learning has
drawn much attention. For the RGB image, a general 2D
convolutional neural network (CNN) can be used to extract
its features. For the point cloud however, it is difficult to
extract its features due to its irregular distribution and sparse
contributions. Before the advent of highly-efficient graph-
ics processing units (GPUs), representative studies [5]–[10]
have converted point clouds into 2D dense images or struc-
tured voxel-grid representations and utilized 2D neural net-
works to extract the corresponding feature from the converted
2D image. With the development of computer technology,
the authors in [11]–[14] directly utilized a multi-layer percep-
tron (MLP) to aggregate features from point clouds. Shi and
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FIGURE 1. A comparison of two mainstream LiDAR-camera-based 3D
detectors with the proposed approach. Both detectors A and B employ
one backbone (VGG-16 or ResNet) to extract the features of the RGB
image. Conversely, our proposed method directly extracts the pointwise
features from the raw RGB image without a backbone.

Rajkumar [15] encoded the point cloud natively in a graph
using the points as the graph vertices.

To leverages the mutual advantages of point clouds and
the RGB image, some researchers have attempted to fuse
view-specific region of interest (ROI) features. Currently,
there are two mainstream fusion methods. The first is to fuse
two view-specific features, as shown in Figure 1A. The other
method is pointwise feature fusion, as shown in Figure 1B.
Chen et al. [5] and Ku et al. [6] directly fuse the ROI feature
maps output with the two backbones of the point cloud and
RGB image, respectively. On the other hand, Xu et al. [16]
and Sindagi et al. [17] fuse pointwise features. These meth-
ods achieve better performance compared with LiDAR-based
methods; however, their inference time is usually intolerable
for application in real-time autonomous driving systems.

To deal with the above issues, this paper proposes a
novel point-wise fusion strategy between point clouds and
RGB images, illustrated in Figure 1C. The proposed method
directly extracts pointwise features from the raw RGB image
based on the raw point cloud first. Then, it fuses the two
pointwise features and feeds them into a 3D neural network.
The structure, as shown in Figure 2, has only one backbone
to extract features, making the proposed model much faster
than state-of-the-art LiDAR and camera fusion methods.

The key contributions of this work are as follows:

• This paper presents an early-fusion method to exploit
both LiDAR and camera data for fast multi-class 3D

object detection with only one backbone, achieving a
good balance between accuracy and efficiency.

• This paper proposes a highly-efficient pointwise fea-
ture fusion module, which directly extracts the RGB
image point feature based on a point cloud and fuses the
extracted RGB image point feature with the correspond-
ing feature of the point cloud.

• This paper also enhances 3D object detection with an
RGB+ image, which preserves the information projected
from its corresponding point cloud.

The presented one-stage 3D multi-class object detec-
tion framework outperforms state-of-the-art LiDAR-camera-
based methods on the KITTI benchmark [18] both in terms
of the speed and accuracy.

II. RELATED WORK
This section starts by reviewing recent works in applying
convolutional neural networks (CNNs) to 3D object detection
based on LiDAR, and then focuses on methods specific to
multi-modal 3D object detection from point clouds and RGB
images.

A. LiDAR-BASED 3D OBJECT DETECTION
Recently, there have been three main 3D object detec-
tors based on LiDAR: voxel-based detectors, point-based
detectors, and graph-based detectors. Voxel-based methods
[7], [8], [19]–[21] first voxelize the raw point cloud over
a given range and then utilize a 3D CNN or 2D CNN
to extract features. Different from other existing methods,
Muresan et al. [21] employs a 4-beam LiDAR to collect
point clouds. Unlike VoxelNet [7], Yan et al. [19] replaced
a 3D CNN by a 3D sparse convolutional network, and
Lang et al. [20] directly organized point clouds in vertical
columns (pillars) to generate 2D BEV images. Point-based
detectors [11]–[14] directly deal with the raw point cloud.
Charles et al. [11] pioneered the method used to deal with
each point independently using their shared MLPs. Based on
PointNet [11], Qi et al. [12] further introduced the metric
space distances to learn local features with increasing contex-
tual scales. Yang et al. [13] abandoned the upsampling layers
in PointNet++ to boost the inference speed. The proposed
method voxelizes a point cloud using a dynamic voxelization
method compared with the hard voxelization method in [7]
and aims to avoid information loss during voxelization.

