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ABSTRACT In this paper, we address the problem of solving rearranging tasks using a robot. Rearranging
tasks are challenging because they includemany problems to solve at the same time, such as determining how
to pick the items as well as planning how andwhere to place them. Solving a rearranging task usually consists
of finding a set of pick-and-place instructions with a symbolic planner to perform the task. However, if the
symbolic planner does not consider the robot’s capability to execute the instructions, it will likely generate
many infeasible instructions, which wastes time in multiple trials and failures. Therefore, we propose to
combine symbolic and motion planning to confirm a sequence of instructions before its execution by the
robot. To achieve this combination, we use a Motion Feasibility Checker (MFC), which selects a set of
feasible poses for the robot from a feasibility database. TheMFC verifies that the instructions of the symbolic
planning are valid and searches for a pick-and-place pair of poses to execute the instructions. We use a
Monte Carlo Tree Search (MCTS) as the symbolic planner, and we combine it with the MFC when creating
or expanding the states in the tree. After the MCTS finds a set of instructions for the rearranging task,
we execute those instructions with the robot. As these instructions were previously validated, the robot is able
to execute them. The proposed method was tested in a simulation environment that reproduces the scenario
of rearranging products on a shelf of a convenience store. The experiment results show that the proposed
method outperforms the conventional method in various initial states of increasing levels of difficulty.

INDEX TERMS Rearranging task, task planning, symbolic planning, motion planning, service robot.

I. INTRODUCTION
The use of robots outside factories has becomemore common
nowadays. We have robots that help us with daily tasks, such
as floor sweeping or vacuum cleaning, e.g., Roomba1 and
RURO.2 However, there is still a tedious and time-consuming
task performed by humans daily: rearranging task. This is
the second most common task in a daily-life routine [1], so its
automation using robots is expected. Examples of rearranging
tasks are tidying up a room, organizing items on a desk, and
moving items on a shelf.

A rearranging task is challenging because of the technical
difficulties of determining how to pick-and-place the items
with the robot and where to place them in the environment.
This is difficult because the robot often requires to perform

The associate editor coordinating the review of this manuscript and

approving it for publication was Min Wang .
1Roomba robot from iRobot, https://www.irobot.com/roomba
2RURO robot from Panasonic, https://panasonic.jp/tourist/en/soji/

at least one re-grasp to be able to place the item in the
target pose. On top of that, realistic scenarios also present
disturbances, e.g., target items moved by humans or by other
phenomena.

In this work, we focus on the task planning of rearranging
tasks. Specifically, we focus on the symbolic and motion
planning, i.e., how to obtain the sequence of instructions that
the robot needs to execute to reach the goal state or final
rearrangement. Furthermore, we consider realistic conditions
where re-grasps are needed and disturbances are expected.

The most common approach to solve a rearranging task
is to first solve the problem logically at the symbolic level
by obtaining a set of instructions and then execute them
with the robot [2]. This approach is time-consuming because,
when the robot fails to execute the instruction (e.g., due
to a failure in creating the trajectory during motion plan-
ning), it is required to execute the symbolic planner again
to obtain a new set of instructions. This pattern of getting
new instructions without knowing if the robot will be able to
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FIGURE 1. Overview of the proposed method.

execute them increases the risk of falling into a loop of invalid
instructions, thus spending time trying to find a solution that
ultimately may not be executable with the robot.

In this paper, we propose to solve a rearranging task by
combining symbolic and motion planning at the moment
of generating the set of instructions. The proposed method
avoids spending time in poses where the motion planning can
fail by using a valid set of pre-computed poses obtained using
motion planning. This early rejection shortens the overall
planning time. The validation is done using the Motion Fea-
sibility Checker (MFC) and the pre-computed poses stored in
a feasibility database.

We propose to use the Monte Carlo Tree Search
(MCTS) [3], [4] as the symbolic planner, as it considers
multiple options or sequences to reach the goal. Fig. 1 shows
an overview of the proposed method. First, the initial state is
given to the proposed method. Second, the proposed method
uses the MCTS and MFC to create a tree of states and search
for a sequence of instructions. Third, the proposed method
founds a sequence of instructions. Finally, the robot executes
those instructions and reaches the goal state.

Through simulation experiments, we evaluate the perfor-
mance of the conventional and proposed methods, as well as
their robustness to disturbances (e.g., unexpected item move-
ments). We set a task of rearranging items in a convenience

store scenario where items need to be nicely ordered for new
customers, and we prepared initial cases with three levels
of difficulty. We evaluate the compared methods under two
conditions: without disturbances in the environment, and
with forced disturbances. The results show that our proposed
method can successfully solve the rearranging task, even
when re-grasps are necessary and disturbances are present,
and outperform the conventional approach.

