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ABSTRACT In the semiconductor industry, many studies have been carried out for front-end related
process improvement and yield prediction using machine learning techniques. However, very few research
investigations have dealt with the backend Final Test (FT) yield prediction using the front-end wafer
acceptance test (WAT) parameters. The manufacturing cycle time between wafer fabrication (WF) and FT
can range anywhere between a few weeks to several months. It is therefore important for semiconductor
manufacturers to detect wafer material related low yield problems at an earlier stage for effective cost and
quality control. This is a challenging goal as the input data used for prediction is at a very early manufacturing
stage and the output FT yield for packaged chips is the last stage of the fabrication chain. There are many
unknown production variations caused by different manufacturing processes, equipment configurations and
human interferences in this multi-stage sequential fabrication chain. In this paper, we proposed a novel
procedure to predict the backend FT yield at the WF stage itself using a Gaussian Mixture Models (GMM)
clustering approach that is applied to build a weighted ensemble regressor. Real production data for new chip
product lines are verified with this method and show significant improvement in the prediction performance.

INDEX TERMS Semiconductor manufacturing, yield prediction, final test, Gaussian mixture models,

clustering, regression, ensemble methods, smart manufacturing.

I. INTRODUCTION

In today’s competitive semiconductor industry where huge
amount of data are generated every day from hundreds to
thousands of manufacturing process steps, advanced data ana-
lytics solutions are gaining increasing importance to improve
capacity, quality and efficiency. In particular, production
yield analysis is one of the most important areas of focus from
a semiconductor device manufacturer’s (foundry’s) opera-
tional cost perspective. The typical semiconductor manu-
facturing process begins from the front-end all the way
to the back-end and packaging where four major tests are
conducted. The front-end process includes wafer fabrica-
tion (WF) and wafer probing. During WF, various test struc-
tures are fabricated on a wafer to extract information on the
process and device performance for yield management [1].
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Once WF is completed, the wafer acceptance test (WAT)
is conducted using these test structures to measure impor-
tant process related parameters, such as contact resistance,
threshold voltage and diode leakage current etc. The size
of the test structures used depends on the semiconductor
technology node. In general, only less than 10 test structures
for measurements are sampled from each wafer. It makes
WAT data very difficult to analyse because it only covers
around 10% of the total dies on a single wafer. However, it is
important to analyse WAT data, especially for fabless semi-
conductor companies because this is the first data available
during the entire manufacturing flow which can be used for
wafer quality evaluation and production forecast. The second
test is wafer probing, which provides functional test coverage
on all the dies. Following this is the back-end process which
includes assembly and Final Test (FT). After assembly, each
back-end lot goes through an assembly test to screen out
continuity rejects. The FT involves a chip-level testing and it
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has the largest test coverage in terms of device functionality.
Therefore, the FT yield varies a lot depending on the process
variation, test methodology and equipment condition. The
FT yield is one of the major factors directly influencing
the manufacturing operational cost. Low yield problem at the
FT stage can drastically affect the company’s gross margins.
Current practice for low yield problem analysis is to first
monitor the production FT yield. Once there is a low yield
issue triggered at the back-end, the engineers trace back
to the wafer front-end process manually and speculate the
root cause. It can take several weeks or months to catch the
front-end problem due to long production duration from WF
to FT. Besides, design of experiment (DOE) is a common tool
for wafer process related root cause investigation. However,
DOE is only applicable for univariate and bivariate parameter
analysis. Wafer manufacturing process consists of hundreds
to thousands of parameters. Therefore, it is important to be
able to develop a predictive tool which is capable of analysing
high dimensional parameters to identify process related prob-
lems at a much earlier stage and facilitate corrective actions
more effectively, resourcefully, and efficiently.

In this paper, we propose a novel FT yield prediction
model using the Gaussian Mixture Model (GMM) clustering
approach. The front-end WAT measurements are used as
input data to predict the back-end FT test yield. This makes
the problem more challenging compared to past research
studies since the manufacturing process variation is not lim-
ited to the front-end process alone. The back-end process
including assembly and FT methodology introduces more
uncertainty into the predictive model.

The main motivation for our study is to have an auto-
mated yield prediction tool to identify low yield problems at
a much earlier production stage compared to current prac-
tice. Besides, our tool is able to automatically identify and
rank important WAT parameters and provide quick fix yield
improvement strategies, thereby reducing (if not eliminat-
ing) the cost and time duration for DOE to be performed.
In general, this approach will enable significant manufactur-
ing cost reduction and help monitor product quality, as well
as improve shipment forecast accuracy.

