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ABSTRACT With the integration and development of sensor technology and control technology, the con-
struction of smart grid is in the ascendant. But existing technology is still insufficient in the field of equipment
monitoring. Therefore, it is difficult to accurately determine if SFg breaker or other equipment have faults
in its operational mechanisms which can cause false action and thus impact the safety of power grids. In this
paper, the IBAS (Improved Beetle Antennae Search) algorithm and the BP neural network are combined and
used in the monitoring system for the first time. To improve the beetle search algorithm, a single beetle is
improved into a population in the iterative process of algorithm. The measured opening (closing) current data
is used to verify the accuracy of different algorithms. The results show that compared with PSO-BP (particle
swarm optimization, PSO) model, GA-BP (genetic algorithm, GA) model and BAS-BP model, the IBAS-BP
model not only effectively avoids the possibility of local minimums but also has higher prediction accuracy
and better robustness. The number of iterations in the IBAS-BP algorithm is only 38, and the average error
is only 0.1%. According to this, it is possible to make real-time diagnosis of faulty states in SF¢ breaker
including iron core jams, low operating voltages, poor contact of auxiliary switches, jammed operating
mechanisms, and barometer failures in SF¢. At the same time, the IBAS-BP algorithm can be applied to
wind turbine power prediction and other occasions since model regression determination coefficient R> of
the training set is up to 0.9753 and the relative average error is only 0.25%. The results prove that the
IBAS-BP algorithm has obvious advantages and fairly good universality. It can be further promoted and
applied to power systems to provide reference for optimizing the online monitoring of power equipment.

INDEX TERMS Smart grid, intelligent monitoring, SFg breaker, risk prediction, fault diagnosis, wind power,
IBAS-BP algorithm.

I. INTRODUCTION

The introduction of a large number of renewable energy
sources makes the construction of Smart grid face two major
challenges [1], [2]. On the one hand, it is more difficult
for signal acquisition, transmission [3], and processing [4];
on the other hand, the connection and protection between
devices [5] has also become more difficult in power sys-
tems [6]. In order to effectively solve the above problems,
it is necessary to implement online monitoring of the status
of power devices [7], [8]. There are two major problems in
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the monitoring system [9]. On the one hand, smart sensors
are only applied to the interface between technologies and the
market [10]. The lack of universal algorithms makes the per-
formance of power equipment monitoring in fault diagnoses
unsatisfactory [11], [12]. For distributed power equipment
such as wind turbines and circuit breakers, we need to diag-
nose the internal changes of the entire equipment [13] and
predict possible damages [14]. Based on the above dilemma,
Gao et al. [15] have proposed that the improved LMD and
HMM be used for multi-scale fault diagnoses of equipment,
and, the finite difference iterative forecasting model proposed
by Liu et al. [16] has also been verified in power load fore-
casting and life prediction of wind turbine gearboxes [17].
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In addition to these algorithms, the development of other
search algorithms has also become more and more popular
in recent years [18].

Algorithms can expand the functions of smart meters in
the energy market. The application of the PSO (BP-particle
swarm optimization, PSO) algorithm for partial discharge
diagnoses of transformers, motor optimization designs
and transfer [19], [20] has verified the high efficiency
and precision of decision-making. Song et al. [21] used
quantum-behaved particle swarm optimization to accurately
predict the load of the power system, and, the delay problem
of the sensor can also be effectively solved [22]. But the
(particle swarm optimization, PSO) PSO algorithm has the
problem of slow iteration speed and long processing [23].
The GA (genetic algorithm, GA) algorithm also has excellent
performance in wind power prediction [24] and permanent
magnet motor speed control [25]. Li et al. [26] have used the
genetic algorithm for fault diagnosis in rolling bearing, and,
Ousama Osman et al. have also used the GA in Soft Fault
Identification in Wired Networks application [27]. But the
GA is complicated and difficult to promote [28]. The BAS
(beetle antennae search, BAS) algorithm performs well in the
classification and diagnoses of numerical prediction in recent
years [29]. Wu et al. [30] and Cheng et al. [31] had applied
the BAS algorithm for the path planning of mobile robots,but,
due to the initial value of beetle [32], the algorithm is easy to
fall into the local optimum [33]. Jiang et al. [34] proposed to
improve this disadvantage through different search strategies,
but it cannot completely solve the problem.