The rest of the paper is organized as follows. Section II
explains related works on solving rearranging tasks.
Section III describes our proposed method. Section IV intro-
duces the rearranging task used to test our method and
compare it to other methods. Section V presents the results
obtained in the experiments. SectionVI includes a discussion.
Finally, Section VII concludes this paper and provides some
directions for future work.

II. RELATED WORKS
Rearranging tasks are a complex problem that has been tried
to be solved before, e.g., [5]–[7]. The goal of a rearranging
task is to find a sequence of instructions to move a set of
items from an initial state to a target arrangement (goal state).
There are multiple approaches to solve a rearranging task,
such as hierarchical [7]–[9] and randomized approaches [10].
Some approaches focus on verifying how the actions of the
robot would affect the environment using a geometric planner
and selecting the first solution that has no collisions with the
environment [5], [11].

To combine the symbolic and motion planners to perform
an organizing task has been proposed [12]. This approach
focuses on using a Probabilistic Roadmap Method [13] to
generate new states, validate them and select the state that
has the lowest cost among them. Dantam et al. [14] proposed
to obtain multiple solutions to be saved in a set, regardless
of the cost. In the case that the robot can not execute the
task, the task planner will attempt to execute the next solution
from the set.

Inmost recent works, it has been proposed to use amachine
learning approach to solve rearranging tasks [15]–[17]. These
works focus mainly on how to reach the goal state with less
movements of the items or on rapidly obtaining a new state to
move the items [16], [18]. One of their limitations is that they
assume that the motion planning can always execute the pick-
and-place motion and that the approach to the items is always
from above. In our proposed method, we validate the motions
of the robot before executing them. We do these validations
using a database of feasible poses of the robot, which avoids
failures in motion planning.

III. PROPOSED METHOD
A. OVERVIEW
We propose to combine the symbolic and motion planning
when generating the solution for a rearranging task.

We assume that a rearranging task can be achieved by
repeating the following actions: 1) a robot moves to pick
an item, 2) returns to a neutral pose keeping the grasp of
an item, 3) moves to release an item in the target location,
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FIGURE 2. Components of the proposed method.

and 4) returns to a neutral pose. We consider that the robot
temporarily releases the item before a re-grasp. We also
consider the possible grasping points of the items as known
information, which is determined beforehand based on the
geometry of the items. These grasping points are manually
defined and the proposed method chooses automatically the
grasping point to do the pick-and-place of the item. Thus,
the symbolic planning should decide what item to pick, how
to grasp it, and where to release it, whereas motion plan-
ning should generate the robots movements to achieve the
instructions in the symbolic plan. Since the robot always
returns to a neutral pose, we can classify the movements into
those between a picking pose and a neutral pose, and those
between a placing pose and a neutral pose. Fig. 2 shows the
components of the proposedmethod, and the input and output
of each component.

The MFC verifies if the trajectory between the neutral
pose and the given pose to pick or place exists. The MFC
considers the feasibility of the robot and does not consider
collisions to other items. To accelerate the judgment, we use
a pre-computed feasible motion database.

The MCTS explores various object arrangements,
i.e., states, and selects the path with the highest ratio between
cumulative reward of the states and number of visits to each
state. One of the advantages of the MCTS is that it can obtain
a solution at any moment during the tree search.

Since it is useless to explore states that the robot cannot
reach, the MCTS collaborates with the MFC for rejecting
invalid states with respect to reachability. The MFC evaluates
the validity with respect to the kinematics (e.g., picking an
item with a certain grasping pose and being able to release
it at the target configuration). Thanks to the MFC and the

feasibility database, checking the validity of the state and
their transition is very quick.

Note that calculating the collision-free movement is a
task not for the MCTS and the MFC, but for motion plan-
ning. After the MCTS finds the state transitions to reach the
rearrangement goal, the method generates the actual robot
movements using the MFC’s output and motion planning. It
is also important to mention that the pick-and-place poses
are obtained offline, and during the execution of the task
the motion planner is executed online. Finding a trajectory
between the neutral configuration and the pick or place
poses obtained offline is faster, because all the poses were
already tested offline so the probability of failure in finding a
trajectory is relatively low.

B. STATE REPRESENTATION
To solve a rearranging task, we need to create a representation
of the environment that can be used by the symbolic planner.
We use the properties of the items as a state: the geometry of
the item, its pose in the environment, and the type of item.

From that state, we can create an occupancy grid represen-
tation of m columns by n rows to keep track of the spaces
occupied by the items and the available spaces, which are
candidates for place positions. In cases where an item uses
more than one grid space, all the spaces used by that item
are considered occupied. We also consider that more than
one item can share the same grid. The initial state of the
environment is considered as the root of the tree for the
symbolic planning.

