
Received January 19, 2021, accepted January 25, 2021, date of publication January 28, 2021, date of current version February 8, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3055353

Incorporating Unmodeled Dynamics Into
First-Principles Models Through
Machine Learning
WARD QUAGHEBEUR 1,2, INGMAR NOPENS2, AND BERNARD DE BAETS 1
1KERMIT, Department of Data Analysis and Mathematical Modeling, Ghent University, 9000 Gent, Belgium
2BIOMATH, Department of Data Analysis and Mathematical Modeling, Ghent University, 9000 Gent, Belgium

Corresponding author: Ward Quaghebeur (ward.quaghebeur@ugent.be)

This work was supported in part by the Research Foundation - Flanders (FWO) through under Grant 3S79219, and in part by the Flemish
Government under the ‘‘Onderzoeksprogramma Artificiële Intelligentie (AI) Vlaanderen’’ Programme.

ABSTRACT First-principles modeling of dynamical systems is a cornerstone of science and engineering and
has enabled rapid development and improvement of key technologies such as chemical reactors, electrical
circuits, and communication networks. In various disciplines, scientists structure the available domain
knowledge into a system of differential equations. When designed, calibrated, and validated appropriately,
these equations are used to analyze and predict the dynamics of the system. However, perfect knowledge
is usually not accessible in real-world problems. The incorporated knowledge thus is a simplification of
the real system and is limited by the underlying assumptions. This limits the extent to which the model
reflects reality. The resulting lack of predictive power severely hampers the application potential of such
models. Here we introduce a framework that incorporates machine learning into existing first-principles
modeling. The machine learning model fills in the knowledge gaps of the first-principles model, capturing
the unmodeled dynamics and thus improving the representativeness of the model. Moreover, we show that
this approach lowers the data requirements, both in quantity and quality, and improves the generalization
ability in comparison with a purely data-driven approach. This approach can be applied to any first-principles
model with sufficient data available and has tremendous potential in many fields.

INDEX TERMS Differential equations, dynamical systems, first-principles modeling, hybrid modeling,
machine learning.

Differential equations are ubiquitous for modeling dynam-
ical systems based on first-principles [1], [2]. In physics,
chemistry, biology, and other fields, scientists try to structure
domain knowledge in a system of differential equations [3].
The parameters of these equations are subsequently estimated
from relatively few observations. The resulting model can
then be integrated by a numerical solver to reproduce the
dynamics of the system and make predictions. As the esti-
mated parameters are limited in number and have a physical
meaning, the model is interpretable and can improve under-
standing of the system. However, the available knowledge of
the system is usually not perfect, as it is incomplete, a simpli-
fication, and subject to certain assumptions. This uncertainty

The associate editor coordinating the review of this manuscript and

approving it for publication was Kaustubh Raosaheb Patil .

of the model structure propagates and worsens the extent to
which the model reflects the real system.

When domain knowledge of the dynamical system is lack-
ing, the model structure can be learned from data. Sym-
bolic regression attempts to find the model structure in the
space of mathematical expressions to find the model that
best fits the dataset, balancing complexity and accuracy
[4]–[6]. Symbolic regression, usually performed through
genetic programming [7], [8], can potentially retrieve any
structure, but is computationally expensive and scales poorly
to larger systems. Alternatively, the underlying structure can
be discovered through sparse regression over a library of can-
didate functions, often polynomials [9], [10]. This approach
intrinsically balances complexitywith accuracy in a computa-
tionally efficient manner, but is obviously limited by the can-
didate functions present in its library. When the underlying

22014 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0002-6162-2124
https://orcid.org/0000-0002-3876-620X
https://orcid.org/0000-0002-0289-5480


W. Quaghebeur et al.: Incorporating Unmodeled Dynamics Into First-Principles Models Through Machine Learning

structure cannot be expressed as a sum of these functions,
sparse regression fails.

Other techniques can be used to learn the structure from
the available data in a black-box manner, such as radial basis
functions [11], Gaussian processes [12], [13], equation-free
models [14], or nonlinear autoregressive models [15]. Here,
we use neural networks [16]–[19], as these can approxi-
mate any arbitrary function [20], [21] and can be trained
through gradient descent. This concept is known under var-
ious names such as continuous-time recurrent neural net-
works [22], [23] and dynamic neural networks [24], but
is currently mostly known under the name of neural dif-
ferential equations [25].These neural differential equations
can approximate any underlying dynamics and thereby make
highly accurate predictions. However, their approximation
capabilities make them prone to overfitting to noise. In com-
parison to first-principles models, neural differential equa-
tions need a large and representative dataset and therefore
fail to extrapolate to regions not seen before. Furthermore,
as their parameters have no physical meaning, they lack
interpretability. Similarly, data-driven discovery of nonlin-
ear partial differential equations, incorporating a spatial
component, can be done with Physics Informed Neural
Networks [26].

In reality, knowledge of the system is often available
to a certain extent. This domain knowledge has been con-
structed from theory and empirical knowledge of the sys-
tem but is often a simplification, incomplete, and subject
to certain assumptions. Here, we introduce a framework
that incorporates both (incomplete) knowledge and data into
a hybrid model. Dynamics that are not modeled explic-
itly by the first-principles component are captured by the
machine learning component, thereby filling in knowledge
gaps. This improves the representativeness of the model.
From a machine learning perspective, incorporating domain
knowledge has a certain regularizing effect that improves
the generalization ability of the model and lowers the data
requirements, both in quantity and quality.