The remainder of the paper is organized as follows.
Section II discussed related work in semiconductor domain.
Section III introduces the machine learning methodologies
used in this work. Section IV describes the flow of FT
yield prediction procedure. Section V presents and discusses
the results by using real production data from a couple of
new chip product lines applied to the procedure. Section VI
presents the case study for feature importance analysis and
yield improvement validation. Finally, we conclude our study
in Section VII along with possible suggestions for further
work.

Il. RELATED WORK

Previous semiconductor industry research explorations used
machine learning techniques that were mainly focused
on the front-end process related problems like virtual
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metrology (VM) improvements in Ref. [2], fault detection
and classification in Ref. [3], wafer yield estimation in
Refs. [4], [5], probe yield excursion detection and root cause
analysis in Ref. [6], probe yield analysis based on wafer
spatial features in Refs. [7], [8] and probe yield prediction
with input parameters including electrical test parameters,
wafer defect and wafer physical data [9], [10]. Based on our
extensive survey, there are limited studies for back-end yield
related problems. One such study by Park et al. in Ref. [11]
demonstrates a framework to predict the FT yield based on
probe test parametric data. Another work by Kang et al. in
Ref. [12] talks about a FT yield classifier which is proposed
by using wafer probe test results and wafer map features as
the input.

To the best of our knowledge, there is no study that deals
with direct backend FT yield prediction using the WAT
parameters at the initial WF stage, which is the key motivation
of our study here. In general, there are two major common
difficulties for semiconductor manufacturing yield prediction
problems, which are high dimensional input data and com-
plex process variations. To tackle the high dimensional input
data problem, the Pearson correlation is one of the common
feature reduction methods mentioned in Ref. [5]. Mutual
information (MI) and recursive feature elimination (RFE) are
also popular feature selection techniques applied in Ref. [13]
for manufacturing cycle time (CT) prediction and in Ref. [14]
for etching process fault detection. A novel feature selection
method for identifying the key parameters of WAT mea-
surements based on Hybrid Feature Selection (HFS) was
proposed by Xu et al. in their work of Ref. [15]. The
HFS method can effectively filter out the noise parame-
ters and achieve accurate prediction of wafer probe yield
with reduced key WAT parameters. However, this method
is computationally expensive because the genetic algorithm
used requires a considerably large number of iterations to
provide a stable solution. Besides, the method is not able to
provide the WAT parameters’ importance ranking using the
generated deep belief network (DBN) model. Deep Neural
Network (DNN) is a popular method for wafer map related
studies in Refs. [7], [8]. However, DNN is not able to directly
provide feature importance analysis. The over-fitting problem
and poor model visibility as mentioned in Ref. [9] makes
DNN not suitable in our study where being able to do low
yield root cause analysis is one of the key priorities.

In Ref. [16], a regression-based model was proposed for
CT factor selection by continuous factors discretization and
stepwise CT-related factor selection. This model is more
suitable for applications where the input parameters are a
mixture of numerical and categorical data. Therefore, it is
unfit for our case when input data are only WAT parameters
and all the more, discretization will reduce the input infor-
mation. Wang et al. in Ref. [17] introduced a factor selection
algorithm for CT explanatory network combined with MI and
network deconvolution techniques. Their results indicate that
the proposed method has higher effectiveness to identify the
explanatory variables. This algorithm is more suitable for
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neural network-based algorithms with data sets containing
both direct and indirect dependencies.

The other major difficulty is the complex phase-wise man-
ufacturing process which renders the production data unsuit-
able for most of the machine learning model assumptions.
Ideally, one would prefer that the input and output parameter
distributions follow the Gaussian distribution; but in real pro-
duction scenarios, the parameter distributions exhibit clus-
tering effects and high skewness due to process variations,
human interference and equipment performance instability or
degradation. The root cause for the low yield issue for each
of the identified clusters can be quite different. A study by
Pampuri et al. in Ref. [2] developed a multilevel lasso model,
showing that the L1 penalized machine learning technique
is suitable to handle data heterogeneity caused by inhomo-
geneous production and equipment logistics. However, this
model is not generalizable because it requires a sound under-
standing of the detailed process to design such a model.