This research tries to improve the traditional search method
of BAS by firstly proposing the IBAS (improved beetle
antennae search, IBAS) algorithm. The individuals in the
original BAS algorithm is changed into a population to reduce
errors caused by the randomness of the initial positions in the
original BAS algorithm. By combining it with the BP neural
network, the generalized IBAS-BP intelligent algorithm is
thus obtained. It is used in SF6 circuit breaker fault diagnoses
and wind turbine power predictions. Applying this IBAS-BP
algorithm can promote the integration of energy flow and
information flow in smart grids.

Il. IBAS-BP ALGORITHM
A. IBAS SEARCH ALGORITHM
In the monitoring of traditional power equipment, BP
network can be optimized by search algorithms. BAS can
effectively classify and diagnose the fault status of power
equipment via the improved BP network algorithm [20], [21].
The BAS algorithm can realize prediction and classification
when the function gradient information is unknown. How-
ever, due to the randomness of the initial positions and direc-
tions of the beetle, it is easy to cause the BAS algorithm to
fall into a local optimum, leading to misjudgments of results.
In order to further improve the accuracy of BAS algorithm
optimization, the individual beetles in the original algorithm
should be optimized into a population, and then optimize BP
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neural networks to improve the prediction accuracy of BP
neural networks. Using the massive data collected by sensors
as the input variables of BP networks, the IBAS algorithm
can shorten the iteration process and time. The states of most
power equipment including circuit breakers, transformers,
and switches can be accurately determined and evaluated.

The specific steps are as follows:

1)Construct a k-dimensional random vector to express the
orientation of each beetle’s whiskers and normalize it:

_ rand(k, 1)
 |lrand(k, 1)]| (1
k=M*N+N*L+N+1

In this formula, rand () is a random function. In the BP
shallow network model, the number of input layer neurons is
M, which is the data collected by the sensor. The number of
output layers is L, which is the result we need. The number of
hidden layer neurons is N, and the model search dimension
istk =M N + N x L + N + I. The numbers of network
input layers and output layers can be determined according to
the required feature quantity. By verifying the fitness of the
BP neural network of different hidden layers, the numbers
of hidden layer neurons can be selected. The numbers of
iterations can be based on specific status judgments that
generally do not exceed 100.

2)Space coordinates of left and right of a single longicorn:

xir = x' +d" - condition )
xip = x' —d" . condition

The original BAS algorithm is improved as the IBAS algo-
rithm has changed one single beetle into a beetle population.
xir indicates that the right whisker space position of the i-th
beetle after the ¢-th iteration, and x;; indicates the left whisker
space position of thei-th beetle after the -th iteration. d” is
the distance between the left whisker and right whisker of this
beetle, x’ represents the centroid coordinates of the location
of beetle i-th. The comparison of the intensity of the two
beetles can determine the direction of the beetle, shorten the
iterative speed of the algorithm, and reduce monitoring time.
The condition in this article is set as b.

3) Determine the intensity of left and right whiskers

Use the fitness function to determine the odor intensity
of the left and right whiskers, and, the locations of the left
and right longhorn whiskers can be updated by the equations
below.

X = x5 sing[f (xir) — f(xip)]
N
. 1 3
fitness = N Z (tsim() — V)’ ®
=1

In this formula, 8 represents the step factor corresponding
to the i-th longhorn at the #-th iteration and sing () is the sign
determination function. In the fitness function, y; represents
the output value of the j-th sample, and #;(j represents the
actual value of the j-th sample. By verifying the fitness of
different hidden layer BP neural networks, the accuracy and
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precision of power equipment condition monitoring can be

guaranteed. Let the number of beetles in the population be

S and the position vector of each beetle be composed of the

weight and threshold of the BP network. The dimension of

the individual position vector is D. It can be obtained that the

longicorn population can be represented by an S xD matrix.
1 1

1 1 1
o), wy---w;, by, by---b;

1
1
P(S,D) = a)%, w%nwiz, b%, b%"'biz 4)

o, e B et

1 1

4) Determine the step size factor

Step size factor is used to control the search range of a
single beetle. In order to prevent search area from being too
small and local minimum values appearing, a larger initial
step size can be set. To ensure the refinement of the search,
this paper uses linearly decreasing weights to set step sizes.

8il‘+1 — sit*nn

l‘=(0,1,2,~~,l’l)

n €[0,1] ®

n in the formula is the step size attenuation coefficient
and the number should be taken from [0,1]. Up to now,
the step factor value setting has not been guided by a complete
theoretical system. After subsequent parameter adjustment
and simulation verification, we find that when factor 7 is
0.95 and the initial step size is n = 4, the iteration speed is
the fastest. In the BAS algorithm, the step size can be adjusted
to ensure that the BAS algorithm has the highest asymptotic
convergence probability. According to this, the optimization
effect of the BAS algorithm is related to the parameters
settings of  and 1 in equation (5).