I. METHOD
We consider a first-principles model consisting of a system
of differential equations of the form

dkX(t)
dtk

= f (X(t);p), (1)

where X(t) ∈ Rn is an n-dimensional vector representing the
state at time t and f (X (t);p) : R → Rn is function param-
eterized by vector p capturing the dynamics of the system.
This form can be extended straightforwardly to include time
dependency, forcing, or spatial dynamics. In first-principles
models, this right-hand side would be constructed from the-
ory and empirical knowledge, e.g., mass balances or mea-
sured reaction rates.

In a neural differential equation, the structure is not prede-
fined but rather discovered from data. We consider a neural

differential equation model of the form

dkX(t)
dtk

= n(X(t);w), (2)

where n(X(t);w) : R → Rn is a neural network parameter-
ized by a weight vector w.

Lastly, we consider a hybrid model, integrating both
first-principles and neural components of the form

dkX(t)
dtk

= f (X(t);p)+ n(X(t);w). (3)

Here, we limit ourselves to the above additive form, but
other possibilities such as multiplicative or nested forms
are of course possible [27]–[29]. Central to the proposed
approach is that the parameter vectors p and w are estimated
simultaneously. As a consequence, there is a tight coupling
between both components allowing for synergies. This is
in contrast to other approaches where a data-driven com-
ponent is trained on the residual error of the solution of a
first-principles model [30]. Incorporating domain knowledge
into the model through a first-principles component restricts
the solution space to a desired subset, reducing overfitting
through a regularization effect. When (a piece of) domain
knowledge is incorporated, only its parameters need to be
estimated from data, instead of its entire structure, decreasing
the data requirements.

As the first-principles and neural components are trained
simultaneously, the estimated parameters of both compo-
nents influence each other. As a result, the parameters of the
first-principles model p will lose part of their physical inter-
pretation and should only be interpreted within the context of
the hybrid model.

II. TRAINING DIFFERENTIAL EQUATIONS WITH A
NEURAL COMPONENT
Different methods can be used to identify the parameters
of the right-hand side of a differential equation, whether
it includes a first-principles, a neural component, or both.
First-principles differential equations rely on a small number
of parameters, most of which have a physical meaning. The
majority of these parameters are known or deduced through
experiments and subsequently used in the model. Parameters
that cannot be estimated separately are fitted by minimizing a
loss function L between the data and the solution (i.e., numer-
ical integration) of the differential equation.

Including a neural component substantially raises the num-
ber of parameters that need to be estimated, as the entire
structure of the dynamics needs to be inferred. Consequently,
this increases the complexity of training, requiring techniques
capable of efficiently estimating a large number of parame-
ters. We briefly discuss several options below, for a visualiza-
tion of these methods, we refer to the Fig. SI 1.

A. BACKPROPAGATION THROUGH THE SOLVER
The minimization of the loss function L can be guided by
its gradient with respect to all parameters, i.e. p and w. This

VOLUME 9, 2021 22015



W. Quaghebeur et al.: Incorporating Unmodeled Dynamics Into First-Principles Models Through Machine Learning

approach is called backpropagation through the solver, as the
gradient is dependent on the output of the numerical solver.

This gradient can be estimated through the finite differ-
ences method or automatic differentiation. The former is
generally used in first-principles differential equations, where
typically only a few parameters need to be estimated. How-
ever, it scales badly with problem size, requiring additional
function evaluations for each dimension. This makes the
finite differences method infeasible to fit the many param-
eters of neural differential equations.

Alternatively, modern libraries such as Tensorflow [31]
and PyTorch [32] can apply automatic differentiation (either
forward or backward) over arbitrary functions, yielding the
necessary gradients. Implementing a solver in one of these
libraries allows for backpropagation through the solver with-
out the overhead and scalability issues of finite differences.
However, the solver needs to be reimplemented into such a
library, making it impossible to reuse existing solvers such
as the widely used SUNDIALS solver suite [33]. Besides, all
operations of the solver need to be traced back to perform
automatic differentiation, making this method memory inten-
sive and less scalable for long time series.

B. ADJOINT METHOD
The adjoint method for sensitivity analysis [34] has been
adapted to compute the desired gradient in dynamical models
[25], [35]. An adjoint is defined as the gradient of the loss
with respect to the state a(t) = ∂L

∂X(t) . The adjoint dynamics
are given by the ordinary differential equation

da(t)
dt
= −a(t)ᵀ

∂
[
f (X(t);p)+ n(X(t);w)

]
∂X

, (4)

which is analogous to the chain rule. By augmenting the
state vector with this adjoint, the solver can compute the
desired gradient through a second backward call. This allows
the computation of the desired gradients with O(1) memory,
at the expense of an additional call to the solver [25]. More-
over, as this method treats the solver as a black box, there
is no need to reimplement it in a specialized library, making
it possible to use the adjoint method with existing solvers.
In dynamical systems with a large number of parameters,
the adjoint method has been found to be more efficient than
automatic differentiation [36], [37].

C. GRADIENT MATCHING
Both methods described above require an explicit solution of
the equations to calculate the error with respect to the data.
At each iteration of the optimization process, an expensive
call to the solver is thus needed. Moreover, errors get inte-
grated through time and magnified by the solver, giving rela-
tively higher importance to the earlier datapoints. In contrast,
gradient matching tries to minimize the difference between
calculated derivatives and the right-hand side of the differen-
tial equations. In this way, it directly learns the underlying
differential equations, instead of its solution. This circum-
vents the need for an explicit solution at each iteration but

introduces the need to calculate derivatives from data through
numerical differentiation, greatly amplifying the noise in the
data. Special methods based on spline interpolation [38] or
total variation regularization [39]–[41] can be used to per-
form differentiation on noisy and nonsmooth data, yielding
adequate results that can be used for gradient matching.When
calculated derivatives are available, gradient matching scales
very well to large systems.