B. MULTI-MODAL 3D OBJECT DETECTION
3D Object detection in point clouds and RGB images is a
fusion problem. As such, it is natural to extract the RGB
image feature and the point cloud feature with two different
backbones, respectively, which is the paradigm present in
all previous works [5], [6], [9], [10], [16], [17], [22]–[25].
Obviously, by employing two heavy backbones, these
approaches are very slow and consume a great deal of mem-
ory. In the paradigm, these methods are designed to either
study how to fuse or how to improve accuracy based on
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FIGURE 2. The architecture of the proposed one-stage 3D object detection network for the LiDAR and camera. It mainly includes the input data, the point
feature fusion module, the 3D backbone, and the detection head. The gray box and green box represent the convolutional block and feature map,
respectively.

state-of-the-art fusion methods, e.g., AVOD [6] changes the
feature generation method in MV3D [5] from hand-crafted
techniques to automation to improve the running speed of the
model. According to different fusion methods, these meth-
ods can be divided into two categories: pointwise fusion
[16], [17] and region of interest (ROI)-based fusion [5], [6],
[22]–[26]. Daraei et al. [27]. Compared with the ROI-based
fusion, pointwise fusion is more flexible. Inspired by point-
wise fusion, this article will explore whether it is possible to
directly aggregate the point features of the raw RGB image
with point cloud features. Different from the previous meth-
ods, the proposed method only has one backbone. Addition-
ally, the proposed model takes the RGB+ image as the input,
instead of using an RGB image.

In this paper, we first present an early-fusion method to
exploit both LiDAR and camera data for fast 3D object
detection with only one backbone, and it achieves a good
balance between accuracy and efficiency. Thanks to the novel
pointwise feature fusion module, which makes the fusion
between LiDAR and camera data high efficient. To further
improve the detection performance, we propose the RGB+

image as the input.

III. PROPOSED APPROACH
The proposed model, as shown in Figure 2, takes point
clouds and RGB images as inputs and predicts oriented 3D
bounding boxes for cyclists, pedestrians, and cars. Thismodel
includes four main parts: (1) A point feature fusion module
that extracts the point features from the RGB image and fuses
the extracted features with the corresponding point cloud
features, (2) a voxel feature encoder (VFE) module and a
3D backbone to process the fused pointwise features into a
high-level representation, (3) a detection head that regresses
and classifies the 3D bounding boxes, and (4) a loss function.

A. POINT FEATURE FUSION MODULE
The fusion module, shown in Figure 3, consists of three
submodules: the point transform module, the voxelization of

FIGURE 3. Visualization of the point feature fusion module. N is the
number of points in a point cloud, and FC denotes one fully connected
layer.

point clouds, and the pointwise fusion module. Since this
module involves the input of raw data, before introducing the
module, the input data is first introduced.

1) INPUT DATA
This model accepts point clouds and RGB images as the
input. To reduce the loss of raw point-cloud information
during voxelization, a LiDAR point cloud is projected onto
an RGB image and embedded into the image to generate a
new image with three channels, called RGB+. The RGB+

object has two typical representations: the RGBI portion that
embeds the intensity of point clouds into an RGB image,
and the RGBD representation that embeds the Z-axis value
of point clouds into the image. The detailed process of the
RGB+ generation is divided into the three following steps:
(1) First, point clouds (X ,Y ,Z ) are mapped onto the orig-

inal image (W × H ) plane as follows:(
u v 1

)T
= M ·

(
X Y Z 1

)T
, (1)

M = Prect ·
(
Rcam
velo tcamvelo
0 1

)
, (2)

where (u, v) is the image coordinate, Prect is a project matrix,
Rcam
velo is the rotation matrix from LiDAR to the camera, tcamvelo is
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FIGURE 4. The details for the voxelization, pointwise fusion, and VFE module. The black circle and red circle are the centroid of a voxel and a pillar,
respectively. The black circle and red circle are only for demonstration and are all virtual. To understand the figure more clearly, the number of points N
only takes the value of five.

a translation vector, and M is the homogeneous transforma-
tion matrix from LiDAR to the camera.