It can be seen from Figure 1(a)(b) that under the same
initial step size &, the number of iterations will decrease as
the attenuation factor increases. When 5 takes a value less
than 0.95, it will cause the algorithm to fall into the local
maximum Excellent, more than 0.95 will increase the number
of iterations. Therefore, from a comprehensive point of view,
the convergence effect is best when 0.95 is taken. It can be
seen from Figure 1(b) that the larger the initial step size &,
the greater the number of iterations. When § is less than
4, the algorithm will fall into a local minimum. Therefore,
when attenuation factor n takes the values of 0.95, the initial
when the step size is 4, the IBAS-BP algorithm has the best
convergence. The IBAS-BP neural network with optimized
parameters can be used for training and fault diagnoses.

B. OPTIMAL SOLUTION GENERATION

Initialize the location of each beetle in the beetle herd. The
initial position of each beetle should be a random number
between —0.5 and 0.5. and be saved in the best A set.
At the same time, the global best adaptation values of all the
longhorns at this time are recorded in the best fitness A set
according to fitness functions. After that, the location of each
beetle is iteratively updated according to equation (3). After
each update is completed, the left and right positions must be
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FIGURE 1. Fitness curves for different attenuation factors.

iterated according to equation (4) to obtain the corresponding
fitness function values. Then, the bestA set and best fitness
A set are updated in time. Finally, by comparing the global
best fit values of the entire beetle population in the two sets,
the best initial position of the whole beetle population best B
and the best fitness value of the population best fitness B are
obtained, which is the optimal solution.

Repeat the above process continuously until the fitness
function value reaches the set range (this article takes 0.001)
or iterates to the maximum number of times (It is set to 100 in
this article), the solution set in best B at this time can be
regarded as the best solution obtained by training. That is the
optimal initial weight and threshold of the BP neural network.
After that, secondary training and learning is carried out. The
specific flowchart is shown in Figure 2.

1ll. IBAS-BP ALGORITHM OPTIMIZES EQUIPMENT
MONITORING

By applying the IBAS-BP algorithm to power grid equip-
ment, data from existing sensors and smart meters can be used
to extract features required by the algorithm to achieve fault
diagnoses. Information exchange and transmission between
equipment ports and monitoring ports can be realized. The
digital drama in the smart meters is used to make decisions
in collaboration with the IBAS-BP algorithm and fault diag-
noses can be realized. The diagram of the online equipment
monitoring system is shown in Figure 3. Verification shows
that the IBAS-BP algorithm has shorter iteration time and
faster iteration speeds, which can effectively reflect the inter-
nal trend changes of components in the entire power grid.
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FIGURE 3. Intelligent grid monitoring system optimized by IBAS-BP
algorithm.

This paper selects two applications of SF6 circuit breakers
and wind turbine motor temperature predictions to demon-
strate the monitoring and optimizing of equipment by the
IBAS algorithm.

A. SF6 CIRCUIT BREAKER FAULT DIAGNOSIS

SF6 circuit breakers play an important role in the safe and
stable operation of the power grid. Routine inspections cannot
realize the real-time monitoring of SF6 circuit breaker sta-
tuses as well as the IBAS-BP algorithm and the data collected
by the current sensor when SF6 circuit breakers are switched
on. The eight characteristic parameters ¢; ~ ts, [ ~ I3 are
used as the 8 input parameters of the BP neural network input
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FIGURE 4. Normal current wave form of the opening (closing) coil.

layer. The extracted current characteristics of SF6 circuit
breaker are shown in Figure 4.

The 3AP1FG (110kV) SF6 high voltage circuit breaker
is used for testing, and the normal and simulated fault state
operations are collected under no-load conditions. 200 groups
of opening (closing) current sensor data are recorded with
30 groups for each fault type. Eliminated are 17 groups
of bad data sets caused by weather conditions and human
operations, 3 out of 17 poor data sets and 3 redundant data
sets. Then, 25 groups from each fault type are selected as
training samples, and the other 5 groups of data are used to
test the characteristics of the network. Table 1 records part of
the data.