In Ref. [18], Chen discussed using the principal compo-
nent analysis (PCA) approach to enhance the forecasting
performance of the fuzzy back propagation network (FBPN)
for WF CT estimation. In his study, PCA was applied to
formulate variables that are independent of each other and
thereby become new inputs to the FBPN. This approach is not
suitable here for FT yield prediction because root cause anal-
ysis is important for yield improvement and using the PCA
for feature selection will cause WAT parameters’ information
loss and the independent variables become less interpretable
and controllable. A bi-directional classifying fuzzy-neural
approach was also introduced by Chen in Refs. [19], [20] for
WFEF CT estimation. The author applied Fuzzy c-mean (FCM)
clustering for job CT pre-classification using time related
parameters as the input. However, this approach also does
not apply to FT yield clustering because the yield distribution
tends to be mixture of Gaussians and FCM performs well only
in the case of clustering of spherical clusters as discussed by
Suganya et al. in Ref. [21]. Besides, FCM is sensitive to noisy
data [21] and experiences difficulty in handling outlier points
as mentioned by Thomas ef al. in Ref. [22].

Grid search and manual search are the most widely used
strategies for hyper-parameter optimization of machine learn-
ing algorithms as discussed in Ref. [23]. Grid search was
applied to improve Support Vector Regressor (SVR) predic-
tion performance for VM in Ref. [24]. In our work, the grid
search strategy is used for model optimization due to limited
data size and also because there are no neural network based
models under consideration here for model selection.

Ensemble method is used to improve the prediction accu-
racy through combining several models. Saqlain et al. pro-
posed a voting ensemble classifier with multi-type features to
identify wafer map defect patterns in Ref. [25]. The ensemble
classifier was also applied in Ref. [26] to improve accuracy
of wafer failure map pattern classification. The main idea
of clustering is to group the models in several clusters and
choose representative models (one or more) from each clus-
ter [27]. In this study, we use the cluster ensemble method,
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which combines multiple partitionings of a set of objects
without accessing the original features (refer to Ref. [28]).
The purpose of it is not limited to only improve prediction
performance, but more importantly, to exploit the important
and implicit WAT parameters within the sub-clusters for yield
improvement purpose.

Ill. METHODOLOGIES TO BE CONSIDERED
A. FEATURE SELECTION METHODS
1) MUTUAL INFORMATION FEATURE SELECTION
MI is a measure of variable similarity between random vari-
ables, and it describes the difference between the entropy and
conditional entropy for two random variables X and Y. The
definition is

P(x,y)

MIK.Y)=) ) Pylogpopes ()
xeX yeY

where P(x) and P(y) represent the marginal distributions of
the data points in X and Y, and P(x, y) is the joint distribution.
A lower value of the MI feature implies that the variables are
more independent.

2) RECURSIVE FEATURE ELIMINATION

Recursive Feature Elimination (RFE) refers to model build-
ing using the entire dataset and presentation of ranking of the
feature importance. The least significant feature at each itera-
tion is removed. The whole process is repeated until no more
improvements are observed in the prediction performance.
For simplicity, in this paper, we use a basic ordinary least
square (OLS) algorithm to fit the dataset. The F-statistic and
p-values are used for feature ranking.

B. GAUSSION MIXTURE MODELS (GMM)

A Gaussian Mixture Model (GMM) is a probabilistic model
representing a mixture of a finite number of Gaussian dis-
tributions with unknown weights, means and covariances.
The Expectation-Maximization (EM) algorithm is used to
estimate the parameters in the GMM. Assume we have a K
component Gaussian mixture, given training data set, X =
(1, ... xY)and joint distribution of x with a latent variable z
given by:

px, 2) = px|2)p(z) @)
Let m; be the mixture weights for the k components and

therefore

pz=k)y=m, k=1,...K 3)

The overall joint probability of X with the latent variable Z is
then given by:

K

PX,Z) =) mNXilp, Zh) )
k=1

In order to get the values of the parameters my, ik, 2k,
which represent the mixture weights, means and covariances
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between the Gaussian distributions, we solve for the max-
imum log-likelihood function iteratively applying the fol-
lowing two steps in the EM algorithm till convergence is
achieved.

1) EXPECTATION STEP
The likelihood is defined by:

N K
Lz, 1, ) =) logz) Y _p(lz=ipz=k) (5

i=1 k=1
By resolving Eqn. (5), we have the posterior probability for
component z; at iteration ¢ + 1 represented as:

Yi41(28) = Pr(o. w20z = klx’) (6)

2) MAXIMIZATION STEP

We update our estimate of the mixture weight, mean and
covariance of each Gaussian cluster at the iteration, ¢t + 1,
with:

- .
T+ D)= 3 v @) (7)
i=1

SN Xy ()
Z;il Vir1(2h)
SN Xy @) — g+ D) — ez + )T
2721 Vir1(2h)

it +1) = ®)

Si(t+1) =
9

C. BAYESIAN INFORMATION CRITERION
The Bayesian information criterion (BIC) is used as an esti-
mate of the Bayes factor for two or more competing models.

