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ABSTRACT The rapid drop of frequency under the disturbance is a major threat to the safe and stable
operation of a microgrid (MG) system. Emergency load shedding is the main measure to prevent continuous
frequency drop and power outage. The existing load shedding strategies have poor adaptability to deal with
the problem of MG load shedding under different disturbance situations, and it is difficult to ensure the
safe and stable operation of an MG in different operating environments. To address this problem, this paper
proposes a data-driven load shedding strategy. First, considering the importance of the load and the frequency
recovery time of the system, a load shedding contribution indicator is designed that takes into account the
load frequency adjustment effect and the load shedding priority. This contribution indicator is introduced as
a load shedding criterion into the reward value function of dueling deep Q learning. Second, considering the
suddenness and uncertainty of emergency load shedding, a MG emergency load shedding strategy (ELSS)
based on dueling deep Q-learning is proposed. On this basis, the dueling deep Q learning algorithm is
used to obtain the load shedding decision with the maximum cumulative reward. Finally, taking the MG
load shedding cases in two different scenarios as examples, a simulation study is carried out on a modified
IEEE-25 bus MG. The simulation results show that, compared with the model-driven implicit enumeration
strategy (IES), the proposed ELSS has superiority in maintaining stable power supply for important loads
and reducing load shedding decision-making time and frequency fluctuations.

INDEX TERMS Microgrid, emergency load shedding, deep Q-learning, frequency adjustment effect,
frequency recovery.

I. INTRODUCTION
With the continuous development of the social economy,
people pay more and more attention to environmental
protection [1]–[3]. Clean energy generation, represented by
distributed generations (DGs), has become an important
direction of power grid development in the future [4]–[6].
To avoid the fluctuation and randomness of DGs directly
connected to the power grid, the concept of microgrids (MGs)
came into being. An MG is a small energy management
system. During the grid-connected operation, the MG can
effectively stabilize and control the fluctuation of DGs and
reduce the impact on the distribution network. When the
distribution network fails, the MG passively transfers to the
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islanded operation [7]. Due to the low inertia of MGs and
the randomness of DGs, when the MG passively transfers to
the islanded operation, there are scenarios where the power
generation cannot meet the load demand. This can lead to
a rapid drop in frequency in the system and even the MG
power outage. To prevent serious consequences of the MG,
an effective frequency control strategy is necessary to main-
tain system security [8], [9].

At present, load shedding is widely used as the main mea-
sure to restore system frequency. In [10], a under frequency
load shedding strategy considering the uncertainty of system
parameters was proposed to restore the system frequency.
In [11], a two-unit wide-area adaptive load shedding scheme
based on synchrophasors was proposed, which allocates the
load shedding to different loads to achieve system power
balance. In [12], an improved under-frequency load shedding
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scheme was proposed, which uses equivalent inertia constant
to detect the power unbalance of the system. The load shed-
ding strategy based on the system equivalent inertia con-
stant that calculates the system power shortage mostly takes
the large power grid as the load shedding research object.
However, various power parameters in the MG are different,
and the power generation of new energy has volatility. As a
result, the control effect of the above strategies could be
affected. In [13], the calculation method of load shedding is
improved, and a new centralized adaptive under frequency
load shedding scheme is proposed to improve the frequency
stability of an islanded MG. In [14], a two-level hierarchical
load shedding strategy based on decentralized methods was
proposed to recovery MG frequency. In [15], a load shedding
strategy considering speed and smoothness was proposed,
which made up for the power shortage during the uninten-
tional islanding period of the MG. In [16], a centralized
load shedding method for the islanded MG power balance
was proposed, which uses nonlinear model predictive control
to automatically remove non critical loads. A hierarchical
load shedding strategy based on undervoltage and under-
frequency is proposed in [17], which considers the priority
of load shedding. In [18], a two-step load shedding method
is proposed, which avoids the rapid frequency deviation in
the first step. The second step is to shed the load according
to the importance of the load. It can be observed from the
literature survey that the above research only considered the
importance of load to guide the level of load shedding.