In the above data: ZC in the fault type column is normal;
HKS means that the iron core is stuck; GD means that the
operating voltage is too low; FK means that the auxiliary
switch has poor contact; CKS means that the operating mech-
anism is stuck; BF means SF6 the barometer is malfunction-
ing; 0 means that this fault has not occurred, and, 1 means
that this fault has occurred. The output values of the algo-
rithm are expressed by codes and are in the range of 0~1.
The larger the values, the greater the probability of failures.
High-voltage circuit breaker fault types and their codes are
shown in Table 1.

IBAS-BP fault diagnosis results are recorded in Table 2 and
the six common SF6 circuit breaker faults are recorded in
binary system by BCD codes. The intelligent algorithm repre-
sented by the IBAS-BP algorithm can effectively diagnose the
fault types of SF6 circuit breakers, which proves the possibil-
ity of applying the algorithm in realizing fault classification
and online monitoring.

B. WIND TURBINE POWER PREDICTION

The working places of wind turbines often have abnormal
weather conditions such as turbulence and storms, which
breaks the safe working limits of wind turbines and can cause
damage. Therefore, wind turbines will use sensors to detect
the health of wind turbine components. However, it is difficult
for sensors to cover all parts of the fans, and, too many sensors
will increase maintenance burdens. Besides, sensors can only
monitor the results of failures, and cannot actively adjust
and prevent damage when encountering special weather
conditions.
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TABLE 1. Types and codes of mechanical faults in SFg breaker.

Number 11 (A) 12 (A) 13 (A) T1 (ms) T2 (ms) T3 (ms) T4 (ms) T5 (ms) Fault Type Output
1 0.71 0.62 0.83 25.52 31.59 39.71 41.85 42.95 zC 000001
2 0.59 0.51 0.62 25.78 30.93 39.72 41.34 42.47 GD 000010
3 0.71 0.62 0.85 23.93 38.43 44.05 48.70 52.66 FK 000100
4 0.71 0.62 0.85 28.77 35.71 43.66 45.95 46.92 HKS 001000
5 0.73 0.61 0.91 25.83 31.36 39.82 44.41 46.05 CKS 010000
6 0.72 0.64 0.87 25.96 33.45 41.08 45.52 56.93 BF 100000

TABLE 2. Simulation results of the IBAS-BP algorithm.

Number Experimental Result Fault Type BCD
1 0.9988 0.0028 -0.0038 0 0.0008 -0.0027 ZC 001
2 0.0013 0.9991 0.0060 -0.0057 -0.0008 0.0034 GD 010
3 -0.0045 0.0046 1.0016 -0.0054 0.0035 0.0070 FK 011
4 0.0002 -0.0002 -0.0014 0.9990 0.0023 0.0015 HKS 100
5 -0.0012 -0.004 0.0047 0.0031 0.9935 0.0041 CKS 101
6 0.0014 0.0201 0.0096 0.0045 0.0018 0.9952 BF 110
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FIGURE 5. Fitting results of training based on the IBAS-BP neural network.

Based on the above problems, a variety of sensor data col-
lected for experiments are chosen in this paper as 1,200 sets of
data are recorded from experimental training sets and 150 sets
of data are recorded on test sets to test the actual predic-
tion effects of the algorithm. All that is needed is to select
wind speeds, generator speeds, wind directions, blade angles,
ambient temperatures, engine room temperatures, gear box
oil temperatures, hydraulic oil temperatures, Ul winding
temperatures, gear box shaft 1 temperatures, gear box shaft
2 temperatures and motor bearings A and B temperatures
(13 items in all) as the input of the BP neural network. The
power of the wind turbine is used as the output for predictions.

It can be seen from Figure 5 that the IBAS-BP algorithm
can accurately estimate wind turbine power, which can help
us improve our control strategies and maximize the utilization
of generators under extreme weather conditions. Through
predicting stator and rotor temperatures, the pitches and yaws
can be changed in time to avoid possible damage. By means
of further reducing power losses of wind turbines, power
generation efficiency and our monitoring efficiency can both
be further improved.

IV. RESULTS AND DISCUSSION
A. EVALUATION OF MONITORING STANDARDS

The online monitoring of power equipment requires
real-time and high efficiency, which places extremely high
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requirements on the algorithm. For this, we select the number
of iterations, average errors (AEs) and average fitness value
for evaluation. Among them, the smaller the number of
iterations, the shorter the training time of the algorithm and
the faster the calculation speed; the smaller the average error
value, the higher the prediction accuracy of the model. The
average error has been widely used to measure the accuracy of
the evaluation algorithm model. When AE > 0.01, it indicates
that the prediction and diagnosis ability of the algorithm is
poor.