C. SYMBOLIC PLANNING
At the symbolic level, solving a rearranging task is creating
the instructions the robot needs to execute. We chose an
MCTS [3], [4] as a symbolic planner because it can obtain
a solution at any time, and its randomness allows a balance
between exploration and exploitation of the tree. One of the
advantages is that anMCTS does not require exploring all the
states of the tree to find a solution. This is very useful to select
a solution that has a high probability of success.

The MCTS efficiently explores and exploits the states of a
tree to solve a complex problem. Examples of these problems
can be games such as chess, Go, or tic-tac-toe. The decisions
of the MCTS are represented as a tree of states, where each
state is linked by state transitions of possible actions of the
robot moving an item. TheMCTS chooses the solution which
has the highest ratio between rewards and visits. The MCTS
generates new states by moving the items to the available
spaces in the occupancy grid. The MCTS considers moving
the item to the target goal pose. The MFC checks if this
movement of the item is feasible or not. Fig. 3 shows the
four stages of the MCTS: selection, expansion, simulation,
and back-propagation [3], [4]. The execution of these four
stages constitutes one iteration of the MCTS. In our proposed
method, we modified the expansion and simulation stages of
the MCTS to use the MFC.

In the expansion stage, the MCTS generates one or more
states that have yet to be explored. From the generated states,
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FIGURE 3. Stages of the Monte Carlo Tree Search using the MFC.

one state is randomly selected to be used in the simulation
stage. During the expansion stage, we prune the tree using the
MFC to remove invalid states. We perform this tree pruning
to avoid the MCTS spending time in invalid states during its
iterations.

In the simulation stage, from the new state created in the
expansion stage, the MCTS generates random valid states,
moving one item randomly, until one of the following three
conditions is met: it reaches a final state that cannot be further
explored, it reaches the goal state, or it reaches the maximum
depth of the simulation. These generated states are validated
with the MFC to ensure that all the states used in the MCTS
are feasible. The maximum depth of simulation allows the
MCTS to finish the simulation stage early if it does not reach a
final state and to continue with the execution of the algorithm.
The last simulated state is evaluated using the rearranging
rules, which are the guidelines of how and where to place the
items in the environment.

The back-propagation stage updates the reward values and
number of visits to each state in the path until the expanded
state in the tree. We use a reward r(si), where si is the last
simulated state in the simulation stage. The reward is based
on the rearranging rules.

Once we complete an iteration of the MCTS, the process is
repeated until the tree search is finished. The tree search ends
when one of the following stopping conditions is achieved:
we obtain the maximum score in the rearranging task or a
set time has passed. In case that the search ends because
of the maximum score, the path that reaches the maximum
score is selected. Otherwise, the sequence selected is based
on the states in the tree that have the highest ratio between
the accumulative reward and the number of visits.

D. MOTION FEASIBILITY CHECKER
The MFC validates the received state in regard to the robot
motions, searches for a combination of pick and place poses
from the feasibility database, and determines the number of

pick-place actions that the robot needs to reach the states in
the MCTS. The input of the MFC is the current state and the
target state of the item. The output of the MFC is the validity
of the state, and the sequence of pick-and-place poses of the
end-effector to reach the target state, if the state is deemed
valid.

The target state of the MCTS has the information of the
item to be moved, namely, the initial pose Tinitial and target
pose Ttarget of the item. Based on Tinitial, the MFC decides the
grasping point of the item and then obtains a set of pick and
place candidates that are close to the grasping point from the
feasibility database. These candidates can be slightly deviated
from the planned grasping point because of the sampling of
the database. Then, the MFC uses these poses to search for
a combination of pick and place poses that closely approxi-
mates the final pose of the item to the required target pose in
the state of the MCTS.

The MFC obtains Tpredicted by calculating the transform of
the item, if it were picked and placed with a pick and place
poses from the databases. This is an approximation of how
the robot would place the item in the environment. Then,
the MFC compares and calculates the difference between
Tpredicted and Ttarget using (1).

f (Ttarget,Tpredicted) = w1fd (Ttarget,Tpredicted)

+w2fg(Ttarget,Tpredicted), (1)

where fd is the Euclidean distance between the positions and
fg is the difference in the orientation. We use the geodesic
unit sphere [19] to calculate the difference between the ori-
entations of the target and predicted poses. We use w1 and
w2 to represent the respective weights for the position and
orientation. In case that the MFC receives multiple pick-and-
place candidates from the feasibility database, the MFC will
calculate all the possible combinations between those pick
and place poses, then select the combination that places the
item the closest to Ttarget. We use a threshold th to compare
with the result of (1) between Ttarget and Tpredicted. If the
value is greater than th, we need to do a re-grasp of the item
to achieve the task. The intermediate pose of the item for
the re-grasp is the place pose of the item Tpredicted from the
previous search that was the closest to Ttarget. This Tpredicted
is considered as the new initial pose Tinitial for the new search.