In [19], an effort-based load shedding method was pro-
posed for anMG. Thismethod uses the effort index to allocate
the load shedding of each MG. A coordinated load shed-
ding strategy based on four-dimensional analysis is proposed
in [20]. This strategy uses a 4-D piecewise linear curve to
adaptively specify the load shedding amount. In [21], a hier-
archical load shedding strategy was proposed. This strategy
can eliminate the voltage and frequency deviations in the
load shedding through a centralized secondary controller.
In [22], a pre-emptive load shedding strategy was proposed.
This strategy can shorten the system frequency recovery
time. In [23], an adaptive load shedding algorithm includ-
ing the battery support was proposed to achieve the system
frequency stability. The above methods can be classified
as model-based methods, which describe the load shedding
decision of the islanded MG by establishing mathematical
equations. However, the physical model has poor adaptability
to deal with the problem of MG load shedding under dif-
ferent disturbance situations, and it is difficult to ensure the
safe and stable operation of an MG in different operating
environments.

Considering the shortcomings in current load shed-
ding strategies, the deep Q-learning algorithm based on a
data-driven approach is considered a promising alternative
to the load shedding strategy due to its great flexibility [24].
At present, deep Q learning is widely used in the MG opera-
tion control. A power management method based on adap-
tive reinforcement learning is proposed in [25]. In [26], a

distributed operation method using double deep Q-learning
is proposed to manage the energy storage system in the
MG. These papers formulate the MG operation control as
a Markov decision process (MDP) and use deep Q learning
algorithms to make complex decisions that adapt to specific
constraints. To overcome the problem that the deepQ learning
algorithm overestimates the Q-value of action, a dueling deep
Q network (DQN) structure is designed in [27], which is an
improvement of the DQN in deep Q learning and can effec-
tively solve the overestimation problem of the DQN value
function. However, the application of dueling deepQ learning
in the MG emergency load shedding still faces the following
problems: (i) the MG operation state is complex, how to
deal with the complex islandMG environmental information.
(ii) how to ensure stable power supply for high priority loads
in the islanded MG during emergency load shedding.

To solve the above two problems faced by dueling deep Q
learning in the load shedding strategy of an MG [28], this
paper proposes an MG emergency load shedding strategy
based on dueling deep Q learning. This paper uses the system
observable state as the data sample. First, the observable
and adjustable variables are selected, and the reward value
is determined according to the islanded MG load shedding
requirements. Then, the state action value function of an
islanded MG and the Q function of DDQN are defined. The
ε-greedy strategy and gradient descent method are introduced
to train the neural network. Finally, the trained neural network
is used to select the action with the largest estimation under
each current state, and the load shedding control of islanded
MG based on dueling deep Q-learning is carried out to con-
verge the optimal load shedding decision. At the same time,
the dueling deep Q-learning MG emergency load shedding
strategy proposed in this paper comprehensively considers
the load shedding priority and the load frequency adjustment
effect and uses it for comprehensive load evaluation to ensure
the stable power supply of important loads during the emer-
gency islanding period.

The main contributions of this paper are as follows:
1) This paper proposes an emergency islanded MG

load shedding strategy based on the dueling deep
Q-learning. This strategy is a new type of data-driven
load shedding strategy. The optimal load shedding
decision is obtained through continuous interaction
between agents and the environment.

2) In this paper, a load shedding contribution indicator
considering the load frequency adjustment effect and
load shedding priority is designed as the load shedding
criterion. The load shedding criterion is introduced
into the reward function setting of the ELSS based on
the dueling deep Q-learning. The indicator can ensure
the stable operation of important loads and shorten the
frequency recovery time.

3) The emergency load shedding problem for the islanded
microgrid is formulated as an MDP, which allows the
consideration of the maximum accumulative reward of
the load shedding decision.
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The remainder of the paper is organized as follows.
Section II describes the problem formulation. Section III
describes the emergency load shedding criteria. The MG
emergency load shedding strategy based on a dueling deep
Q learning is described in Section IV. The case study in
Section V illustrates the advantages of the proposed emer-
gency load shedding strategy. Section VI concludes this
paper.

II. PROBLEM FORMULATION
This paper formulates emergency load shedding from the per-
spective of recovering islanded MG frequency. Emergency
load shedding control can regulate the load in time to restore
the frequency of the islanded MG. In addition, this paper
focuses on how to ensure the continuous power supply of high
priority load.