(2) Second, the points {(x, y, z) | x ∈ X , y ∈ Y , z ∈ Z }
located in the image of size W × H are kept. Meanwhile,
the LiDAR points are projected to the camera coordinates and
denoted as (xc, yc, zc):(

xc yc zc
)T
=M ·

(
x y z 1

)T
. (3)

(3) Finally, zc is mapped between 0 and 255 and then
assigned to the corresponding image coordinate (u, v) to
generate the RGBD object. Similarly, the intensity of the
point cloud for each color channel is mapped between 0 and
255 and then assigned to the corresponding image coordinate
(u, v) to obtain the RGBI data structure. This process uses the
circle function of the OpenCV library.

2) POINT TRANSFORM MODULE
This module extracts point features from the RGB+ image
I ∈ RH×W×3 based on the raw point cloud. First, a point
cloud P ∈ RN×3 is projected onto its corresponding image by
Eq. 1 to obtain the corresponding image coordinates (ui, vi).
Second, the RGB+ and the (ui, vi) are fed into the image
sampler [28], outputting the image point feature Pi ∈ RN×3,
where N is the number of points in the point cloud.

3) VOXELIZATION
Voxelization divides the point cloud into evenly spaced voxel
grids and then generates a many-to-one mapping between
3D points and their corresponding voxels. The details are
shown in Figure 4. Currently, there exist two voxelization
methods: hard voxelization [7] and dynamic voxelization
[29]. Compared with the former, dynamic voxelization makes
the detection more stable by preserving all the raw points
and voxel information. This work applies the dynamic vox-
elization method. Given a point cloud P = {p1,p2, · · · ,pN },
the process assignsN points to a buffer of sizeN×F , whereN
is the number of points and F denotes the feature dimension.

Specifically, each point pi = [xi, yi, zi, ri] (containing the
XYZ coordinates and the reflectance value) in a voxel is
denoted by its inherent information (xi, yi, zi, ri), its relative
offsets (xv, yv, zv) with respect to the centroid of the points
in the voxel, and its relative offsets (xp, yp, zp) with respect
to the centroid of the points in the pillar. Finally, the output
point-wise feature is Pv ∈ RN×10, and the resulting size of
the 3D voxel grid is

(
W
sy
, Hsx
, Dsz

)
, where (sy, sx , sz) gives the

voxel sizes, and (W ,H ,D) are the ranges along the Y-axis,
X-axis, Z-axis, respectively.

4) POINT-WISE FUSION
This module fuses the pointwise features Pi and Pv. Since
the dimensions of the two features are different, two fully
connected (FC), one for each feature, are used to adjust their
dimensions to be the same. There are two common fusion
methods for ROIs: addition and concatenation. Therefore,
this paper will analyze which fusion method is the most
suitable for the pointwise features in Table 3 in the ablation
section. After the fusion operation, one FC layer is utilized to
further merge the fused features and output the result as Pf.

B. VOXEL FEATURE ENCODER MODULE AND 3D
BACKBONE
This section introduces the voxel feature encoder module and
the 3D backbone, in that order.