The total number of pick-place actions required to reach
Ttarget is also considered when the MCTS needs to evaluate
the state. We compare the total number of pick-place actions
to a maximum number of actions already defined. In case
that the total number of actions is greater than the maximum
number of actions, the MFC will determine that the tentative
state is invalid and theMCTSwill erase that invalid state from
the tree. In case that the tentative state is valid, the MFC will
return the combination of pick and place poses and the total
number of actions of the robot that are necessary to reach
the tentative state. Fig. 4 shows a flowchart of how the MFC
validates a state.

The process to obtain the pick and place candidates from
the database is the following. First, based on the initial pose
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FIGURE 4. Validation of a state using the MFC.

of the item Tinitial, we select a grasping point. The grasping
points are defined beforehand depending on the geometry of
the item (e.g., center of the faces). Second, we obtain the
pose of the grasping point with respect to the robot. Finally,
we search and select in the database for the poses that are
close to the grasping point. The distance that we consider to
the poses from the grasping point depends on the sampling
of the database. To select the place candidates we use the
grasping point obtained for the pick. Then, using the target
pose of the item Ttarget, we obtain the ideal pose of the
grasping point in the target. Finally, we search in the database
for the poses close to that point, as we did for the pick.

FIGURE 5. Illustration of the pick or place maneuvers.

Note that the MFC is an approximation of the motion
planner. Thus, the MFC has some limitations compared to
the motion planner. These limitations are on the sampling of
the feasibility database and the collisions of the robot with
the environment that the MFC does not consider when it
checks if a state is executable. The limitation of the collisions
with the environment can be solved by adding the environ-
ment information at the moment of creating the feasibility
database.

E. FEASIBILITY DATABASE
The feasibility database contains valid poses of the robot’s
end-effector. We consider as a feasible pose a pose that is
reachable by the robot in different orientations and where we
can execute a pick or place maneuver.

We consider as a pick or place maneuver the motion from
a neutral configuration (home position) of the robot to a
hovering pose over the grasping point, from the grasping
point back to the hovering pose, and finally from the hovering
pose to the neutral configuration, as shown in Fig. 5. The
neutral configuration of the robot is defined as a joint angle
configuration; this ensures the trajectories to the pick and
place poses start always from the same robot configuration.

The process of creating the feasibility database is the fol-
lowing. First, we create a set of pick and place pose candidates
P and Q, respectively. Then, each pose is validated with
the motion planner moving from the neutral configuration
to hovering pose and, finally, to the pick or place poses.
We discard the invalid poses from the set.

To validate the pose, we use the motion planner to create a
trajectory to the pose of x, y, zhovering, roll, pitch, yaw where
zhovering is an offset in the z-axis of the pose and roll, pitch,
yaw are the orientation of the end-effector. Second, in case
that the planner can create a trajectory to the hovering pose,
we attempt to create the trajectory to reach the pick or place
poses. Finally, we return to the neutral configuration. If the
motion planner succeeds in creating a trajectory for the pick
or place poses, we add that pose to the set of valid poses.
A reachable pose is not always a feasible pose. This is because
we need to reach the pose from a specific orientation.

After checking all the poses for pick and place, we obtain

P =
[
P1,P2,P3, · · · ,Pn],

Q =
[
Q1,Q2,Q3, · · · ,Qm],
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FIGURE 6. Simulation environment and end-effector used in the
experiments.

where P andQ are the pick and place poses sets, respectively.
Each element P and Q is a x, y, z, roll, pitch, yaw pose of the
end-effector, n and m are the number of valid poses for the
sets of pick and place, respectively.

The reason why we use two different sets of valid poses is
because we consider that we can pick an item from multiple
directions but, at the moment of placing the item, we have
more restrictions in how to place it based on the rearranging
rules.

IV. EXPERIMENTAL SETUP
A. SIMULATION ENVIRONMENT
To evaluate our proposed method, we executed a sandwich
rearranging task in a simulation environment. We used a sim-
ulation environment in Gazebo.3 We used a robot-arm KUKA
LBR iiwa 14 R8204 controlled through the open-source
package iiwa_stack [20] with ROS.5

The robot arm has 7 DOF and is mounted on a fixed base in
front of a shelf, as shown in Fig. 6. The position of the shelf’s
bin is at 0.34 m,−0.60 m and−0.15 m in x, y, z, respectively,
from the base of the robot arm. To manipulate the objects,
we used a custom-made end-effector with an extra DOF and
a suction cup, as shown in Fig. 6b.