Timely feedback on the health statuses of equipment
requires our algorithm to predict with high enough accuracy,
select relative errors and coefficients of determination as the
evaluation criteria. Among them, the relative error coefficient
can be expressed as follows:

|v: = i
Vi

E; = (i=12,---,n) 6)

In formula (5), y; is the output value predicted by the
IBAS-BP model when the i-th sample is used, and y; repre-
sents the real data value of the i-th sample, and n is the number
of samples. The smaller the relative error coefficient, the bet-
ter the sample fitting effect. The coefficient of determination
R2 can be expressed as equation (6):

(3 ypyi = v i)’
RZ — - i=1 _ i=1 . i=1 . (7)
Y y? — (v Y 2 — (v
i=1 i=1 i=1 i=1

In order to measure the superiority of the IBAS-BP
algorithm to establish an intelligent monitoring method, algo-
rithms PSO-BP, BAS-BP and GA-BP are chosen for compar-
isons (referred to as the IBAS model, the BAS model, the GA
model and the PSO model).

The curves of the optimal fitness values of the four algo-
rithms with iteration are shown in Figure 6(a). Figure 6(b)
shows the prediction results of the stator and rotor tempera-
tures under the PSO model. Figure 6 (c) shows the prediction
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TABLE 3. Algorithm comparison.

Algorithm Running Time/s (SFe) AE Iterations MRE (Wind turbine) R*(Wind turbine)
(SFo) (SFe) Training% Test% Training Test
GA-BP 3393 0.71% 73 0.35 0.37 0.9742 0.9475
PSO-BP 275.2 0.72% 44 0.46 0.49 0.9700 0.9502
BAS-BP 34.01 1.08% 18 0.49 0.57 0.9737 0.9383
IBAS-BP 766.8 0.10% 38 0.27 0.25 0.9855 0.9753
008 2000 T T
oar] o 1
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FIGURE 6. (a) Four algorithm fitness curves, (b) Fitting results of testing based on the PSO-BP model, (c) Fitting results of testing based on the

GA-BP model (d) Fitting results of testing based on the BAS-BP model.

results of the GA model. Figure 6 (d) shows the prediction
results under the BAS model.

Table 3 shows that in the fault diagnosis of the SF6 circuit
breaker, the average error (AE) of the IBAS algorithm is
only 0.1%, which reflects good robustness. It is better than
the average error of the GA-BP algorithm by 0.71% and the
average error of the PSO-BP algorithm by 0.72%. However,
the BAS-BP algorithm will fall into a local minimum during
the iteration process, and the average error is relatively large,
which is 1.08%. This proves that the IBAS-BP algorithm
has excellent accuracy and response speeds in the field of
fault diagnoses. In the power prediction experiment, the IBAS
model performs the best in the test set, and the modeling
regression determination coefficients R? of the training set
and testing set are as high as 0.9855 and 0.9753 respectively,
which proves better adaptability.

From Figure 5(a), the average number of iterations of the
IBAS-BP algorithm is 38, which is lower than 44 times of
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the PSO model and 78 times of the GA model. Although
the iteration speed is faster, the time consumption of the
IBAS-BP model is 766.8ms, which exceeds that of the tradi-
tional GA-BP (339.3ms) and that of the of the PSO-BP algo-
rithm (275.2ms). The error of the IBAS-BP model is smaller
and the accuracy is higher. It can be seen from Figure 5(b) that
the predicted values of the PSO model is basically consistent
with the actual measured temperatures of the stator and rotor.
When the power is higher than 1000W, the model prediction
error is too large. In the test set, the relative error coefficient
of the PSO model is 0.49%, and R? is 0.9502. The perfor-
mance is lower than the BAS model, which may be related
to the insufficient accuracy of the regression surface of the
input-output correlation. From Figure 5(c), the GA prediction
model has good convergence, but the overall fitting effect
is not good. The predicted values are concentrated between
870W and 1240W, which deviates from actual results. In the
test set, the relative error coefficient of the model is 0.37%,
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and R? is 0.9475. In addition, the GA algorithm has complex
steps and numerous calculations.