It is a suitable criterion to choose the optimal number of
clusters for GMM [29]. It is defined simply by:

BIC = In(n)d — In(L) (10)

where n is the number of data points, d is the number of
parameters in the model, and L is the maximized value of the
fitted model likelihood. When L increases, the BIC score will
decrease which implies a better fitted model. The first term
of the BIC expression represents the penalty incurred due to
over-fitting when too many parameters are in the model.

IV. YIELD PREDICTION PROCEDURE

The overall process for FT yield prediction includes four
major steps: (A) Data pre-processing, (B) GMM clustering,
(C) Feature selection and model selection, and (D) Model
optimization and model ensemble. The flow chart of our
entire yield prediction framework is presented in Fig 1.

A. DATA PRE-PROCESSING

For the first step of data pre-processing, we calculate the
mean and standard deviation using past three years’ pro-
duction WAT parameters. The mean and standard deviation
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for each individual parameter is used for input data stan-
dardization (normalization). The purpose is to reduce yield
prediction bias caused by different WAT parameters’ scale
of values. Besides, the Pearson correlation is used to remove
highly correlated parameters with a p — value larger than 0.9.
Thereby, we have generated a standard scalar for input data
normalization and dimension reduction.

B. GMM CLUSTERING

The second step involves GMM-based clustering. Along the
whole semiconductor manufacturing process flow, many pro-
cess variations can affect the FT yield, causing yield distri-
bution to show up in clusters with highly skewed or long
tail trends at the lower yield range. The challenge in our
prediction model framework is that the production process
variation parameters are unknown. GMM can be effectively
used to cluster Gaussian distributions based on the EM algo-
rithm. It is assumed that yield variation would be relatively
lower if the material has gone through a similar fabrication
process flow. By clustering datasets based on FT yield, we can
minimize the noise caused by other process variations and
focus specifically on the WAT parameter analyses. GMM
formulations with spherical, diagonal, full and tied covari-
ance matrices and number of components from 1 to 6 are
compared. The GMM model structure with the lowest BIC
score is selected for the dataset clustering. In practice, there
is no prior knowledge of which cluster a particular test data
set would belong to. In order to avoid data leakage problem,
the dataset is subject to GMM clustering only after the train-
ing and test datasets are split in our proposed flow.

C. FEATURE SELECTION AND MODEL SELECTION

Many of the previous attempts [6], [30], [31] to feature selec-
tion and dimension reduction tend to use all of the training
and validation dataset before cross validation. However, this
will result in data leakage problem because the validation
dataset information is already included for feature selection.
In real world application, we will only have the training
dataset available at our disposal during feature and model
selection.

In this section, we propose a nested 10-fold feature
selection cross validation method to avoid the data leakage
problem. The whole dataset is split into 90% training and
validation dataset and 10% test dataset. The 90% dataset is
used for the nested 10-fold feature selection and model selec-
tion cross validation step. A ten-fold Stratified ShuffleSplit
cross validation method is then used instead of a regular cross
validation as recommended by Kohavi et al. in Ref. [32]. At
each fold, 60% of the dataset is used for training and 30% is
used for validation. By using this method, we can randomly
sample the dataset iteratively and simulate a practical situa-
tion wherein the batch of wafers is only partially tested, and
we need to use incomplete production data for feature and
model selection.

During each fold, the training dataset is used for fea-
ture selection and model evaluation. Two feature selection
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FIGURE 1. Overall computational flowchart procedure for Final Test yield prediction in this study.
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methods are evaluated: MI and RFE OLS (defined earlier in
Section II). Six popular and diversified regression models are
selected for comparison. The Lasso regression is one type of
linear regression model to solve high dimensional problems.
It uses L1 regularization for feature selection which reduces
model complexity and improves the prediction performance.
Support vector machine (SVM) uses hyperplanes to maxi-
mize the separation between classes. Kernel tricks can be
used to solve for both linear and non-linear problems. K
Nearest Neighbor (KNN) is a simple and powerful algorithm.
It classifies a new datapoint based on a similarity measure
which is the distance function. The ease of interpretation and
implementation of KNN makes the algorithm widely usable
in pattern recognition and many other areas. The remain-
ing regressors are decision tree based algorithms. Random
Forest Regressor (RFR) is a reliable and efficient model
using the bagging technique and aggregates multiple decision
trees [33]. The Adaptive Boosting (ADA) technique, which
is one of the popular boosting techniques, is often referred to
as the best out-of-the-box [34] classifier when the decision
tree is used as a base estimator. XGBoost (XGB) is also
a decision-tree-based model using gradient boosting frame-
work with good variance bias trade-off and fast execution
speed.