To maximize the long-term reward for the emergency load
shedding strategy while accounting for the stable power sup-
ply under high priority load, we recruit the MDP [29]. MDP
model provides a systematic framework and decision making
in a complex environment. An MDP is defined as < S, A,
T, R >, where S is the system’s state space, A is the action
space, T is the state transition and R is the reward function.
The details about the MDP formulation are shown as follows.

A. STATE
The states are the observable variables that relate to learning
efficiency and generalization. The situation that the DGs
cannot meet the load demand can cause the system frequency
to drop. At this time, twomain variables reflecting the amount
of the load shedding are the frequency and RoCoF. The
RoCoF becomes zero when the power is rebalanced after
the corresponding load is removed after the frequency drops.
The objective of emergency load shedding is to restore the
system frequency to normal range. Therefore, the RoCoF
and frequency are selected as the environmental state
factors.

In this section, RoCoF and frequency are divided into dif-
ferent intervals to correspond to different coordinate values.
At the same time, the two-dimensional vector composed of
RoCoF and frequency is used as the environmental state of
an islanded MG.

For the frequency, the normal frequency range is set
as 49.8-50 Hz. Among them, (−∞, 48) Hz corresponds
to the coordinate −5; [48, 48.5) Hz corresponds to the
coordinate −4; [48.5, 49) Hz corresponds to the coor-
dinate −3; [49, 49.5) Hz corresponds to the coordinate
−2; [49.5, 49.8) Hz corresponds to the coordinate −1;
[49.8, 50.2] Hz corresponds to the coordinate 0. The state
with coordinate 0 represents that the system frequency has
recovered to a safe interval. The set of states obtained from
frequency f is {−5,−4,−3,−2,−1, 0}.
For the RoCoF, the larger the system RoCoF, the more seri-

ous the power shortage, which corresponds to more loads will
be removed. During the frequency recovery, if the frequency
is low, the frequency should be restored as soon as possible.

Based on this, the RoCoF is divided into 5 intervals in this
paper. (−∞,−4) Hz/s corresponds to the coordinate −4;
[−4,−3) Hz/s corresponds to the coordinate −3; [−3,−2)
Hz/s corresponds to the coordinate −2; [−2,−1) Hz/s cor-
responds to the coordinate −1; [−1, 0] Hz/s corresponds
to the coordinate 0. The state with coordinate 0 represents
that the system frequency recovers to a stable state. The
set obtained by the RoCoF is {−4,−3,−2,−1, 0}. Com-
bined with the six intervals corresponding to the frequency,
there are 30 environmental states. A two-dimensional vec-
tor formed by two variables is regarded as the environ-
mental state S, which is expressed as: S =

{
Sij ∈ S |i ∈

{−5,−4,−3,−2,−1, 0} , j ∈ {−4,−3,−2,−1, 0}}

B. ACTION
The actions are the adjustable variables. The action set in the
dueling deep Q-learning is all the action sets that can make
the agent closer to the target. When the islanded MG needs
the load shedding under the disturbance condition, the action
set is the load removed in the system. In this paper, the load
to be removed in the islandedMG is defined as load shedding
action at . The load shedding action set A can be expressed as
A : {a1, a2, · · · , an}.

C. REWARD FUNCTION
The reward function is an important part to evaluate the action
value, which reflects the influence of load shedding on the
safety and reliability of the islanded MG. The goal of the
load shedding strategy based on dueling deep Q-learning is
to obtain the optimal load shedding decision to meet the
fast frequency recovery of the islanded MG. It can provide
feedback for each attempt and error learning action, and
update the accumulated rewards in time.

The load shedding contribution indicator is set as a reward
value function, and the quality of the load shedding strategy
is defined by the reward value function. The reward function
R(st , st+1, a) is expressed as follows:

R(st , st+1, a) =

{
−1 S= {0, 0}

Wi = Li(λ1C1 + λ2C2) S 6= {0, 0}
(1)

III. EMERGENCY LOAD SHEDDING CRITERIA
When the MG disturbance leads to the active power short-
age, whether the safe and stable operation of the system
can be restored quickly and stably is the key to evaluate
the ELSS. At present, some load shedding strategies have
certain limitations, which are determined only according to
the amount of the load shedding without considering the dif-
ferences between different loads in an MG. In the actual load
shedding process, the differences between different loads
can affect the power balance and frequency recovery of the
system. This paper comprehensively considers the effects of
differences in the load frequency adjustment effect and the
load shedding priority. A load shedding contribution indicator
is used as the load shedding criterion in the load shedding
strategy.
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A. THE INDICATOR CONSIDERING THE LOAD FREQUENCY
ADJUSTMENT EFFECT
Due to the load frequency adjustment effect, when the power
balance of the MG is destroyed and the frequency changes,
the following changes in the load power play a role in
compensating the system. The frequency adjustment effect
coefficient is usually used to quantify the compensation effect
of the load in the system, which is expressed as:

KL =
dP∗L
df ∗
=

3∑
n=1

n · anf (n−1)
∗

f ∗ =
f
fN

P∗L =
PL
PLN

(2)

whereKL is the frequency adjustment effect coefficient of the
load, an is the ratio of the load proportional to the nth power of
the system frequency to the rated load, PL is the load power,
PLN is the rated power of the load, f is the system frequency,
and fN is the rated frequency of the system.
When the system frequency drops, the loads with large

frequency adjustment effect coefficients absorb the less active
power from the system, which is beneficial to the frequency
recovery. The loads with small frequency adjustment effect
coefficients require more power to be absorbed from the sys-
tem, which is not conducive to the system frequency recovery.
Based on the characteristics of the load frequency adjustment,
the loads with small frequency adjustment effect coefficients
should be preferentially removed during the load shedding
process and the loads with large frequency adjustment effect
coefficients should be reserved.

B. THE INDICATOR CONSIDERING THE LOAD
SHEDDING PRIORITY
The proposed ELSS considers the priority of the load shed-
ding. To ensure the power supply reliability of important
loads as much as possible, the secondary loads should be
removed first. The loads have been classified as vital, semi-
vital, and non-vital. It is represented by L1, L2, and L3 accord-
ing to the increasing order of the load shedding priority.

C. LOAD SHEDDING CONTRIBUTION INDICATOR
This section considers both the load frequency adjustment
effect and the load shedding priority, and establishes the load
shedding contribution indicator according to the differential
influence mechanism of two indicators, which is as follows:

Wi = Li(λ1C1 + λ2C2) (3)

where Wi is the load shedding contribution indicator, Li is
the priority weight of the load shedding, C1 is the normalized
value of the load frequency adjustment effect indicator, C2 is
the normalized value of the load shedding priority indicator,
and λ1 and λ2 are the contribution weight coefficients of each
contribution indicator.

IV. MG EMERGENCY LOAD SHEDDING STRATEGY BASED
ON A DUELING DEEP Q-LEARNING
This section introduces an islanded MG load shedding strat-
egy based on the dueling deep Q-learning in detail. The load
shedding strategy is explained from the selections of state sets
and action sets, the construction of the Q value function, and
the algorithm process of the dueling deep Q-learning.

FIGURE 1. Dueling deep Q network.

A. DDQN
The dueling DQN improves the output layer of the evaluation
network in the DQN, and the Q value can be expressed in a
more detailed form [30]. In the improved DDQN, the Q value
function is divided into the action advantage functionA(st , at )
and the state value function V (st ). A neural network is used to
fit the state value function V (st ) under the observation state,
and another neural network is used to fit the action advantage
function A(st , at ) of each action in the current state. The
Q(st , at ) value of each action is obtained by combining the
state value function with the action advantage function [31].
The DDQN is shown in Fig. 1. The Q function based on the
DDQN structure is defined as follows:

Q(st , at ) = V (st )+

A(st , at )− 1
|A|

∑
a′t

A(st , a′t )

 (4)

where at is the current load shedding action, st is the current
system state, A represents a set containing all executable
load shedding actions, and |A| represents the number of all
executable load shedding actions.

Since the actual control can only obtain one Q value, it can-
not be disassembled into a unique state value function V (st )
and action advantage function A(st , at ). Therefore, the action
advantage function is set as a single action function minus the
average value of all action advantage functions in a certain
state to remove redundant degrees of freedom and improve
the stability of the algorithm [32]. The flow chart of the
algorithm based on the DDQN is shown in Fig. 2.