III. EXPERIMENTS
We demonstrate the proposed approach on several nonlinear
systems, ranging from noisy measurements of a chaotic elas-
tic pendulum system, over an unknown reaction in glycoly-
sis, to a reaction-diffusion system, extending the framework
to nonlinear partial differential equations. In each example,
we explore the ability to identify unmodeled dynamics from
only noisy state measurements.

The neural component of the models was a multilayer
perceptron with hyperbolic tangent activation functions, with
output dimension equal to the dimension of the system.
Weights were initialized with mean µ = 0 and standard
deviation σ = 0.1. Importantly, the initialized σ determines
the balance between first-principles and neural component,
with larger values of σ giving rise to a more dominant neural
component. Bias units were initialized to 0. The parameters of
the first-principles component pwere initialized based on the
calibrated first-principles model. In all experiments, the size
and number of hidden layers was chosen to balance accuracy
(i.e. training and test error) and complexity.

Training was performed in a batched manner. At each
iteration, a batch of a certain number of states was randomly
chosen from the dataset. These were used as initial condi-
tions for the model, integrating the solution for a certain
amount of time using a fourth-order Runge-Kutta fixed step-
size scheme. A fixed stepsize scheme is preferred here as
it allows parallelization of the batches. Moreover, as neu-
ral components can be unstable during training, the step-
size can become inhibitingly small when using an adaptive
stepsize solver, causing arithmetic underflows. Subsequently,
the root mean square error (RMSE) is calculated between the
solutions and the data, with the desired gradient calculated
using either automatic differentiation or the adjoint method.
An ADAM method with learning rate 0.01 was used to
optimize RMSE for 3000 iterations, with the learning rate
lowered to 0.001 after 2000 iterations. Additional details
of the experimental setup are reported for each experiment
below.

As described above, gradients can be calculated with
different methods, each with their advantages and draw-
backs. For the examples presented in this work, we used
the adjoint method, as this method is less sensitive
to noise than gradient matching and more flexible and
memory-efficient than automatic differentiation. All code
was implemented in Python 3.7 using the PyTorch [32]
and TorchDiffEq library [25] and executed on an Nvidia
Pascal P100 accelerator. The source code used in this work is

22016 VOLUME 9, 2021



W. Quaghebeur et al.: Incorporating Unmodeled Dynamics Into First-Principles Models Through Machine Learning

FIGURE 1. Schematic of the proposed approach on an elastic pendulum system, where it is not known that the connecting thread is elastic.
(A) Incomplete first-principles model of the system, based on the assumption that the system behaves as an ideal pendulum. (B) Noisy measurements of
the system. The first-principles model does not accurately capture the dynamics underlying the data. (C) The proposed approach incorporates a
first-principles component, encoding the known dynamics, and a neural component, capturing the unknown dynamics. (D) This results in a model that
accurately captures the complete dynamics of the system.

available at GitHub (https://github.com/WardQ/
IncorporatingUnmodeledDynamics).

A. ELASTIC PENDULUM
As a first example, we consider an elastic pendulum (Fig. 1).
When an object is connected to a spring, the resulting motion
exhibits dynamics of both a simple pendulum and an elastic
system [42]. The system exhibits chaotic behavior and is
sensitive to initial conditions. The physical knowledge of
the elastic pendulum can be incorporated in a system of
first-principles differential equations

d2x(t)
dt2

= (l0 + x(t))θ̇ (t)2 −
k
m
x(t)+ g cos θ (t),

d2θ (t)
dt2

= −
g

l0 + x(t)
sin θ (t)−

2ẋ(t)
l0 + x(t)

θ̇ (t), (5)

where x(t) is the compression or extention of the spring at t ,
θ (t) is the angle of oscillation, ẋ and θ̇ are first derivatives of
respectively x and θ , l0 the rest length, k the spring constant,
m the mass of the pendulum, and g the gravitational constant.
A full derivation is given in SI Appendix 1. We consider
a system with limited elasticity. Noisy measurements of an
example trajectory are visualized in Fig. 1B.

For illustrative purposes, we consider a situation where the
elastic dynamics are unknown and not incorporated into the
first-principles model. This incomplete knowledge results in
an ideal pendulum

d2x(t)
dt2

= 0,

d2θ (t)
dt2

= −
g
l
sin θ (t). (6)

An example trajectory of this ideal pendulum is visualized
in Fig. 1A. This situation, where a complex system is mod-
eled by a simpler model that does not capture all underly-
ing dynamics, is ubiquitous, either because these unmodeled
dynamics are unknown or deliberately not included. Here,
we apply a hybrid model (Eq. 3) incorporating the ideal
pendulum (Eq. 6) as a first-principles component and a neural
component that will learn the elastic dynamics from noisy
data. More specifically, the neural component will learn the
terms in Eq. (5) that are not present in Eq. (6).

In this case study, we sampled a trajectory of the elastic
pendulum system with rest length l0 = 2.25, spring constant
k = 200, mass of the pendulum m = 0.547, and gravita-
tional constant g = 9.81 for t in [0, 10] at a sampling rate
of 100 samples/s, with initial conditions x0 = − 0.75 and
θ0 = 1.25 and added Gaussian noise σ = 0.1.
We subsequently fitted an (incomplete) first-principles,

a neural, and a hybrid model to these data. Training was
performed using batches of 256 states integrated over the next
16 timepoints. A neural component with two hidden layers
with 40 and 20 neurons, respectively, was used. Training
took 8 minutes on our hardware. During inference, the neu-
ral component adds a small overhead in comparison to the
first-principles model.