The metric for assessing model performance is taken to be
the Root Mean Square Error (RMSE). At each fold, the model
with the lowest RMSE is selected as the candidate model.
A 10-fold averaged RMSE is used to compare and decide
which feature selection method should be used. The mean and
standard deviation of the RMSE value are taken into consid-
eration for top model selection. Each cluster is running the
cross validation independently. Therefore, the top candidate
models can be different for each cluster.

D. MODEL OPTIMIZATION AND MODEL ENSEMBLE

After the top model is selected for each cluster, we use the
10-fold Stratified ShuffleSplit Grid Search [23] method for
models’ hyper parameters’ optimization. The Grid Search
score is set as the negative mean squared error and 90% of the
dataset is used in this step. The next step is to build a weighted
ensemble regressor using the top model from each cluster. All
the top models’ prediction results are combined with different
weights to provide a final result. The weight is defined as the
percentage of each cluster’s data size over the 90% dataset
(including both training and validation) size. Following this,
the GMM clustering based ensemble regressor is generated.
Finally, an unbiased test result is computed using the 10% test
dataset, which is untouched from the beginning of the whole
process.

V. RESULTS AND DISCUSSION

The recent three months of production data for two different
new chip product lines - Device A and Device B, from
Silicon Laboratories International are used here to test and
validate our yield prediction regressor framework. We focus
on Device A’s model training procedure in this section as its
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FIGURE 2. GMM clustering results for Device A. (a) FT yield distribution
for cluster 0 and cluster 1, (b) BIC results comparison for different
number of components and covariance matrices. Here, n =2 and a
diagonal covariance metric result in the lowest BIC score value.

FT yield distribution is more widely spread and has more low
yield problems that would be worth analyzing. The procedure
for data analysis pertaining to Device B is also the same and
the results for it will be simply summarized in the form of a
table at the end of this section.

After data cleaning through removal of missing and invalid
data, Device A production data set includes 432 backend lots
with FT yield range all the way from 59.61% to 98.32%.
Each backend lot consists of 1-2 wafers with the lot size rang-
ing anywhere between 3000 to 10000 dies. Each wafer has
84 numeric WAT parameters as input data. For the backend lot
with two wafers, the input data WAT measurements are aver-
aged. After input data pre-processing, the number of input
data parameters for Device A reduced from 84 to 61. After
training and test dataset split step, the GMM analysis on the
training dataset reveals that the data optimally comprises of
two clusters (sub-distributions) as shown in Fig. 2(a) and that
the best covariance option is diagonal, corresponding to the
lowest BIC score, as shown in Fig. 2(b). Therefore, we will
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FIGURE 3. Boxplot for Device A 10-fold cross validation RMSE results with six different machine learning models. Left most plot is validation result
without using GMM clustering. Middle and right plots are cluster 0 and cluster 1 results using GMM clustering method.

TABLE 1. Device A 10-fold cross validation RMSE results comparison
between no-clustering and GMM clustering methods.

No Clustering Cluster 0 Cluster 1
Models Mean  Stdev  Mean  Stdev ~ Mean  Stdev
Lasso 5.101 0.802 4.227 0.708 6.498 0.938
SVR 5270 0843 4370 0852 7.830 2.238
KNN 4152  0.706  3.272 0.725 5366 1.142
RFR 4,040 0501 3.712 0973 4711 1.341
ADA 3934 0454 3491 0.885 4433 1.79%4
XGB 4.087 0350 3.562 0.782 4.005 1.289

need to do the training and validation analysis separately for
these two clusters. Cluster 0 has 340 datapoints with a mean
yield of 92.41% Cluster 1 (the lower extended tail of the yield
distribution) has 48 datapoints with a mean yield of 79.29%.
The yield distribution is right skewed and cluster 0 tends to be
more normally distributed and cluster 1 has a wide scattered
spread at the low yield range.