1) STATE ACTION VALUE FUNCTION
There are a variety of action combinations to choose in the
load shedding strategy for an MG. It is necessary to quantify
the reward of different actions in the current observation state
as the basis for the action selection. According to the obser-
vation value of the operating state for an MG, the Q-learning
method is used to update the state action estimation function,
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FIGURE 2. Algorithm flow chart based on DDQN.

which is as follows:

Qπ (st , at )← (1− α)× Q(st , at )

+α[rt+1 + γ max
a∈A

Q(st , at )] (5)

whereQπ (st , at ) is the target value of the optimal state action
value function; Q(st , at ) is the predicted value of the current
state action value function; α is the learning rate, which
satisfies 0 < α ≤ 1; the greater the learning rate, the less
the effect of retaining the previous training; based on the Q
function iteration, the predicted value can converge to the
target value under the condition of sufficient training samples
and times; and rt+1 is the reward after performing the specific
action at .

2) ε − greedy POLICY
A ε − greedy policy is introduced to select load shedding
actions. In the initial stage of offline learning, the load shed-
ding actions can be randomly selected to accumulate obser-
vation samples. In the middle and later stages of learning, the
observation samples can be effectively used, and the new load
shedding actions can be tried. The ε − greedy policy is used
for action selection, which is as follows:

at =

 randomA, β < (T − t)× ε/T
argmax
at∈A

Q′(st , at ) β ≥ (T − t)× ε/T (6)

where ε is a fixed constant, T is the total number of training
times, t is the current training time, and β(0 < β ≤ ε) is the
network parameter of the action advantage function part; if it
is less than (T − t)ε/T , the next step of the load shedding
action is randomly selected from the executable action set

A; otherwise, an optimal action is selected according to the
predicted estimate of each action in the current state.

3) NEURAL NETWORK LOSS FUNCTION
During the learning process, the generated samples have
uncertainties on the effectiveness of model training and are
prone to overfitting. Therefore, the gradient descent method
is used for neural network training to prevent overfitting. The
neural network loss function is expressed as follows:

Loss(ω) =

√√√√1
n

n∑
i=1

[
Qπ∗ (st , at )− Qπ

′ (st , at , ω)
]2 (7)

where Qπ
∗

(st , at ) is the target Q value calculated by equa-
tion (5), Qπ

′

(st , at , ω) is the predicted Q value output by the
neural network, ω is the neural network structure parameter,
and nis the number of training samples.
n samples are taken from the memory storage unit each

time, and the deviation function is calculated by the mean
square deviation between the target value and the predicted
value of n samples. The parameters of the neural network are
updated by the gradient descent to returns the current maxi-
mum Q value; at this time, the optimal strategy is obtained as
follows:

π∗(s) = argmaxQk (st , at ) (8)

B. ELSS
In this paper, the ELSS is used to solve the problem of theMG
load shedding under the disturbance. The decision flow chart
of the MG emergency load shedding based on the dueling
deep Q-learning is shown in Fig. 3.

FIGURE 3. Emergency load shedding decision flow based on dueling
deep Q-learning.
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It is a learning process for the dueling deep Q-learning to
continuously interact with the environment through an agent
and seek the optimal load shedding strategy. In the offline
learning process, the agent does not know at first what action
the reward and the next state are related to. To maximize the
cumulative reward, the agent continuously interacts with the
MG operation environment. Specifically, the agent interacts
with the MG operating environment in a series of discrete
iterative steps, which uses a reward function with the contin-
uous trial-and-error to learn the best behavior. The learning
goal is to restore the MG frequency and RoCoF to the normal
range andmake the environmental state reach the correspond-
ing interval. In each iteration step, the agent observes the
environment state and selects a load shedding action. After
performing the selected action, the agent receives a reward
from the environment. The goal of the agent is to find a
suitable strategy to achieve the maximum average reward
which is the optimal ELSS.

In online learning, the system makes the fast decision
for various scenarios of the MG load shedding based on
a large amount of prior knowledge accumulated by offline
learning. The load shedding decision-making information
stored in the offline knowledge base under different operating
environments can quickly guide the online decision-making,
which creates conditions for adaptive decision-making under
different disturbance scenarios.

V. CASE STUDY
To verify the effectiveness of the ELSS proposed in this paper,
a modified IEEE-25 bus islanded MG [33] is built based
on the DIgSILENT/POWER FACTORY platform. The MG
model is shown in Fig. 4. The MG has 8 DGs and 18 loads.
The specific information is shown in Table 1 and Table 2.

FIGURE 4. MG model based on modified IEEE-25 bus system.