The incomplete first-principles model cannot capture the
elastic dynamics, as its structure only incorporates the
dynamics of an ideal pendulum (Fig. SI 2). The learned
dynamics reflects the period of the pendulum but not its
elastic behavior. In contrast, both the neural and hybrid model
capture the full dynamics of the elastic pendulum. The hybrid
model estimates the length of the pendulum as l = 0.9. This
approximates the term l0 + x(t) in Eq. (5), where l0 = 2.25
and x(t) ∈ [−1.5,−0.7]. The deviation between the values

VOLUME 9, 2021 22017



W. Quaghebeur et al.: Incorporating Unmodeled Dynamics Into First-Principles Models Through Machine Learning

FIGURE 2. MAPE on the training dataset, representing the extent to which
the model has captured the dataset, and on the test dataset, representing
the degree to which the model has captured the underlying dynamics and
generalizes to unseen states. Results are given for both the hybrid model,
incorporating a first-principles and neural component, and the neural
model with only a neural component. (A) MAPE in function of the noise
standard deviation σ at 100 samples/s. Both models achieve a reasonably
low training set error, even at high noise. However, the hybrid model
consistently achieves a lower test error at higher noise levels. (B) MAPE in
function of sampling rate at noise level σ = 0.1. Again, both models
achieve a reasonably low training set error, even at low sampling rates.
The hybrid model again consistently achieves a lower test set error. Both
results emphasize the capabilities of the hybrid model to generalize to
unseen states, better capturing the underlying dynamics.

of l and l0 highlights the influence of the neural component
on the first-principles component and the decreased inter-
pretability of its parameters, as l can only be interpreted
alongside x(t).

Besides capturing the dynamics of a given dataset, a model
should capture the dynamics of the system and generalize to
situations not seen before. To assess these capabilities, a neu-
ral and hybridmodel were trained on several sampled datasets
of the abovementioned trajectory with standard deviations σ
of Gaussian noise in [0, 0.5] (Fig. SI 3) and sampling rate
in [25, 150] samples/s (Fig. SI 4). We subsequently tested
these trained models for different initial conditions (called
the test dataset), calculating the mean absolute percentage
error (MAPE) between the model output and the system
dynamics, thus assessing whether the model can extrapolate
to situations not present in the training dataset. The MAPE is
defined as

MAPE =
1
n

n∑
t=0

∣∣∣∣∣X(t)− X̂(t)
X(t)

∣∣∣∣∣ , (7)

where n is the number of observations,Xt and X̂t the data and
predicted value at time t , respectively. Additionally, we report
the Linf norm of the absolute percentage error on the test set,
i.e., the maximum error in the sampled interval.

First, this procedure was executed for different standard
deviations σ of the Gaussian noise (Fig. 2A). Both mod-
els achieve a low MAPE on the training dataset, confirm-
ing the approximation capabilities of the neural component.
The neural model achieved a slightly lower MAPE, as the
first-principles component of the hybrid model has a regular-
izing effect, preventing overfitting to the training data. When
evaluating on the test dataset, theMAPE is significantly lower
for the hybrid model. As the hybrid model can rely on the

first-principles component for (part of the) learned dynamics,
it generalizes better to conditions not seen before. Logically,
with increasing σ , the performance worsens for both models.
The Linf norm of the error exhibits a similar, magnified pattern
(Fig. S5A). As errors get integrated over time, the Linf norm
increases. At σ ≥ 0.5, the noise becomes bigger than the elas-
tic dynamics, making identification impossible. Interestingly,
when trained on noiseless data (σ = 0), both models perform
equally well, as no overfitting to noise occurs.

Second, the sampling rate is varied (Fig. 2B and S5B).
Again, the hybrid model achieves a lower MAPE and Linf on
the test set in comparison to the purely neural model and gen-
eralizes better to conditions not present in the training data.
When lowering the sampling rate to 25 samples/s, the elastic
dynamics become unidentifiable.

Both results show that incorporating knowledge into a
data-driven model prevents overfitting to the training data,
lowers requirements on quantity and quality of training data,
and results in a model that generalizes better to unseen states.

B. GLYCOLYSIS
In the elastic pendulum example, the first-principles model
did not capture all underlying dynamics. Nevertheless, this
simple model did capture the general trends and was, depend-
ing on the accuracy requirements, not entirely unusable.
However, for many systems, e.g., those relying on energy
or mass balances, incomplete knowledge leads to a model
that completely fails. Here, we consider a glycolysis model,
a benchmark problem for system identification [9], [44], [45].
A simplified version of the chemical reaction network of this
system is given in Fig. 3A. A full description can be found in
SI Appendix 2.

In this example, all reaction kinetics except v? are known.
This missing piece of knowledge renders the complete model
useless (Fig. SI 7), as all subsequent reactions are dependent
on the reaction S1+ATP

v?
−→ S2+ADP and thus on v?. More-

over, it is difficult to directly identify the unknown kinetics
v? from the data, as the reaction involves ATP, which is also
engaged in other reactions that are (indirectly) dependent
on v?.

Here, we consider a system where the unknown v? is
governed by the nonlinear reaction rate

v? =
k1S1(t)ATP(t)

1+
(
S6(t)

K1

)q, (8)

where k1, K1, and q are reaction constants.
We sampled datapoints with scaled Gaussian noise

σ = 0.05 from the glycolysis system for t in [0, 4]
at 250 samples/s (Fig. 3B). Training was performed using
batches of 256 states integrated over the next 16 time points
and was completed within 17 minutes. A neural component
with two hidden layers of 50 and 20 neurons, respectively,
was used.

22018 VOLUME 9, 2021



W. Quaghebeur et al.: Incorporating Unmodeled Dynamics Into First-Principles Models Through Machine Learning

FIGURE 3. Model results on the glycolysis example. (A) Chemical reaction network of the system as defined in [43]. (B) In this example,

the system is completely known, except for (C) the reaction kinetics v? of the reaction S1 +ATP
v?
−→ S2 +ADP. (D) Noisy measurements of the

glycolysis system. (E) The approach integrates both incomplete knowledge and data to accurately capture the complete dynamics of the
system.