From the 10-fold cross validation results, the RFE
OLS feature selection showed the lowest average RMSE
of 3.651% compared to MI method with RMSE of 3.731%.
Therefore, RFE OLS is selected for feature selection for sub-
sequent model optimization and model ensemble learning.
During the model training and selection step, the 10-fold
cross validation RMSE mean and standard deviation are com-
pared for the case of with and without GMM-based cluster-
ing. Detailed results are presented in Table 1 and in Fig. 3
as well. To compare the performance of our proposed GMM
clustering ensemble regressor, an equal weighted ensemble
regressor using a similar approach but without GMM clus-
tering procedure is examined. From Fig. 3, we can see that
the non-clustering based overall RMSE results are better than
cluster 0 and cluster 1. This should come as no surprise since
the size of the data set used for training here are more than
that available for an individual cluster modeling and analysis
alone.

For the non-clustering method, the tree based regressor
outperforms the other models. The best performing models
are ADA and XGB. These two models results are very close.
Both of them have lower RMSE mean and standard deviation
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results compared to the other four models. The RFR RMSE
mean is slightly lower than that of XGB but standard devi-
ation is higher. Overall, the performance of XGB is better
than that of RFR. For the clustering-based method, the best
models are different for each cluster. For Cluster 0, it is
KNN with an average RMSE of 3.272% and second lowest
standard deviation of 0.725%. For Cluster 1, XGB is the best
performing model with lowest average RMSE of 4.005% and
relatively small standard deviation of 1.289% compared to the
other models.

For the subsequent model optimization step, the number of
input parameters are further reduced to 16 WAT parameters
by using RFE OLS. After optimization, a weighted regressor
is generated using KNN and XGB. The weight for cluster
0 is 340/388 i.e. 0.876 and weight for cluster 1 is 48/388 i.e.
0.124, based on the number of data points in each cluster. The
cluster based regressor yields an RMSE of 2.221% for the
final 10% test data set prediction which is a 46.9% reduction
compared to no clustering regressor with a much higher
RMSE of 4.183%. These results are stated in Table 3. Clearly,
the use of clustering and subsequent ensemble regression
accounting for the individual cluster contributions results in a
far more improvised model learning and prediction outcome
when compared to the standard cluster-free data analysis
approach.

Coming to the analysis of Device B data, it includes
735 backend lots with the FT yield ranging from 66.44% to
98.67%. Each wafer has 120 numeric WAT parameters. After
data pre-processing, the number of input parameters reduced
from 120 to 73. In this case, the GMM clustering approach
identified three discrete clusters. The 10-fold cross validation
results are presented in Table 2 and the best performing mod-
els are highlighted in bold for each cluster. For the approach
without clustering, RFR outperforms all the other five models
and hence, the analysis from RFR is used for comparison
with the split analysis based on the GMM ensemble regressor.
The prediction involving the 10% test data set results are
presented in Table 4. Once again, we see a significant error
reduction of 16.3% in the RMSE value when the GMM-based
cluster approach is applied. The test results are comparable
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TABLE 2. Device B 10-fold cross validation RMSE results comparison
between no-clustering and GMM clustering methods.

No Clustering Cluster 0 Cluster 1 Cluster 2
Models Mean  Stdev  Mean  Stdev  Mean  Stdev  Mean  Stdev
Lasso 6.834 0320 3.035 0.185 2.656 0.129 6.790 1.444
SVR 8.045 0297 3.096 0.181 2.658 0.102 4.754 0.570
KNN 6.922 0306 3253 0.164 2780 0.172 4.672 0.502
RFR 5878 0242 2926 0083 2644 0.113 5002 0.694
ADA 6.165 0235 3.063 0.108 2530 0.084 5.121 0.632
XGB 6.078 0419 3264 0.164 2.629 0.162 4921 0.898

TABLE 3. Device A test dataset RMSE results comparison between no
clustering and GMM clustering method.

Method Top Models  Test Dataset RMSE
GMM Clustering KNN, XGB 2.221
No Clustering ADA, XGB 4.183

TABLE 4. Device B test dataset RMSE results comparison between no
clustering and GMM clustering method.

Method Top Models Test Dataset RMSE
GMM Clustering RFR, ADA, KNN 3.240
No Clustering RFR 3.872

with the absolute error prediction results for probe yield in
Ref. [15]. Therefore, our proposed GMM ensemble regressor
is effective and robust for FT yield prediction.

The hardware configuration on which the simulations were
executed comprises of a personal laptop with 2.9GHz Intel
Core i9 processor, 16GB 2400 MHz DDR4 RAM and Radeon
Pro 560X GPU. The total training time for Device A is
6.44 mins, while the testing time is 3.03 sec. Similarly,
the training time for Device B is 10.01 mins, while the testing
time is 3.81 sec.