It can be seen from Figure 5(d) that the predicted values
of the BAS-BP model are basically consistent with the actual
measured values, but, errors will occur in the range of water
content greater than 750W and less than 138W. The calcula-
tion shows that the relative error coefficient of the BAS-BP
model is 0.57%, and determination coefficient R? is 0.9383,
which has good accuracy and adaptability, but, the experi-
mental effect depends heavily on the locations of the bee-
tles. Compared with Fig 4, the IBAS algorithm is almost
completely consistent with the measured data, the error is
smaller, and it is very close to the measured data. And in
the test set, the relative error coefficient is only 0.25%. Test
set determination coefficient R? is 0.9753, which reflects
good adaptability and further demonstrates the accuracy of
the IBAS-BP algorithm and its robustness after parameter
optimization. Through comparisons, it can be known that the
IBAS model performs best among the four models.

B. MONITORING OPTIMIZATION

Through the training of a large amount of data collected by
sensors, the IBAS-BP algorithm can eliminate comprehen-
sive influencing factors under natural conditions. Compared
with traditional inspections, the IBAS-BP algorithm not only
has smaller training errors but also higher precision and
transferability with good nonlinear interpretation modeling
ability. With the support of this set of algorithms, power com-
ponents in the grids can effectively monitor the equipment.
But, in changeable environments, how to intelligently avoid
risks, build power systems that truly have network collabo-
ration intelligence and cluster evolution capabilities are also
problems that need our further exploration. Under extreme
weather conditions, how to further improve the accuracy of
equipment fault diagnoses and increase the diagnosis speeds
of equipment online monitoring is still a big challenge for
human beings.

V. CONCLUSION

1) This paper has improved the beetle search algorithm
(BAS algorithm) and put forward the notion or concept
of the IBAS-BP algorithm for the first time in the
academia. Through its application in different scenar-
ios, its universality and robustness of the algorithm is
proved.

2) The IBAS-BP algorithm has shown sufficient superior-
ity in the process of being compared with the PSO and
GA algorithms. In the SF6 fault diagnosis experiment,
the average error is only 0.1%, and the number of itera-
tions is the lowest, 38 times. Compared with traditional
algorithms, it takes a longer time of 766.8ms, but it
reflects higher accuracy. In the wind turbine power
prediction experiment, model regression determination
coefficient R? can reach 0.9753 and the relative average
error is only 0.25%.
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3) Sensors are used to realize data collection, signal trans-
mission and make decisions. The IBAS-BP algorithm
can realize information exchanges between power sys-
tems and consumers. This algorithm can effectively
promote the construction of smart grid.

ACKNOWLEDGMENT
The data in this research are provided by Shaanxi Wind Power
Plant of China Guodian Corporation, Shaanxi, China.

REFERENCES

[1] M. M. Albu, M. Sanduleac, and C. Stanescu, ‘“Syncretic use of smart
meters for power quality monitoring in emerging networks,” IEEE Trans.
Smart Grid, vol. 8, no. 1, pp. 485-492, Jan. 2017.

[2] H.Yi, M. H. Hajiesmaili, Y. Zhang, M. Chen, and X. Lin, “Impact of the
uncertainty of distributed renewable generation on deregulated electricity
supply chain,” IEEE Trans. Smart Grid, vol. 9, no. 6, pp. 6183-6193,
Nov. 2018.

[3] S.Bhela, V. Kekatos, and S. Veeramachaneni, ““Enhancing observability in
distribution grids using smart meter data,” IEEE Trans. Smart Grid, vol. 9,
no. 6, pp. 5953-5961, Nov. 2018.

[4] X. Cao, J. Wang, and B. Zeng, ““Distributed generation planning guidance
through feasibility and profit analysis,” IEEE Trans. Smart Grid, vol. 9,
no. 5, pp. 5473-5475, Sep. 2018.

[5] J.-S. Chou and N.-S. Truong, “Cloud forecasting system for monitoring
and alerting of energy use by home appliances,” Appl. Energy, vol. 249,
pp. 166-177, Sep. 2019.

[6] A. Gupta, G. Gurrala, and P. S. Sastry, “An online power
system stability monitoring system using convolutional neural
networks,” IEEE Trans. Power Syst., vol. 34, no. 2, pp. 864-872,
Mar. 2019.

[7]1 P-Y. Kong, “Cost efficient data aggregation point placement with interde-
pendent communication and power networks in smart grid,” IEEE Trans.
Smart Grid, vol. 10, no. 1, pp. 74-83, Jan. 2019.

[8] C. Arcadius Tokognon, B. Gao, G. Y. Tian, and Y. Yan, ““Structural health
monitoring framework based on Internet of Things: A survey,” IEEE
Internet Things J., vol. 4, no. 3, pp. 619-635, Jun. 2017.