The first-principles component encodes all available
knowledge, whereas the neural component learns the dynam-
ics of the unknown reaction (Eq. 8). This results in an inte-
grated hybrid model that accurately captures all dynamics,
achieving a MAPE of 0.092 and an Linf norm of 0.127
(Fig. 3C).

An additional experiment, similar to the previous one,
was performed to assess the impact of the missing piece on
the accuracy of the model. Here, the reaction kinetics v2 is
unknown, instead of v?. The reaction kinetics v2 is governed
by

v2 = k2S2(t)
(
N − NADH(t)

)
, (9)

where k2 and N are reaction constants. In comparison to
v?, the reaction kinetics v2 is relatively simple. Using the
previously described experimental setup, the hybrid model
achieves a MAPE of 0.058 and an Linf norm of 0.083, sub-
stantially lower than the previous experiment. The accuracy
is thus higher when v2 is missing than when v? is missing,
showing a trade-off between the complexity of the missing
dynamics and accuracy.

Up until now, we have initialized the parameters p of
the first-principles component based on the available knowl-
edge. To investigate the robustness to poor initialization,
we randomly selected the components of p from the inter-
val [0, 5]. The model was then trained on the dataset. This
experiment was repeated 100 times. In 89 of these exper-
iments, the first-principles component correctly captured
the underlying dynamics, indicating a certain robustness.
In the remaining 11 cases, the neural component suppressed
the first-principles component, with the parameters p going

to 0, thus eliminating this dynamics. This illustrates the pos-
sibility that the neural component learns structures that are
explicitly defined in the first-principles component.

C. BELOUSOV-ZHABOTINKSY REACTION-DIFFUSION
So far, we have considered ordinary differential equations,
involving a single independent variable (usually time t). The
proposed approach can be extended to partial differential
equations, involving multiple independent variables, usually
including a spatial component. As an example, we consider a
system based on the Belousov-Zhabotinsky reaction, a clas-
sical example of non-equilibrium thermodynamics, result-
ing in the establishment of a nonlinear chemical oscillator
[46], [47]. We consider a spatially dependent system gov-
erned by diffusion that exhibits intriguing spatial patterns and
waves [48]. This reaction can be described by a system of
partial differential equations involving the reagents u and v

ε
∂v(t)
∂t
= D∇2u(t) + u(t)(1− u(t))−

u(t)− q
u(t)+ q

v(t),

∂v(t)
∂t
= D∇2v(t)+ u(t)− v(t), (10)

whereD is the diffusion coefficient, identical for u and v, and
ε and q are reaction parameters.

Diffusion is a well-understood process that can be
described by the diffusion equation (i.e., the first term of
the right-hand side of (10), Fig. SI 10). Here we consider
the situation where the reaction dynamics are unknown.
Hence, the diffusion dynamics are explicitly modeled as
a first-principles component, with the reaction terms cap-
tured by the neural component. Here, the reaction dynamics

VOLUME 9, 2021 22019



W. Quaghebeur et al.: Incorporating Unmodeled Dynamics Into First-Principles Models Through Machine Learning

FIGURE 4. Example of a spatial Belousov-Zhabotinksy reaction-diffusion system, where the reaction dynamics are unknown. The proposed approach
incorporates (A) the available knowledge on diffusion dynamics and (B) spatial measurements of the system. (C) The diffusion is explicitly modeled by
the first-principles component, whereas the reaction is approximated from the data. (D) This results in a model that accurately captures the complete
dynamics of the system.

are only time-dependent, but unknown spatial dependencies
could be learned by convolutions [49].

As training data, we sampled datapoints with Gaussian
noise σ = 0.01 from a Belousov-Zhabotinsky reaction-
diffusion system withD = 0.001, ε = 0.2, q = 0.001 for t in
[0, 25] at 100 samples/s. Spatial discretization was performed
for x ∈ [0, 5] and y ∈ [0, 5] with no boundary conditions and
1 x = 1 y = 0.05.
We fitted a hybrid model with a neural component with

three hidden layers with 50, 50, and 20 neurons, respectively,
to this sampled data. Training was completed within 37 min-
utes. Again, the neural component correctly identifies the
unknown reaction, resulting in a model that accurately
describes all dynamics, achieving a MAPE of 0.083 and an
Linf norm of 0.112 (Fig. 4D and S 11).

IV. DISCUSSION
In summary, we have demonstrated a powerful approach to
incorporate unmodeled dynamics into first-principles mod-
els. It builds on recent advances in data-driven system iden-
tification, more specifically incorporating an assumption
that the data was sampled from a dynamical system [25],
[26]. Our work extends these approaches by incorporating a
first-principles component. First-principles models are usu-
ally based on domain knowledge that is simplified, incom-
plete, and subject to certain assumptions. Dynamics that are
not modeled explicitly by the first-principles component are
captured by the machine learning component, thereby filling
in knowledge gaps. We have demonstrated this approach on
several example systems exhibiting chaos, unknown chem-
ical reactions, and spatial dependencies. As shown in the
elastic pendulum example, this approach lowers the data
requirements, as it is less sensitive to noise and large sam-
pling intervals. As shown in the glycolysis example, this

approach provides a representative model when incomplete
knowledge inhibits the use of a first-principles model. More-
over, the approach is robust to poor initialization. The
Belousov-Zhabotinsky example shows that this approach can
be easily extended to incorporate spatial dynamics.