B. REARRANGING RULES
The rearranging task is based on the restock and disposal
task of the Future Convenience Store Challenge (FCSC) [21],
[22], one of the challenges in the World Robot Challenge
20186 (WRC) held in the World Robot Summit 2018. The
aim of the FCSC is to automate various tasks done in a
convenience store.

We consider this sandwich rearranging task challenging
because it requires to pick-and-place an item complying with
a set of rules. Also, during FCSC 2018, none of the teams that
participated were able to complete the sandwich rearranging
task. One of the many challenges of this task is to change the

3Gazebo, http://gazebosim.org/
4KUKA LBR iiwa 14 R820, https://www.kuka.com/en-de/

products/robot-systems/industrial-robots/lbr-iiwa
5Robot Operating System, http://www.ros.org/
6WorldRobot Challenge, https://worldrobotsummit.org/en/index2018.html

FIGURE 7. Illustration of a correct final state, all the items are in the
correct position and orientation on the shelf. Item B is not aligned as the
others, but its orientation is still valid by the rules. Items of the same type
are together. The total score of this rearrangement is 12 points, which is
the maximum score.

orientation of the item. To achieve this, the robot requires to
do multiple re-grasps of the item.

The sandwich rearranging task consists of rearranging four
sandwiches in a shelf. The rules of the rearranging task are the
same as in the restock and disposal task of FCSC7:
• The bottom surface of the product must be in contact
with the shelf.

• The label of the product faces the front.
• The tolerance of the orientation is 30◦.
• All products should be placed within 0.05 m from the
edge of the shelf.

• Items of the same type must be grouped and placed
within 0.04 m from each other.

We evaluate the final rearrangement based on the rearrang-
ing rules. The score for each item in correct position and
orientation is three points. The maximum score is 12 points.
Fig. 7 shows an illustration of a correctly rearranged state.

C. METHODS FOR COMPARISON
To execute this sandwich rearranging task, we consider the
following three methods and their variations:
• Conventional method (symbolic planner independent
of themotion planner). In this method, if there is a failure
in the motion planner while executing the instructions
with the robot, the symbolic planner is executed again.
The symbolic planner is just a greedy algorithm that
searches for the first valid solution for moving an item.
This algorithm receives the information of the items,
checks if there is an item of the same type in the front
of the shelf and selects the closest empty grid to the
existing item. If there are not other items of the same
type, it selects the grid with more empty grids next to
it in the front of the shelf. We consider two variations
of this method for the experiments. In the variation
A, the symbolic planner only obtains the information
of the environment one time. Then, the robot executes
the instructions from the symbolic planner. In the vari-
ation B, after moving an item, the symbolic planner

7FCSC rule book, https://worldrobotsummit.org/en/wrc2018/service/pdf/
Rulebook_task1.pdf
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obtains again the information of the environment and
generates a new set of instructions for moving the items.

• Conventional method usingMFC. This method is sim-
ilar to the Conventional method, but the instructions are
validated with the MFC before executing them with the
robot. If an instruction is not valid, the symbolic planner
is executed again. Similar to the Conventional method,
we consider the variations A and B for this method.

• Proposed method. This method uses an MCTS and the
MFC to combine the symbolic andmotion planning. The
MCTS creates a tree of states and validates the states
with the MFC. Then, the MCTS finds the instructions
that can be executed with the robot. In the proposed
method, we also consider two variations for the exper-
iments. In the variation A, the stop condition is when
the MCTS finds a path that obtains the maximum score.
In case that there is a disturbance in the environment
during the execution, the previously obtained solution is
abandoned and the MCTS will search for a new solution
from the current state. This variation obtains the instruc-
tions for moving all the items before the execution. In
the variation B, the stop condition is a set time.When the
stop condition is reached, the MCTS will select the state
with highest possibility of success (i.e., the ratio between
the accumulative reward of the state and its number of
visits). After each movement of the item, the MCTS
will update the information of the environment. This
variation obtains the instructions for moving one item
at a time.

During the execution of the instructions, the robot receives
the information of the pose of the item, before grasping it.
This is done for all the methods to compensate for distur-
bances in the environment before the pick. In the case of
the methods that use the MFC, a new search of the MFC is
done and a new sequence of pick and place poses of the robot
end-effector is obtained. Because all the methods obtain the
current pose of the item before the robot grasps it, we can say
that all the methods are robust to pick the item.

D. EVALUATION
We evaluate the performance of the proposed method using
the score (i.e., score using the FCSC 2018 rules), task comple-
tion time, symbolic planning time, and motion planning time.
The task completion time of the rearranging task considers
the time to obtain a symbolic solution and the time to plan
and execute the trajectories with the robot.