[9] J. Qiu, Z. Xu, Y. Zheng, D. Wang, and Z. Y. Dong, “Distributed gen-
eration and energy storage system planning for a distribution system
operator,” IET Renew. Power Gener., vol. 12, no. 12, pp. 1345-1353,
Sep. 2018.

[10] H. Wu and M. Shahidehpour, “Applications of wireless sensor networks
for area coverage in microgrids,” IEEE Trans. Smart Grid, vol. 9, no. 3,
pp. 1590-1598, May 2018.

[11] H.Ren,B.Hou, G.Zhou, L. Shen, C. Wei, and Q. Li, ““Variable pitch active
disturbance rejection control of wind turbines based on BP neural network
PID,” IEEE Access, vol. 8, pp. 71782-71797, 2020.

[12] F. Yang, L. Du, W. Chen, J. Li, Y. Wang, and D. Wang, “Hybrid energy
harvesting for condition monitoring sensors in power grids,” Energy,
vol. 118, pp. 435-445, Jan. 2017.

[13] J. Zhang, H. Sun, Z. Sun, W. Dong, and Y. Dong, “Fault diagnosis
of wind turbine power converter considering wavelet transform, fea-
ture analysis, judgment and BP neural network,” IEEE Access, vol. 7,
pp. 179799-179809, 2019.

[14] J.Song,J. Wang, and H. Lu, “A novel combined model based on advanced
optimization algorithm for short-term wind speed forecasting,” Appl.
Energy, vol. 215, pp. 643-658, Apr. 2018.

[15] Y. Gao, F. Villecco, M. Li, and W. Song, “Multi-scale permutation
entropy based on improved LMD and HMM for rolling bearing diagnosis,”
Entropy, vol. 19, no. 4, p. 176, Apr. 2017.

[16] H.Liu, W. Song, M. Li, A. Kudreyko, and E. Zio, “Fractional Lévy stable
motion: Finite difference iterative forecasting model,” Chaos, Solitons
Fractals, vol. 133, Apr. 2020, Art. no. 109632.

[17] H. Liu, W. Song, Y. Niu, and E. Zio, “A generalized cauchy method for
remaining useful life prediction of wind turbine gearboxes,” Mech. Syst.
Signal Process., vol. 153, May 2021, Art. no. 107471.

[18] W. Yao, Y. Zhang, Y. Liu, M. J. Till, and Y. Liu, “Pioneer design of non-
contact synchronized measurement devices using electric and magnetic
field sensors,” IEEE Trans. Smart Grid, vol. 9, no. 6, pp. 5622-5630,
Nov. 2018.

21775



IEEE Access

Z. Liu et al.: Syncretic Application of IBAS-BP Algorithm for Monitoring Equipment Online in Power System

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

C. Sun, C. Li, Y. Liu, Z. Liu, X. Wang, and J. Tan, ‘“‘Prediction method of
concentricity and perpendicularity of aero engine multistage rotors based
on PSO-BP neural network,” IEEE Access, vol. 7, pp. 132271-132278,
2019.

Z. Xue, H. Li, Y. Zhou, N. Ren, and W. Wen, “Analytical prediction
and optimization of cogging torque in surface-mounted permanent magnet
machines with modified particle swarm optimization,” IEEE Trans. Ind.
Electron., vol. 64, no. 12, pp. 9795-9805, Dec. 2017.

W. Song, C. Cattani, and C.-H. Chi, “Multifractional brownian motion
and quantum-behaved particle swarm optimization for short term power
load forecasting: An integrated approach,” Energy, vol. 194, Mar. 2020,
Art. no. 116847.

B. Zhang, Y. Duan, Y. Zhang, and Y. Wang, “Particle swarm optimization
algorithm based on beetle antennae search algorithm to solve path planning
problem,” in Proc. IEEE 4th Inf. Technol., Netw., Electron. Autom. Control
Conf. (ITNEC), Jun. 2020, pp. 1586-1589.

Y. Zhang, B. Chen, Y. Zhao, and G. Pan, “Wind speed prediction of IPSO-
BP neural network based on lorenz disturbance,” IEEE Access, vol. 6,
pp. 53168-53179, 2018.

H. Chaoui, M. Khayamy, O. Okoye, and H. Gualous, ‘““Simplified speed
control of permanent magnet synchronous motors using genetic algo-
rithms,” IEEE Trans. Power Electron., vol. 34, no. 4, pp. 3563-3574,
Apr. 2019.