We have introduced several methods to train differential
equations with a neural component. In each case, the hybrid
model identified unmodeled dynamics from noisy data,
resulting in amodel that is representative of thewhole system.
Although we have limited ourselves to an additive com-
bination of both components, the methodology can likely
be ported to other combinations. For example, in a sys-
tem where the ideal dynamics are known but impacted by
an unknown resistance, the first-principles component can
be multiplied by a neural component capturing this resis-
tance [50]. Hence, domain knowledge of the system can be
incorporated by changing the architecture. Moreover, this
framework should not be limited to a neural component.
Other types of data-driven components, such as radial basis
functions or polynomials, could be preferred depending on
the complexity of the missing dynamics and the use case.

The approach introduces a black box into the model,
decreasing the interpretability and physical relevance of the
parameters of the first-principles component. There is thus
a trade-off between accuracy and interpretability. This is
in contrast with other techniques such as symbolic [4], [5]
or sparse regression [9], [10] that are aimed at distilling
interpretable models, but suffer from scalability issues or
are limited by the predefined library of candidate functions,
respectively. Therefore, we foresee the use of this approach
mainly in applications where predictive capabilities are detri-
mental, e.g., in predictive control. Additionally, the integrated
model can easily adapt to changes in the dynamics in an
online learning setting. Nevertheless, this approach cannot be

22020 VOLUME 9, 2021



W. Quaghebeur et al.: Incorporating Unmodeled Dynamics Into First-Principles Models Through Machine Learning

applied for designing new systems, as no data is yet available.
Last but not least, analysis of the neural component can poten-
tially direct the modeller towards gaps in the first-principles
model, catalyzing model improvements.

Aswith all data-driven techniques, one needs to be cautious
about data quality. Statistics and machine learning practition-
ers have developed methods to counteract overfitting to noisy
data (e.g., regularization) and to properly evaluate the model
(e.g., cross-validation). These methods should be incorpo-
rated into good modeling practice.

This approach can be applied in numerous fields with
incomplete knowledge but plenty of data on the system,
including climate science, chemical installations, epidemi-
ology, and financial markets. Neither first-principles nor
data-driven modeling is the solution for all challenges in sci-
ence and engineering. Integrating both combines their advan-
tages while mitigating their disadvantages. In conclusion,
the identification and incorporation of unmodeled dynamics
is an important step towards modeling any dynamical system.

ACKNOWLEDGMENT
The authors would like to thank insightful discussions with
Bram De Jaegher.

REFERENCES
[1] L. Perko, Differential Equations and Dynamical Systems, vol. 7. Springer,

2013.
[2] R. Woods and K. Lawrence, Modeling and Simulation of Dynamic

Systems (Prentice-Hall Series in Geographic). Upper Saddle River, NJ,
USA: Prentice-Hall, 1997. [Online]. Available: https://books.google.
be/books?id=TIRRAAAAMAAJ

[3] M. Braun and M. Golubitsky, Differential Equations and Their Applica-
tions, vol. 1. Springer, 1983.

[4] J. Bongard and H. Lipson, ‘‘Automated reverse engineering of nonlin-
ear dynamical systems,’’ Proc. Nat. Acad. Sci. USA, vol. 104, no. 24,
pp. 9943–9948, Jun. 2007.

[5] M. Schmidt and H. Lipson, ‘‘Distilling free-form natural laws from exper-
imental data,’’ Science, vol. 324, no. 5923, pp. 81–85, Apr. 2009.

[6] M. Quade, M. Abel, K. Shafi, R. K. Niven, and B. R. Noack, ‘‘Predic-
tion of dynamical systems by symbolic regression,’’ Phys. Rev. E, Stat.
Phys. Plasmas Fluids Relat. Interdiscip. Top., vol. 94, no. 1, Jul. 2016,
Art. no. 012214.

[7] J. R. Koza and J. R. Koza, Genetic Programming: On the Programming of
Computers by Means of Natural Selection, vol. 1. Cambridge, MA, USA:
MIT Press, 1992.

[8] H. Cao, L. Kang, Y. Chen, and J. Yu, ‘‘Evolutionary modeling
of systems of ordinary differential equations with genetic program-
ming,’’ Genetic Program. Evolvable Mach., vol. 1, no. 4, pp. 309–337,
2000.

[9] S. L. Brunton, J. L. Proctor, and J. N. Kutz, ‘‘Discovering governing
equations from data by sparse identification of nonlinear dynamical sys-
tems,’’ Proc. Nat. Acad. Sci. USA, vol. 113, no. 15, pp. 3932–3937,
Apr. 2016.

[10] H. Schaeffer, G. Tran, and R. Ward, ‘‘Extracting sparse high-dimensional
dynamics from limited data,’’ SIAM J. Appl. Math., vol. 78, no. 6,
pp. 3279–3295, Jan. 2018.

[11] S. Chen, S. A. Billings, C. F. N. Cowan, and P. M. Grant, ‘‘Non-linear sys-
tems identification using radial basis functions,’’ Int. J. Syst. Sci., vol. 21,
no. 12, pp. 2513–2539, Dec. 1990.

[12] J. Kocijan, A. Girard, B. Banko, and R. Murray-Smith, ‘‘Dynamic systems
identification with Gaussian processes,’’Math. Comput. Model. Dyn. Syst.,
vol. 11, no. 4, pp. 411–424, Dec. 2005.

[13] M. Raissi, P. Perdikaris, and G. E. Karniadakis, ‘‘Machine learning of
linear differential equations using Gaussian processes,’’ J. Comput. Phys.,
vol. 348, pp. 683–693, Nov. 2017.

[14] H. Ye, R. J. Beamish, S. M. Glaser, S. C. H. Grant, C.-H. Hsieh,
L. J. Richards, J. T. Schnute, and G. Sugihara, ‘‘Equation-free mechanistic
ecosystem forecasting using empirical dynamic modeling,’’ Proc. Nat.
Acad. Sci. USA, vol. 112, no. 13, pp. E1569–E1576, Mar. 2015.