VI. FEATURE IMPORTANCE ANALYSIS AND YIELD
IMPROVEMENT VALIDATION
Based on the above analysis, we have generated optimal
models for the individual yield clusters. As a next step, we can
adjust the most sensitive WAT parameters at the WF stage
for FT yield improvement. In this section, we will discuss
the feature importance analysis and examine the validity of
our framework for yield improvement for one of the devices
explored in this study, Device B, fabricated using 55 nm
CMOS technology.

From Device B’s GMM clustering results (which shows
a trimodal yield pattern), the mean FT yield for Cluster-0,
Cluster-1 and Cluster-2 are 92.92%, 82.75% and 70.81%.
The top regression models for these three clusters turn out to
be RFR, ADA and KNN, respectively. For decision tree based
regressors like RFR and ADA, the Mean Decrease in Impu-
rity (MDI) importance is the common method used for feature
importance analysis. The MDI of a feature is computed using
the weighted mean of the individual trees’ improvement in the
splitting criterion produced by each parameter, as described
in Ref. [33]. Since the feature importance is not defined for
the KNN and non-linear kernel SVR, we use RFR for the
WAT parameter analysis of Cluster-2. The feature importance
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FIGURE 4. WAT parameters’ feature importance analysis results for

(a) Cluster-0 (b) Cluster-1 and (c) Cluster-2 showing the 25 most sensitive
input parameters. There are significant differences in the order of
importance of the WAT parameters for these three clusters, which
highlights the importance of the GMM based yield clustering process in
the overall machine learning framework.

analysis ranking trends for the top 25 WAT parameters for
each cluster, fitted with RFR for Cluster-O and Cluster-2 and
ADA model for Cluster-1, are plotted in Fig 4.

It can be seen that the most important WAT parameters
are very different for each of the individual clusters. The
top three WAT parameters for Cluster-0 are WAT_14, WAT_5
and WAT_16. As for Cluster-1, they are WAT_13, WAT_15
and WAT_8 and for Cluster-2, it is WAT_13, WAT_20 and
WAT_21. Note that WAT_13 is the common WAT parameter
between Cluster-1 and Cluster-2 (the two lowest yield clusters
which we intend to target for yield enhancement), which
means that the drift in WAT_13 could possibly be a major root
cause for the low yield problem.

With our feedback on the top five sensitive WAT param-
eters for Cluster-1 and Cluster-2 to the foundry engineers,
a dedicated DOE was formulated with various configurations
of the parameter values by shifting their mean using sigma
values (standard deviation of the parameter) calculated using
historical production data. The details of the DOE configura-
tions are listed in Table 5, wherein the positive and negative
values are indicative of the increase or decrease in the mean
value of the control parameter using a multiplicative factor
to the sigma, where 0 obviously stands for no change what-
soever in the value of the parameter. The specific number of
sigmas chosen for each WAT parameter shift is purely based
on foundry engineer’s experience. Values of mean adjustment
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TABLE 5. DOE lots with top 5 features’ adjustment based on each feature’s sigma value and validation results showing the comparison between actual FT

yield and predicted FT yield.

Top 5 Features’ Adjustment FT Yield

DOE Lots WAT_13  WAT_I5 WAT_8 WAT_20 WAT_ 21 Actual Predicted
(sigma) (sigma) (sigma) (sigma) (sigma) (%) (%)
Lot#1 1.5 1.5 -1.5 1.5 1.5 97.2 87.5
Lot#2 1.5 0 0 0 0 96.7 86.8
Lot#3 0 1.5 0 1.5 1.5 89.6 88.1
Lot#4 0 0 -2 0 0 85.5 87.0
Lot#5 1.5 -1.5 1.5 -1.5 -1.5 84.7 87.1
Lot#6 0 0 2 0 0 77.0 72.5
Lot#7 0 -1.5 0 -1.5 -1.5 71.3 71.4
Lot#8(Ref) 0 0 0 0 0 76.4 74.3

ranging between 1-2 sigma is a common practise for DOE.
Our analysis reveals that WAT_15, WAT_20 and WAT_21 are
found to be moderately correlated WAT parameters during
wafer manufacturing. As such, the DOE settings for these
three parameters are kept in sync. These three parameters are
moderately related to each other by a non-ignorable Pearson
correlation between 0.8-0.9, which makes it necessary for
them to be included in the analysis. As a result, during the
feature selection step, they are not removed from the impor-
tance feature list based on the Pearson correlation results.
Lot#3 and Lor#7 are designed to validate the yield change
by increasing and decreasing these three WAT parameters.
Similarly, Lot#4 and Lot#6 are designed to validate the effect
of WAT_8. Based on foundry engineers’ analysis, increasing
WAT _13 will help yield improvement. Therefore, Lot#2 is
used to validate the effect to yield by only increasing WAT_13.
Lot#1 and Lot#5 are used to evaluate the yield change with
the combination of 5 WAT parameters’ adjustments.