There are two conditions for the experiments: one, where
there are no external disturbances in the environment and two,
where there are external disturbances. We consider that in
the real world, while the robot is doing the rearranging task,
a user can take an item and move it to a different part of the
shelf. The second condition is to simulate those actions of
the user. We consider the disturbance as a random movement
of an item, after the robot executes an instruction. These
are the conditions to simulate external disturbances to the
items:

• The random movement is in the range of −0.1 m to
+0.1 m in x-axis and y-axis.

• The item is moved while collision with the other items
does not occur.

• The final pose of the item must be inside the area of the
bin of the shelf.

In the variation A, we set the stop condition for the MCTS
to be when it finds a branch of the tree that has the maximum
score. In the variation B, the stop condition is a search time
of 1 minute. After that, the state with the highest possibility
of success is selected.

In total, we performed 200 trials with each method, 100 per
disturbance condition. Each trial is a rearranging task with
four items on random poses on top on the shelf.

We consider the difficulty of the rearranging task based on
the initial state of the environment. We want to evaluate the
performance of the proposed method with different difficul-
ties for the same task. Furthermore, a low-difficulty state is
where the robot needs few actions to reach the goal, whereas
a high-difficulty state is where the robot needs to do multiple
actions to reach the goal state. In Appendix A, we explain
how we define the difficulty for the initial state.

E. CREATION OF THE FEASIBILITY DATABASE
The feasibility database was created by validating possible
pick and place poses on the top of the bin of the shelf. The size
of the bin is 0.9 m in length by 0.4 m in depth. We sampled
poses on the bin at every 0.01 m in x-axis and y-axis and
we sampled in the z-axis every 0.01 m starting from the
surface of the bin to a height of 0.1 m. We considered nine
possible directions to pick an item and six possible directions
to place an item, these pick and place orientations are shown
in Fig. 8. In each direction for pick, we consider five rotations
of the end-effector: 0◦, ±30◦ and ±45◦. In the case of the
place, we consider three rotations: 0◦ and ±45◦. The created
feasibility database has a total of 620714 valid pick poses and
136679 valid place poses.

F. OTHER PARAMETERS
Based on the rearranging rules, we set a threshold th to
determine if the item complies with the rearranging rules or
the robot needs to do a re-grasp. The value of th is 0.3. Any
value greater than this means that the item does not complies
with the rules and the robot needs to do a re-grasp of the item.
We set the values of w1 and w2 in (1) to 0.5 to give the same
importance to the orientation and position of the items.

To represent the occupancy of the state we use a grid of two
rows by eight columns. Using this representation, the number
of rows can be used to determine if an item is on the back,
front or middle of the shelf, in case that is using both rows.
The width of the columns is approximately the same as the
width of the sandwiches. This helps to simplify the number
of possible movements of an item in the symbolic planning,
because we can only have one correct item per grid. In the
MFC, we set the maximum number of actions of the robot to
move an item to six. Based on some preliminary experiments,
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FIGURE 8. Pick and place directions of the end-effector used in the
creation of the feasibility database.

we know that in the worst case the robot needs six actions to
put an item in front of the shelf. In the simulation stage of the
MCTS, we set the depth of simulation to five.

V. RESULTS
We divided the results of the experiments in two subsections.
Subsection V-A shows the results of the experiments without
external disturbances, whereas V-B shows the results with
the disturbances. In addition, we separated the experiments
based on the difficulty of their initial states in three levels:
low, medium and high.

A. EXPERIMENTS WITHOUT DISTURBANCES
In the experiments without disturbances, we evaluate the time
and performance of the methods. We consider the variation A
of the Conventional and Conventional using MFC methods
because, without external disturbances in the environment,
the poses of the items do not change apart from when the
robot does the pick and place motion. Thus, the solution of
variations A and B should be the same.

FIGURE 9. Scores of the experiments without disturbances divided in
three groups by the difficulty level of the initial state.

Fig. 9 shows the score of the methods based on the dif-
ficulty of their initial states. We can observe the advantage
of using any of the variations of the proposed method com-
pared to the other methods. The proposed methods A and B
outperform the others in all the difficulties. Fig. 9 also shows
that, when the level of difficulty of the initial state is high,
the greedy approach of the Conventional method does not
perform well.

Table 1 shows the score and task completion time of the
methods. As we can see in this table, the scores of the pro-
posed methods A and B are higher than the other methods.
Regarding the task completion time, the proposed methods
A and B take more to complete the task. This is because
the proposed method builds a tree with multiple states and
searches between those states for a solution. The proposed

TABLE 1. Results of the experiments without disturbances.
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FIGURE 10. Task completion time of the experiments without disturbances divided in three groups
by the difficulty level of the initial state.

method A uses more time to find a solution compared to the
variation B, which is directly related to the stop condition.
In the variation B, we stop the search after one minute and
select a state with the highest possibility of success. In the
variation A, there is a deeper exploration of the tree, i.e., until
a state with the maximum score is reached.