[15] S. A. Billings, Nonlinear System Identification: NARMAX Methods in
the Time, Frequency, and Spatio-Temporal Domains. Hoboken, NJ, USA:
Wiley, 2013.

[16] R. González-García, R. Rico-Martínez, and I. G. Kevrekidis, ‘‘Identifi-
cation of distributed parameter systems: A neural net based approach,’’
Comput. Chem. Eng., vol. 22, pp. S965–S968, Mar. 1998.

[17] S. Masri, A. Chassiakos, and T. Caughey, ‘‘Structure-unknown non-linear
dynamic systems: Identification through neural networks,’’ Smart Mater.
Struct., vol. 1, no. 1, p. 45, 1992.

[18] M. Raissi, P. Perdikaris, and G. Em Karniadakis, ‘‘Multistep neural net-
works for data-driven discovery of nonlinear dynamical systems,’’ 2018,
arXiv:1801.01236. [Online]. Available: http://arxiv.org/abs/1801.01236

[19] M. Ayoubi, ‘‘Nonlinear dynamic systems identification with dynamic
neural networks for fault diagnosis in technical processes,’’ in Proc. IEEE
Int. Conf. Syst., Man Cybern., vol. 3, Oct. 1994, pp. 2120–2125.

[20] G. Cybenko, ‘‘Approximation by superpositions of a sigmoidal function,’’
Math. Control, Signals, Syst., vol. 2, no. 4, pp. 303–314, Dec. 1989.

[21] T. Chen and H. Chen, ‘‘Universal approximation to nonlinear operators by
neural networks with arbitrary activation functions and its application to
dynamical systems,’’ IEEE Trans. Neural Netw., vol. 6, no. 4, pp. 911–917,
Jul. 1995.

[22] K.-I. Funahashi and Y. Nakamura, ‘‘Approximation of dynamical systems
by continuous time recurrent neural networks,’’ Neural Netw., vol. 6, no. 6,
pp. 801–806, Jan. 1993.

[23] X.-D. Li, J. K. L. Ho, and T. W. S. Chow, ‘‘Approximation of dynamical
time-variant systems by continuous-time recurrent neural networks,’’ IEEE
Trans. Circuits Syst. II, Exp. Briefs, vol. 52, no. 10, pp. 656–660, Oct. 2005.

[24] O. De Jesus and M. T. Hagan, ‘‘Backpropagation algorithms for a broad
class of dynamic networks,’’ IEEE Trans. Neural Netw., vol. 18, no. 1,
pp. 14–27, Jan. 2007.

[25] T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud, ‘‘Neural
ordinary differential equations,’’ in Proc. Adv. Neural Inf. Process. Syst.,
2018, pp. 6571–6583.

[26] M. Raissi, P. Perdikaris, and G. E. Karniadakis, ‘‘Physics-informed neural
networks: A deep learning framework for solving forward and inverse
problems involving nonlinear partial differential equations,’’ J. Comput.
Phys., vol. 378, pp. 686–707, Feb. 2019.

[27] D. C. Psichogios and L. H. Ungar, ‘‘A hybrid neural network-first
principles approach to process modeling,’’ AIChE J., vol. 38, no. 10,
pp. 1499–1511, Oct. 1992.

[28] H.-T. Su, N. Bhat, P. Minderman, and T. McAvoy, ‘‘Integrating neural
networks with first principles models for dynamic modeling,’’ inDynamics
and Control of Chemical Reactors, Distillation Columns and Batch Pro-
cesses. Amsterdam, The Netherlands: Elsevier, 1993, pp. 327–332.

[29] R. Oliveira, ‘‘Combining first principles modelling and artificial neural
networks: A general framework,’’ Comput. Chem. Eng., vol. 28, no. 5,
pp. 755–766, May 2004.

[30] R. J. Patton, ‘‘Fault diagnosis in nonlinear dynamic systems via neural
networks,’’ in Proc. Int. Conf. Control, 1994, p. 1346.

[31] M. Abadi et al. (2015). TensorFlow: Large-Scale Machine Learning on
Heterogeneous Systems. [Online]. Available: https://www.tensorflow.org/

[32] A. Paszke, S. Gross, F.Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, L. Antiga, and A. Desmaison, ‘‘Pytorch: An imper-
ative style, high-performance deep learning library,’’ in Proc. Adv. Neural
Inf. Process. Syst., 2019, pp. 8026–8037.

[33] A. C. Hindmarsh, P. N. Brown, K. E. Grant, S. L. Lee, R. Serban,
D. E. Shumaker, and C. S. Woodward, ‘‘Sundials: Suite of nonlinear and
differential/algebraic equation solvers,’’ ACM Trans. Math. Softw., vol. 31,
no. 3, pp. 363–396, 2005.

[34] L. S. Pontryagin, E. Mishchenko, V. Boltyanskii, and R. Gamkrelidze,
‘‘The mathematical theory of optimal processes,’’ Tech. Rep., 1962.

[35] G. Allaire, ‘‘A review of adjoint methods for sensitivity analysis, uncer-
tainty quantification and optimization in numerical codes,’’ Ingenieurs de
l’Automobile, vol. 836, pp. 33–36, Jul. 2015.

[36] B. Sengupta, K. J. Friston, and W. D. Penny, ‘‘Efficient gradient computa-
tion for dynamical models,’’NeuroImage, vol. 98, pp. 521–527, Sep. 2014.