The wafer lots were custom fabricated based on the DOE
configurations, and the lots were tested under the same FT
production environment after probe and assembly. The results
for the actual FT yield and predicted FT yield using the
GMM ensemble regressor are listed in the last two columns
of Table 5. Lot#8 with actual FT yield of 76.3% is the
reference lot without any WAT adjustments. Based on the
actual FT yield results for Lot#2 (where the most sensitive
parameter, WAT_13, is the only one changed), it can be seen
that the FT yield shows a drastic increase all the way up
to 96.7% by adjusting this single parameter. The best per-
formance lot is Lot#1 which includes a decrease in WAT_S,
along with increase of WAT I3 and the 3 remaining WAT
parameters. The overall RMSE by taking the average of the
7 lots” RMSE values between the actual and predicted yield
is 5.327%, which may be perceived to be high. However,
note that the root cause for poor prediction performance for
Lot#1 and Lot#2 (which are the major contributors to the
inflated error) is attributable to the way the input parameter
values are collectively represented here by taking the average
of their values across 9 sites in each wafer. Based on our
investigation, the low yield problem caused by WAT_I3 is
mostly localized to the central site of the wafer, while the
other 8 sites do not really pose the low yield problem. For
the WAT_13 DOE, additional process control was therefore
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needed to artificially increase the central site value so as
to reduce the sigma across the different sites probed, which
explains the anomaly here for Lot#1 and Lot#2. It is to be
noted that our model currently lacks the capability to cap-
ture the location related low yield problem. However, on the
whole, by adjusting the 5 important WAT parameters in the
right directions from their prior means, we have successfully
demonstrated a humongous 27.2% FT yield improvement,
with reference to Lor#8 for the lowest yield sub-population.
The results of the DOE and its strong qualitative agreement
to the actual FT yield results clearly prove that our GMM
ensemble regressor is a robust approach to cluster (or bin
the yield data) and thereby enable customized low yield root
cause analysis and subsequent yield optimization.

VII. CONCLUSION

In this paper, we proposed a novel procedure to predict
semiconductor manufacturing backend FT yield using the
front-end WAT parameters using a suite of machine learning
techniques. The GMM was used for yield data clustering
in our procedure prior to building an ensemble regressor.
Our proposed procedure effectively addresses two common
challenges faced by semiconductor fab process optimization
and yield engineering teams — the high dimensional input
parameter space and complexity in process variations that
arise during different phases of the process chain. Real pro-
cess data sets from two relatively immature chip product
lines were used to test and verify the robustness and validity
of our procedure and the results indeed clearly prove that
the GMM clustering approach provides for a much more
improved prediction model for future root cause analysis and
effective process optimization.

One limitation in this study is that only two feature selec-
tion methods were evaluated, and they were not suitable for
all the models applied during the model selection step. Fur-
ther studies can be done on other feature selection algorithms.
Proper ranking metrics for the feature importance method
can also be explored. The WAT parameters tend to provide
very limited information on the wafer front-end process.
In the future, we can include analysis involving more inline
process related input parameters, which are generated even
earlier than the WAT parameters. Furthermore, in this work,
we only used numerical wafer measurements as input data.
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The role of categorical information such as fabrication and
test equipment as well as product configuration data cannot
be undermined and their influence on the observed and pre-
dicted yield also needs to be accounted for in our future efforts
by finding methods to include categorical input variables in
our analysis framework.

The limitation for GMM is that it is sensitive to the initial
guesses of the parameter values and can get stuck at local
minima. The model selection and optimization method can
be further explored to reduce the training time and com-
putational resource. Besides, there is still scope for low
yield root cause analysis flow enhancement. The method
not only needs to automatically identify the most sensitive
WAT parameters, but also needs to fine tune and recommend
the optimal WAT parameters’ range for production process
yield optimization. Our future work will include physics
/ logic / knowledge-informed neural networks incorporat-
ing the inverse design concept to make better decisions in
estimating the sweet spot in the multi-dimensional process
parameter space for achieving the highest process yield,
ensuring reliability and robustness in the optimized process
conditions.
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