1) VOXEL FEATURE ENCODER MODULE
Upon completing the pointwise fusion, the fused feature Pf
is transformed through the VFE layer which is composed
of a fully connected network (FCN), into a feature space,
where information from the point features fi ∈ Rm can
be aggregated to encode the shape of the surface contained
within the voxel [7], [8], [17], where i ∈ [1,N ] and m is the
feature dimension of a point. The FCN consists of a linear
layer followed by a batch normalization layer, and a ReLU
layer. An elementwise max-pooling process is used to locally
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FIGURE 5. The 3D backbone architecture. Conv3D (cin, cout, k, s) denotes
a convolutional block, where the parameters cin, cout, k, and s represent
the input-channel numbers, the output-channel numbers, the kernel size,
and the stride, respectively. Each block consist of a 3D convolutional layer
followed by a batch normalization layer and a ReLU layer.

aggregate the transformed features and output a feature Ef for
Pf. Finally, the max-pooled feature Ef is concatenated with
each point feature fi to generate the final featurePvfe. his work
stacks two such VFE layers and both of the output lengths are
128. This means the shape of Pvfe is N × 128. The details are
shown in Figure 4.

2) 3D BACKBONE
The 3D backbone takes the featurePvfe and it’s corresponding
index of 3D coordinates (X,Y,Z) as inputs. The backbone is
widely used in [30], [31] and has twelve 3D sparse convolu-
tional layers and is divided into four stages according to fea-
ture resolution, as shown in Figure 5. The four-stage feature
resolutions in the order of (W ,H ,D) are (1600, 1408, 41),
(800, 704, 21), (400, 352, 11), and (200, 176, 2). Specifi-
cally, each stage has two kinds of 3D convolutional layers:
the submanifold convolution [19] and the sparse convolution.
The former does not generate new points and shares the
point coordinate indices in each stage; hence, the submanifold
convolution runs very fast. The latter is a sparse version of
the dense 3D convolution. Usually, these two convolutions
are used in conjunction to achieve the speed/accuracy bal-
ance. The details and numbers of input and output channels
are illustrated in Figure 5. The sparse feature map after the
3D sparse convolution needs to be converted into the dense
feature map Fd ∈ R200×176×256. The detailed configuration
is given in Table 1.

C. DETECTION HEAD
The input data of the detection head is the dense feature map
Fd. The detection head is comprised of three convolution
blocks. Block 1 has five 2D convolutional layers and outputs
the feature map F1 ∈ R100×88×128. Similarly, block 2 also

TABLE 1. The network configuration for the 3D backbone and the
detection head. The output sizes (W, H, Depth) and (W, H, Channel) are for
the 3D backbone and the detection head, respectively. The structure
[type, size, stride]×Number represents the convolutional type, filter size,
stride, and the number of layers.

has five 2D convolutional layers and takes the feature map
F1 as input and outputs the feature map F2 ∈ R50×44×256.
Block 3 has two transpose layers and one 2D convolutional
layer. F1 and F2 are transposed as the feature map F3 ∈

R100×88×256 and the feature map F4 ∈ R100×88×256, respec-
tively. Finally, the feature maps F3 and F4 are concatenated
as the feature map F ∈ R100×88×512. The feature map F is
mapped to three desired learning targets: (1) a classification
score map Fscore ∈ R100×88×18, (2) a box regression map
Fbox ∈ R100×88×42, and (3) a direction regression map Fdir ∈

R100×88×12. The detailed configuration is given in Table 1.

D. LOSS FUNCTION
This work utilizes the same loss functions in PointPillars [20]
and SECOND [19]. The 3D ground truth boxes and anchors
are parameterized as (x, y, z, l,w, h, θ), where (x, y, z) denote
the box’s center, (l,w, h) represent the box’s size, and θ
is the yaw rotation around the Z-axis. The corresponding
regression residuals between the 3D anchors and ground truth
are defined as follows:

1x =
xg − xa

da
, 1y =

yg − ya

da
,

1h = log(
hg

ha
), 1θ = sin(θg − θa), (4)

where the superscripts g and a represent the ground truth
box and the anchor, respectively. The variable da =√
(wa)2 + (la)2 is the diagonal of the base of the anchor box.
The regression loss function is as follows:

Lreg =
∑
b

SmoothL1(1b), (5)

where the input dimensions are b ∈ (x, y, z,w, l, h, θ) and
SmoothL1 is the smooth L1 loss function in the Fast R-CNN
module.
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Since the yaw angle θ ∈ [−5,5] has two directions
{+,−}, and the angle regression loss cannot distinguish the
directions. A softmax classification loss is utilized to compute
the discretized direction loss [19], Ldir . If the yaw angle θ
around the Z-axis of the ground truth is greater than zero,
the direction is positive; otherwise, the direction is negative.

For the object classification loss, the focal loss [32] is used:

Lcls = −αa(1− pa)γ log(pa), (6)

where pa is the class probability of an anchor, α = 0.25, and
γ = 2. The total loss can be formulated as follows:

Loss =
1

Npos
(β1Lbox + β2Lcls + β3Ldir ), (7)

where Npos is the number of positive anchors and β1 = 2.0,
β2 = 1.0, and β3 = 0.2. For the car class, an anchor is
defined as positive if it has a 2D IoU greater than 0.60 (pedes-
trian/cyclist is 0.35) with its paired ground truth. If it has a
2D IoU less than 0.45 (pedestrian/cyclist is 0.2), the anchor
is labeled as negative. The other anchors are ignored when
computing the loss.

IV. EXPERIMENTS
This section introduces the dataset, the experimental settings,
and the results in detail.

A. DATASET
The proposed model is trained and evaluated on the KITTI
dataset [18]. TheKITTI object dataset possesses 7,518 testing
frames and 7,481 training frames. Each frame is comprised
of a point cloud, stereo RGB images (the left image and the
right image), and calibration data. In this research, only a
point cloud and the left image with their calibration data are
used. To impartially compare the proposed approach with
existing methods, the training dataset is divided into two
subsets (training subset and validation subset) based on the
same criteria, and the ratio of the two subsets is 1:1.

For KITTI’s criteria, according to the size, truncation, and
occlusion classes of objects, all objects are grouped into
three difficulty classes: easy (E), moderate (M), and hard
(H). Before October 8th, 2019, KITTI’s object detection
metric was defined as the 11-point average precision (AP)
metric. Since then, the metric has been defined by 40 recall
positions. Compared with the 11-point AP, the 40-point AP
more properly assesses the quality of an algorithm based on
the infinite approximation. Intersection-over-Union (IoU) is
the generic evaluation criterion for object detection. In the
evaluation of 2D, 3D, and bird’s eye view (BEV) detection,
the IoU is at the threshold of 0.7 for the car class and 0.5 for
the pedestrian/cyclist class. For the average orientation sim-
ilarity (AOS) we follow the approach in [18] and define the
AOS as:

AOS =
1
N

∑
r∈{0,0.1,··· ,1}

max
r̃ :r̃≥r

s (r̃), (8)

s (r) =
1
|D (r)|

∑
D(r)

1+ cos1i
θ

2
δi, (9)

where N ∈ {11, 40}, r = TP
TP+FN is the PASCAL object

detection recall, TP means the true positive, FN is the false
negative, s is the orientation similarity, D (r) represents the
set of all object detections at recall, and 1i

θ is the difference
in angle between estimated and ground truth orientation of
detection i, δ ∈ {0, 1} is the penalty factor.

B. EXPERIMENTAL SETTINGS
The proposed model is an end-to-end 3D detector for three
classes: the car, pedestrian, and cyclist. When designing the
anchors for the three classes, different classes employ differ-
ent sizes (w, l, h). The sizes (1.6, 3.9, 1.56), (0.6, 0.8, 1.73),
and (0.6, 1.76, 1.73) are for the car, the pedestrian, and
the cyclist, respectively. Note that each anchor has two
directions {0◦, 90◦}, which means that each location has
six anchors. The detection area in the point cloud is
{(x, y, z) | x ∈ [0, 70.4] , y ∈ [−40, 40] , z ∈ [−3, 1]}.
The framework is based on Pytorch and programmed by

the python language. This model is trained from scratch based
on Adam optimizer. The whole network is trained with a
batch of size 10 and the initial learning rate is 0.003 for
80 epochs on one TITAN RTX GPU. This work also adopts
the cosine annealing learning rate for the learning rate decay.
The entire training time is around 12 hours.