This section compares and analyzes the proposed ELSS
and implicit enumeration strategy (IES). Considering the
communication transmission delay, the communication

TABLE 1. Load information.

TABLE 2. Distributed generation information.

transmission delay time is set to 10ms, and the delay of
starting the relay and reducing the load is 10ms [34]. The fol-
lowing two cases A and B are set to illustrate the effectiveness
of the strategy proposed in this paper.

A. When t = 1s, the distribution network fails and the MG
transfers to the islanded operation mode.

B. DGs outage occurs during the load shedding process.
In each case, the islanded operation is simulated by open-

ing the grid circuit breaker at time t = 1s. In the setting
of cases, there is a power shortage after the islanded MG
operates. These test cases are selected to prove that the ELSS
can flexibly adjust the load shedding strategy according to the
unexpected disturbance situations and correctly determine the
priority of the outage load.

A. CASE 1: MG ISLANDED FROM THE GRID
This case simulates the scenario where the distribution net-
work fails and the MG transfers to the islanded operation
mode.

At t= 1s, theMG transfers to the islanded operation mode.
Due to the high imbalance between the load power and power
generation, the system frequency drops sharply. DGs quickly
output active power to supplement the power shortage in the
MG, which leads to large fluctuations in the output active
power of DGs. Taking DG1 and DG2 as examples, the active
power output is shown in Fig. 5(a) and (b).

This section takes S = {0, 0} as the target state, i.e., the sys-
tem frequency is restored to [49.8, 50.2] Hz, and the RoCoF
takes [−1, 0] Hz/s as the safety interval of the load shedding
target. After the rapid response of DGs, the system frequency
is still lower than 49.8 Hz, which triggers the ELSS.

The load shedding information of the two strategies is
shown in Table 3. At this time, the amount of load shedding
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FIGURE 5. Active power output of ELSS in case 1.

TABLE 3. Load shedding strategy comparison results.

calculated by the power shortage equation [15] is 102kW.
In the IES, after t = 35.6ms, LDs12, 14, and 16 are decided
as the load shedding object. Among them, LDs14 and 16 are
vital loads, which result in the power outage of important
loads in the system. In the ELSS, according to the current
operating state of the MG, load shedding actions are selected
to restore the system frequency. Considering the influence of
the load shedding contribution indicator, the ELSS remove
the non-vital LD4 and LD6 after t = 23.9ms, and the active
power of LD4 and LD6 drops to 0 after removing. The power
output of LD4 and LD6 is shown in Fig. 5 (c) and (d).

FIGURE 6. Comparison of system frequency transient process in case 1.

To further illustrate the effectiveness of the ELSS in fre-
quency recovery, the comparison of the frequency transient
process between the IES and the ELSS is shown in Fig. 6.
As can be seen from Fig. 6, the system frequency drops
rapidly after the disturbance. The lowest frequency of the
ELSS is 48.58 Hz. It is 0.83 Hz less than that of the IES.
Compared with the IES, the minimum frequency of the ELSS
is reduced by 1.7%. Compared with the rated frequency
of 50 Hz, the frequency overshoot based on the IES is 3.4%
during the islanding period. The overshoot of frequency based
on the ELSS is 1.4%. Compared with the IES, the ELSS
reduces the frequency overshoot by 58.82% and greatly
reduces the frequency fluctuation amplitude of the MG.

It can be seen from the comparative analysis of load shed-
ding decision-making time and frequency fluctuation that the
frequency fluctuation amplitude of the IES is large during the
islanding period of theMG, which is not conducive to the safe
and stable operation of the MG. At the same time, the load
shedding decision time of the ELSS is reduced by 11.7ms
compared with the IES, which is conducive to the stable
operation of the islanded MG. This is because the principle
of the IES is to remove one by one from the end of the line to
the direction of the power supply, without considering the dif-
ferent load characteristics. The control performance depends
on the accuracy of the physical model to a great extent.
In contrast, the strategy proposed in this paper considers the
load shedding priority and load frequency regulation effect
and is a data-driven load shedding strategy. The ELSS makes
fast decisions on different states of the MG based on a large
amount of prior knowledge accumulated by the agent offline
learning, which greatly shortens the load shedding decision
time. At the same time, the frequency adjustment effect
guides the decision-making objects to be loads with large
frequency adjustment effect coefficients, which improves the
frequency recovery effect after load shedding and shortens
the frequency recovery time.