The advantage of the proposed methods A and B are that
they confirms that the generated instructions are valid. In this
way, the proposed methods ensure that the solution can be
executed with the robot. This is a trade-off between the time
to find a solution and the obtained score.

Fig. 10 shows the time that each method used in searching
for a solution and performing the actions with the robot. The
proposed methods A and B use most of their time search-
ing for the solution but, in the execution, their planning an
execution time is similar or shorter than the Conventional
method.

We can observe that between the Conventional and Con-
ventional using MFC, the latter is multiple times faster than
the former. This proves that it is better to validate the instruc-
tions before executing them with the robot. Moreover, using
the MFC reduces the failures in the motion planner compared
to the Conventional method. Using the MFC to confirm the
trajectories before executing them is a better approach than
just attempting to execute themotion with themotion planner.
Overall, the proposedmethod proved to be efficient in finding
a solution for the rearranging task.

B. EXPERIMENTS WITH DISTURBANCES
We compare our proposed methods A and B to the Conven-
tional using MFC A and B. The results obtained in the envi-
ronment without disturbances showed that the Conventional
method obtains a lower score compared to the others meth-
ods. In the experiments with disturbances, the Conventional
method is not used, because its results will not be useful as a
benchmark to compare with the others.

FIGURE 11. Scores of the experiments with disturbances divided in three
groups by the difficulty level of the initial state.

Fig. 11 shows the scores obtained by the methods. The
Conventional using MFC A and B have a lower score com-
pared to the proposed methods. The Conventional usingMFC
only obtains a solution for moving one item at a time, whereas
the proposed method explores the tree considering the whole
sequence to move the items. This shows the robustness of
our proposed method when there are disturbances in the
environment.

Table 2 and Fig. 12 show the score and task comple-
tion time of the methods. Similar to the results previously
obtained, the proposed methods take more time to complete
the task, but obtain a higher score than the others.
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TABLE 2. Results of the experiments with disturbances.

FIGURE 12. Task completion time of the experiments with disturbances divided in three groups by the difficulty level of the initial
state.

We can conclude that, in all the cases, the variations of
the proposed method obtain a higher score than the other
methods, regardless of the difficulty of the initial state and
the presence of disturbances in the environment.

Fig. 13 shows the robot re-grasping an item multiple times
to move it to the front of the shelf. The MFC is used to
obtain the poses to pick-and-place the item. Fig. 14 shows
the robot performing the rearranging task, the instructions
are obtained using the proposed method B. This YouTube
playlist8 contains the videos of the experiments.

VI. DISCUSSION
In Section V, we showed that the proposed method variations
A and B obtain a higher score than the other methods. We
also verified that the proposed method can solve the task
even when disturbances in the environment occur and obtain
a score higher than the other methods.

8Playlist of the robot rearranging an environment,
https://www.youtube.com/playlist?list=PLMnssJ3KtZsmVXuuibJqJdjU-
NhpiGL1a

Recent works on rearranging tasks [15]–[17] assume that
the motion planning will always be successful when mov-
ing the items. Theoretically speaking, these approaches are
equivalent to having the motion and symbolic planning sep-
arated as in the Conventional method A and B in our experi-
ments. On the other hand, the approach of Dantam et al. [14]
is similar to what we do by validating the instructions before-
hand but they do not consider the disturbances in the envi-
ronment. In the case of a disturbance, their approach requires
to search for a new solution, which is similar to the proposed
method A that turned out to be time-consuming.

It is also important to mention that the recent works in rear-
ranging tasks [14]–[17] only consider grasping the items from
the top and they do not consider the re-grasping of the items,
which is usually necessary in realistic scenarios. In contrast,
our proposed method was evaluated in a realistic rearranging
task scenario where, to reach the goal state, the items need to
be re-grasped more than once.

We consider that, in such scenarios, our proposedmethodB
is a better solution because it it leverages the advantages of the
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FIGURE 13. Robot rearranging an item by performing multiple re-grasps.

FIGURE 14. Robot rearranging an environment. The sequence of actions is obtained from the MCTS, and the re-grasping poses come from the
MFC.

MCTS such as finding a solution at any moment during the
tree search. Together with the MFC that early rejects invalid
instructions. This allows the proposed method B to find a
solution with a high rate of success, and theMFC ensures that
the robot can perform the instructions. The MFC also obtains

the number of actions required to perform the re-grasping of
the items and the pick-and-place poses for the end-effector.

It is also important to mention that the proposed methods
A and B did not obtain the maximum score in the experi-
ments without disturbances because of the following reasons.
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The MCTS in the proposed method finds a solution that can
be executed, but during the execution of the instructions there
are collisions between the items that were not considered
in the solution. The proposed method only considers the
collisions of the robot with the environment, but not of the
items.