For data augmentation, this work employs the widely
used augmentations found in [7], [19], [20], including
global scaling [0.95, 1.05], global rotation around the Z-axis
[−45◦, 45◦], and the random flipping along the X-axis.

C. RESULTS
Most of the LiDAR-camera-based methods only provide the
results in the KITTI validation dataset for three classes,
hence, this work first compares the results in the validation
dataset. In addition, for the car class, this paper also compares
the results based on the KITTI testing dataset.

This work achieves competitive results compared with
other state-of-the-art methods, the details are illustrated
in Table 2. The results are mainly compared with the LiDAR
and RGB camera-based methods. Usually, the LiDAR-based
methods run much faster than the LiDAR-camera-based
approaches. To show the superiority of the proposed model
in speed, the classic LiDAR-based methods are also listed
in Table 2. As can be seen, the proposed model mainly
competes with MCF3D [22] and KDA3D [36] in compre-
hensive performance. For the cyclist class, the proposed
model outperforms the KDA3D [36]. In the car class, our
model is slightly inferior to the KDA3D [36]. However,
the speed of our model runs 2× faster than KDA3D. Note
that the proposed model is an end-to-end multi-class detector,
however MCF3D [24] and KDA3D [36] train two models for
the car class, and the pedestrian/cyclist classes, respectively.
F-PointNet [22] is actually a LiDAR-based method that
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TABLE 2. Performance comparison using the KITTI validation dataset. The results are evaluated by the mean Average Precision with 11 recall positions.
For easy understanding, the top result is highlighted in bold for each column in each class and the second best is shown in blue. I and L denote the RGB
image and LiDAR, respectively.

TABLE 3. Performance comparison using the KITTI testing dataset. The results of cars are evaluated by the mean Average Precision with 40 recall
positions. The top performance is highlighted in bold only for the mAP columns and FPS column, and the second-best is shown in blue.

TABLE 4. Effect of the point feature fusion module. The results are from the ’Moderate’ difficulty category. The best result is highlighted in bold for each
column.

utilizes the location of the object in the 2D RGB image to
quickly guide the model convergence.

The proposed model is also evaluated using the more
challenging dataset: the KITTI testing dataset. In Table 3,
this part only compares the proposed method with state-of-
the-art methods in three aspects: BEV, 3D, and 2D. Since
it requires a great deal of data to compare these three per-
formances, here, the results are simply compared based on

the mean average precision (mAP). For the 3D performance,
the proposed model has the best performance. For the BEV
and 2D performances, the proposed method is the second-
best, but the overall performance of the proposed method
outperforms state-of-the-art methods when taking accuracy
and speed into account. The results of the proposed method
can be retrieved on the KITTI website based on the name of
the proposed method, PFF3D.
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FIGURE 6. Qualitative results of the proposed method using the KITTI validation dataset. In the RGB images, the red, cyan, and yellow color represent
the predictions for the car, pedestrian, cyclist, respectively. In the point cloud images, the green color denotes the ground truth, and the red color
represents the prediction. The results in the point cloud images are used for a qualitative comparison.

Figure 6 presents some qualitative results. As can be seen
in the figures, each object can be detected by the proposed
model and the predicted bounding boxes are well-matched
with their corresponding ground truth boxes. Even in very
complex scenes, the proposed model can detect objects quite
well, as shown in the last two rows of Figure 6.

V. ABLATION STUDIES
This section analyzes the proposed methods individually by
conducting ablation experiments using the KITTI validation
dataset.