The above comparative analyses show that, compared with
the IES, the proposed load shedding strategy has superiority
in maintaining stable power supply for important loads and
reducing the load shedding decision time and fluctuations in
the frequency.

B. CASE 2: DG OUTAGE DURING LOAD
SHEDDING PROCESS
Based on the MG islanded operation, Case 2 simulates the
scenario where DGs quit operation due to a fault and the
power shortage of the MG increases.

Case 2 simulates the scenario where DGs quit operation
while the MG transfers to the islanded operation mode.
At t = 1s, the MG transfers to the islanded operation, and
DG3 and DG4 quit the operation due to the abnormal dis-
turbance. The system power shortage is further amplified.
At this time, the DGs respond quickly to make up for the
power shortage. The active power output of DGs1, 2, 3, and
4 under this case is shown in Fig. 7.

The load shedding information of the two strategies is
shown in Table 4. Under this condition, the amount of load
shedding calculated by the power shortage equation [15] is
143 kW. In the IES, the load shedding objects determined at
t= 1.0362s are LDs1, 5, 8, 14, and 17. This strategy does not
guarantee the stable power supply for the vital load LDs13,
14, and 15. At t = 1.0242s, the removed object decided by
the strategy proposed in this paper is non-vital load LDs1,
2, 4, and 6, which does not cause the important load outage.
At the same time, the decision time of the ELSS is reduced
by 12ms compared with the IES, which shortens the load
shedding decision time and avoids the greater damage to the
system. The comparison of the above load shedding decision
time shows that the ELSS decision-making time is short and
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the non-vital load is removed quickly, which is conducive to
the frequency stability of the system. The rotational inertia
of DGs in the MG is usually very small and the frequency
stability is poor. The frequency change rate is very fast in
case of power shortage, so it is necessary to reduce the load
quickly.

FIGURE 7. Active power output of ELSS in case 2.

TABLE 4. Load shedding strategy comparison results.

FIGURE 8. Comparison of system frequency transient process in case 2.

The comparison of the frequency transient process between
the IES and the ELSS is shown in Fig. 8. It can be seen from
Fig. 8 that the system frequency drops rapidly after the distur-
bance occurs. The lowest frequency of the IES is 47.1 Hz. The
lowest frequency of the ELSS is 48.53 Hz, which is 1.43 Hz
less than the lowest frequency of the IES. Compared with the
rated frequency, the overshoot of the frequency based on the
IES is 2.88%, and it is stable after 0.3s. Based on the proposed
strategy, the overshoot is 1.12%. After 0.189 s, it is stable.
Compared with IES, the proposed strategy reduces frequency
overshoot by 61.11% and frequency recovery time by 37%.

In terms of the system frequency recovery, the frequency
adjustment effect guides the decision-making objects to be
loads with large frequency adjustment effect coefficients,
so that the frequency recovery time is shortened. The ELSS
recovers to a stable state after t= 189ms, while the IES needs
to stabilize after t = 300ms, which is 111ms more than the
proposed strategy.

To sum up, the ELSS can achieve the stable operation
of the system under different disturbances. It not only has

advantages in the system frequency fluctuation and system
stability recovery but also takes into account the cost of the
load shedding more reasonably.

VI. CONCLUSION
This paper defines the problem of the MG emergency load
shedding as an MDP problem. In the load shedding strategy,
the importance of loads and the frequency recovery time of
the system are considered first. To solve this load shedding
problem, this paper uses the load shedding contribution indi-
cator as a criterion of the load shedding strategy. On this basis,
a method based on the dueling deep Q-learning is proposed to
determine the optimal load shedding strategy. In this strategy,
the action advantage function and state value function are
used to accelerate the convergence and improve the stability
of the algorithm. The ELSS is used to learn offline and
generate the optimal load shedding decision, which shortens
the online decision-making time. The simulation results show
that the performance of the proposed strategy is better than
that of the model-driven load shedding strategy in maintain-
ing stable power supply for important loads and reducing
the load shedding decision time and frequency fluctuations.
In addition, this strategy can adjust the load shedding strategy
according to the specific operation of theMG to solve the load
shedding problem under different disturbance scenarios.
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