[37] C. Rackauckas, Y. Ma, V. Dixit, X. Guo, M. Innes, J. Revels, J. Nyberg,
and V. Ivaturi, ‘‘A comparison of automatic differentiation and continuous
sensitivity analysis for derivatives of differential equation solutions,’’ 2018,
arXiv:1812.01892. [Online]. Available: http://arxiv.org/abs/1812.01892

VOLUME 9, 2021 22021



W. Quaghebeur et al.: Incorporating Unmodeled Dynamics Into First-Principles Models Through Machine Learning

[38] P. Dierckx, ‘‘An algorithm for smoothing, differentiation and integration of
experimental data using spline functions,’’ J. Comput. Appl. Math., vol. 1,
no. 3, pp. 165–184, Sep. 1975.

[39] L. I. Rudin, S. Osher, and E. Fatemi, ‘‘Nonlinear total variation based noise
removal algorithms,’’ Phys. D, Nonlinear Phenomena, vol. 60, nos. 1–4,
pp. 259–268, 1992.

[40] R. Chartrand, ‘‘Numerical differentiation of noisy, nonsmooth data,’’ ISRN
Appl. Math., vol. 2011, pp. 1–11, May 2011.

[41] R. Chartrand, ‘‘Numerical differentiation of noisy, nonsmooth, multidi-
mensional data,’’ in Proc. IEEE Global Conf. Signal Inf. Process. (Glob-
alSIP), 2017, pp. 244–248.

[42] W. K. Lee and H. D. Park, ‘‘Chaotic dynamics of a harmonically
excited spring-pendulum systemwith internal resonance,’’NonlinearDyn.,
vol. 14, no. 3, pp. 211–229, 1997.

[43] P. Ruoff, M. K. Christensen, J. Wolf, and R. Heinrich, ‘‘Temperature
dependency and temperature compensation in a model of yeast glycolytic
oscillations,’’ Biophysical Chem., vol. 106, no. 2, pp. 179–192, 2003.

[44] M.D. Schmidt, R. R. Vallabhajosyula, J.W. Jenkins, J. E. Hood, A. S. Soni,
J. P. Wikswo, and H. Lipson, ‘‘Automated refinement and inference of
analytical models for metabolic networks,’’ Phys. Biol., vol. 8, no. 5, 2011,
Art. no. 055011.

[45] B. C. Daniels and I. Nemenman, ‘‘Efficient inference of parsimonious phe-
nomenological models of cellular dynamics using S-systems and alternat-
ing regression,’’ PLoS ONE, vol. 10, no. 3, Mar. 2015, Art. no. e0119821.

[46] R. J. Field, Oscillations and Traveling Waves in Chemical Systems.
Hoboken, NJ, USA: Wiley, 1985.

[47] A. B. Rovinskii and A. M. Zhabotinskii, ‘‘Mechanism and mathematical
model of the oscillating bromate-ferroin-bromomalonic acid reaction,’’
J. Phys. Chem., vol. 88, no. 25, pp. 6081–6084, Dec. 1984.

[48] V. K. Vanag, A. M. Zhabotinsky, and I. R. Epstein, ‘‘Oscillatory clusters
in the periodically illuminated, spatially extended Belousov-Zhabotinsky
reaction,’’ Phys. Rev. Lett., vol. 86, no. 3, p. 552, 2001.

[49] Z. Long, Y. Lu, X. Ma, and B. Dong, ‘‘PDE-Net: Learning PDEs from
data,’’ in Proc. Int. Conf. Mach. Learn., 2018, pp. 3208–3216.

[50] B. De Jaegher, E. Larumbe, W. De Schepper, A. Verliefde, and
I. Nopens, ‘‘Colloidal fouling in electrodialysis: A neural differential
equations model,’’ Separat. Purification Technol., vol. 249, Oct. 2020,
Art. no. 116939.

WARD QUAGHEBEUR received the B.S. and
M.S. degrees in bioscience engineering from
Ghent University, Belgium, in 2015 and 2017,
respectively. He is currently pursuing the Ph.D.
in mathematical modelling with Ghent University.
He was a Researcher with EUTEC, Hochschule
Emden/Leer and also with the Technical Uni-
versity of Oruro, Bolivia. His research interests
include dynamical systems modelling, machine
learning, and bioprocesses.

INGMAR NOPENS received the M.S. and
Ph.D. degrees in bioscience engineering from
Ghent University, Belgium. He is currently a
Full Professor with the BIOMATH Research
Group, Ghent University, where he is also work-
ing on model-based analysis and optimisation
of (bio)processes. His current research interests
include mathematical modeling using different
frameworks like biokinetics, computational fluid
dynamics and population balance models, and

combinations thereof. This is applied to a variety of processes in the fields
of resource recovery and pharmaceutical engineering.

BERNARD DE BAETS received the M.Sc. degree
in mathematics, the master’s degree in knowledge
technology, and the Ph.D. degree in mathematics
from Ghent University, Belgium, in 1988, 1991,
and 1995, respectively. He is currently a Senior
Full Professor with Ghent University, where he is
also leading the research unit Knowledge-Based
Systems (KERMIT) and the Department of Data
Analysis and Mathematical Modelling. He has
acted as a supervisor of more than 75 Ph.D. stu-

dents and has published over 550 peer-reviewed journal articles. He has
delivered more than 300 (invited) conference lectures.

He is a Fellow of the International Fuzzy Systems Association. He was a
recipient of the EUSFLAT Scientific Excellence Award, an Honorary Profes-
sor of Budapest Tech, a Doctor Honoris Causa with the University of Turku,
a Professor Invitado of the Universidad Central ‘‘Marta Abreu’’ de Las Villas
in Cuba and also a Professor Extraordinarius with the University of South
Africa. He is a Government of Canada Award holder and has been nominated
for the Ghent University Prometheus Award for Research. At present, he is
Co-Editor-in-Chief of Fuzzy Sets and Systems and a member of the Editorial
Board of several other journals.

22022 VOLUME 9, 2021