A. EFFECT OF THE POINT FEATURE FUSION MODULE
This section analyzes the point feature fusion module based
on the three classes in detail. In Table 4, the ‘Addition’
and ‘Concatenation’ represent the respective addition and
concatenation fusion methods. The parameter’FC’ means the
fully connected layer followed after the fusion operation,
as shown in Figure 3. The experimental results show that the
combination of the addition operation and FC of the proposed
module is best for the three classes: the car, pedestrian,

and cyclist. The data in the first row give the results of
the proposed method when only taking a point cloud as
input. Compared with the LiDAR-based method (the first
row), the proposed method (the fourth row) achieves 0.45%,
0.57%, 1.83%, and 0.6% gains in the 2D, AOS, BEV, and 3D
performance, respectively. Compared with the performance
improvement of cars, the proposed model is more helpful for
improving the identification of pedestrians and cyclists.

B. EFFECT OF THE PROPOSED FRAMEWORK
The proposed 3D object detection framework is the first
to directly project the raw RGB point features to a point
cloud, as shown in Figure 2. The proposed approach is not
without precedent but was discovered through experiments.
Inspired by MVX-Net [17], we simply wanted to implement
a lightweight design based on two backbones. One backbone
was intended for 2D detection and the other one for 3D
detection. First, ResNet-101 [37] was chosen as the back-
bone to extract features from RGB images. The results were
as expected but the testing model ran very slowly. Then,
ResNet-101 was replaced by ResNet-50 [37], and the model
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TABLE 5. Effect of the proposed framework. The ’Time’ column denotes
the training time and the ’Memory’ is the memory needed when the
model is run for four batch sizes. The ’Rtime’ column denotes the
runtime. ’R’ and ’V1’ represent ResNet and ResNetV1d, respectively. ’2D
Image Branch’ denotes that if the model use a full 2D image detection
branch. The results of the cars are in the ’Moderate’ difficulty category for
the BEV and 3D.

TABLE 6. Effect of RGB+. The results of the car class are in the ’Moderate’
difficulty category.

ran a little faster but the accuracy was almost the same.
When using ResNetV1d-50 [38], the result was almost the
same as the result for ResNet-50 [37]. These results are
thought-provoking. Hence, we boldly propose to map the
raw point features of the RGB image to the point cloud
without the 2D detection branch. The experimental results
in Table 5 demonstrate that the proposed method is feasible.
As can be seen in Table 5, the proposed approach not only
drastically reduces the memory requirements for model oper-
ation, but also reduces the time of model training by half.
It can be said that the proposed framework is lightweight,
memory-saving, and energy-saving.

C. EFFECT OF RGB+

The RGB+ construct includes two representations: the RGBI

and RGBD. In Table 6, there are three sets of experiments
each for the car, pedestrian, and cyclist. The variable for
each set of experiments is the input image. For the car class,
the results of RGBD outperform the results of RGB and
RGBI in all aspects. For the pedestrian and cyclist classes,
the results of RGBD surpasses both the results of RGB and
RGBI in some aspects. Hence, the RGBD image is beneficial
for improving 3D object detection.

VI. CONCLUSION
This paper is the first to propose a lightweight, memory-
saving, and energy-saving framework for 3D object detection
based on LiDAR and an RGB camera. Different from the
existing frameworks, the proposed framework only employs
one backbone to extract features from a point cloud and RGB
image. The framework benefits from the proposed module,
i.e., the point feature fusion module. The fusion module

directly extracts the point features of RGB images and
fuses them with the corresponding point cloud features. The
experimental results using both the KITTI validation dataset
and testing dataset demonstrate that the proposed method
significantly improves the speed (17.8 FPS) of LiDAR-
camera-based 3D object detection compared with other state-
of-the-art approaches. Note that the proposed native model
can achieve an inferring speed 17.8 FPS.

In the future, the proposed method will be directly used
in the point-based methods [13], thereby achieving break-
throughs in both accuracy and speed.
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