VII. CONCLUSION
In this paper, we proposed a novel approach to solve a rear-
ranging task by combining the symbolic and motion plan-
ning. Our proposed method finds a solution by combining an
MCTS and the MFC. The MFC validates the solution using a
pre-computed feasible motion database, to determine if there
is a pick-and-place sequence that satisfies each instruction
in the solution. The obtained results show that the proposed
method outperforms the other methods and it is robust against
disturbances in the environment. In particular, the variation B
of the proposed method obtains a higher score than the other
methods in all the scenarios.

We consider as future work to reduce the time that the
MCTS uses in the tree search. This can be achieved by
modifying the MFC to return the first valid combination of
pick and place candidates that places the item complying
with the rearranging rules, instead of doing all the possible
pick and place combinations and then selecting the closest
to the target. Another future improvement to our method is
to use a machine learning approach to accelerate the tree
search, training a model with different patterns of rearranging
an environment. We also consider evaluating the proposed
method rearranging different environments changing the type
of items and rules.

APPENDIX A. DIFFICULTY OF A STATE
We formulate the difficulty of a state based on the maximum
distance that we couldmove the items in the shelf, the number
of actions to change the side of the item that is facing down
and the difference between the orientations of the initial and
target pose of the item. Equation (2) shows how we calculate
the difficulty for one item.

f (p, n,q) =
w1f1(p)
pmax

+
w2f2(n)
nmax

+
w3f3(q)
2π

, (2)

where p, n, q are the initial position of the item, side of the
item that is facing down, orientation of the item, respectively;
f1, pmax, f2, nmax and f3 are the distance to move an item
to a corner of the shelf, the maximum distance that an item
can move inside the shelf, the number of actions required to
change the side that is facing down to 0 and the difference
between the two orientations, respectively and w1, w2 and w3
are the weights to balance the importance of the metrics in
the equation.

We define the difficulty of a state D as the sum of the
difficulties of rearranging each item as shown in (3).

D =
m∑
i

f (pi, ni,qi), (3)

FIGURE 15. Sides of the item.

where m is the set of items to rearrange and i is an item in
the set. A difficulty of 0 is an easy initial state that does not
require many actions of the robot, whereas a difficulty of 1
is a difficult initial state, where the robot needs to perform
multiple maneuvers and re-grasps of the items. We divide the
initial states into three groups based on their difficulty: low
(0.0 to 0.33), medium (0.34 to 0.66) and high (0.67 to 1.0).

Equations (4), (5) and (6) show how to calculate the dis-
tance, number of actions of the robot and the difference
between two quaternions, respectively.

f1(p) = max(fd (p,pr ), fd (p,pl)), (4)

where pr and pl are the positions of the right and left corner
of the front of the shelf, respectively, and fd is the euclidean
distance between the two positions. We use the distance to
the right and left corners of the shelf because we consider the
worst case for moving the item. This would be moving the
item from one side of the shelf to the corner in the opposite
side. Fig. 15 shows the assigned numbers for each side of the
item. Our target configuration of the item is when the side 0 is
facing down in contact with the shelf.

Based on preliminary experiments, we found that when the
side facing down is 1 or 2, the robot needs three actions to
move the item in the worst case. If the side that is facing
down is 3 or 4, the robot needs six actions to move the item
in the worst case. Based on this information, we define (5)
to determine the number of actions required by the robot to
move the item so the side that is facing down is 0.

f2(n) =


0, if n = 0,
3, if n = 1 or n = 2,
6, otherwise,

(5)

where n is the current side of the item.
To determine the difference between the quaternions of the

initial pose and target pose rotation, we use as metric the
geodesic unit sphere [19]:

f3(q) = 2 arccos(q · qtarget), (6)

where q and qtarget are the rotations of the initial and target
poses, respectively, in this case qtarget is the rotation of the
item when it is placed in front of the shelf. qtarget is the same
as an identity quaternion.

For the value pmax we consider the maximum distance that
we can move the item in the shelf, that is the diagonal of the
bin of the shelf (0.98 m). In the case of the maximum number
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FIGURE 16. Initial states with different levels of difficulty.

of actions nmax, based on preliminary experiments we know
that in the worst case is when the sides 3 or 4 are facing down.
So the value of nmax is six.

Fig. 16 shows the difficulty of two initial cases. Fig. 16a
is a low difficulty state, where the items are in the correct
configuration in front of the shelf, but the items of the same
type are not grouped together. Fig. 16b is a high difficulty
state where the items are scattered in the shelf. This state
the robot needs to perform multiple re-grasps to solve the
rearranging task.
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