Y. Kassa, J. H. Zhang, D. H. Zheng, and D. Wei, “A GA-BP hybrid
algorithm based ANN model for wind power prediction,” in Proc. IEEE
Smart Energy Grid Eng. (SEGE), Aug. 2016, pp. 158-163.

J. Li, W. Chen, K. Han, and Q. Wang, “Fault diagnosis of rolling bearing
based on GA-VMD and improved WOA-LSSVM,” IEEE Access, vol. 8,
pp. 166753-166767, 2020.

O. Osman, S. Sallem, L. Sommervogel, M. O. Carrion, P. Bonnet, and
F. Paladian, “Distributed reflectometry for soft fault identification in wired
networks using neural network and genetic algorithm,” IEEE Sensors J.,
vol. 20, no. 9, pp. 4850-4858, May 2020.

S. Wang, J. Wang, F. Shang, Y. Wang, Q. Cheng, and N. Liu, “A GA-
BP method of detecting carbamate pesticide mixture based on three-
dimensional fluorescence spectroscopy,” Spectrochimica Acta A, Mol.
Biomol. Spectrosc., vol. 224, Jan. 2020, Art. no. 117396.

Y. Sun, J. Zhang, G. Li, Y. Wang, J. Sun, and C. Jiang, “‘Optimized neural
network using beetle antennae search for predicting the unconfined com-
pressive strength of jet grouting coalcretes,” Int. J. Numer. Anal. Methods
Geomech., vol. 43, no. 4, pp. 801-813, Mar. 2019.

Q. Wu, H. Lin, Y. Jin, Z. Chen, S. Li, and D. Chen, “A new fallback
beetle antennae search algorithm for path planning of mobile robots with
collision-free capability,” Soft Comput., vol. 24, no. 3, pp. 2369-2380,
Feb. 2020.

Y. Cheng, C. Li, S. Li, and Z. Li, “Motion planning of redundant manip-
ulator with variable joint velocity limit based on beetle antennae search
algorithm,” IEEE Access, vol. 8, pp. 138788-138799, 2020.

B. Zhang, C. Wu, Z. Pang, Y. Li, and R. Wang, “Hybrid global opti-
mum beetle antennae search—Genetic algorithm based welding robot path
planning,” in Proc. IEEE 9th Annu. Int. Conf. CYBER Technol. Automat.,
Control, Intell. Syst. (CYBER), Jul. 2019, pp. 1520-1524.

Y. Zhang, S. Li, and B. Xu, “Convergence analysis of beetle antennae
search algorithm and its applications,” 2019, arXiv:1904.02397. [Online].
Available: http://arxiv.org/abs/1904.02397

X. Jiang, Z. Lin, T. He, X. Ma, S. Ma, and S. Li, “Optimal path finding
with beetle antennae search algorithm by using ant colony optimization
initialization and different searching strategies,” IEEE Access, vol. 8,
pp. 15459-15471, 2020.

21776

ZHENGGUANG LIU (Student Member, IEEE)
was born in Hebei, China, in 2001. He is currently
pursuing the bachelor’s degree in electrical and
electronic engineering with Northwest A&F Uni-
versity, China. He has been working on renewable
energy technology and machine learning.

QINYUE TAN (Senior Member, IEEE) was born
in Shaoyang, Hunan, China, in 1975. He received
the Ph.D. degree in power engineering from the
School of Electrical and Electronic Engineering,
Huazhong University of Science and Technol-
ogy (HUST), in 2011. He is currently an Asso-
ciate Professor with Northwest A&F University.
He has always been working on power systems and
their automation, power generation via renewable
energy, and so on. He also presides over a number

of scientific research projects, including the study on the Power Quality and
Mechanism of Coupling Between a Nonlinear or Impact Load and Power
Grid (the National Natural Science Foundation of China).

YUBO ZHOU was born in Shandong, China,
in 1999. He is currently pursuing the bachelor’s
degree in electrical and electronic engineering
with Northwest A&F University, China. He has
been working on power electronics technology.

HENGSHAN XU was born in Shaanxi, China,
in 1989. He received the Ph.D. degree in power
electronics and power drives from North China
Electric Power University, Beijing, China, in 2018.
His current research interests include active
power factor correction (APFC), on-board charger
(OBC), and wide gain dc/dc converters in China
Three Gorges University.

VOLUME 9, 2021



