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ABSTRACT Process monitoring and fault diagnosis (PM-FD) of coal mills are essential to the security
and reliability of the coal-fired power plant. However, traditional methods have difficulties in addressing
the strong nonlinearity and multi-modality of coal mills. In this paper, a novel multi-mode Bayesian PM-
FD method is proposed. Gaussian mixture model (GMM) is first applied to identify the operating modes
of the coal mill. Subsequently, combined with multi-output relevance vector regression (MRVR), Bayesian
inference is introduced to reconstruct andmonitor the newly observed samples from different runningmodes.
Additionally, the squared prediction error and the contribution plot method are employed for fault detection
and isolation. The performance of the proposed PM-FD method is verified through its application in a
self-defined nonlinear system and two actual fault cases of a medium-speed coal mill. Compared with the
traditional methods, the experimental results demonstrate the effectiveness of the proposed method.

INDEX TERMS Process monitoring, multi-mode fault diagnosis, coal mills, Gaussian mixture model,
Bayesian multi-output relevance vector reconstruction.

I. INTRODUCTION
Coal mills are crucial equipment of the coal-fired power
plant’s pulverizing system, in which the raw coal is crushed
and ground into coal powder. Due to the harsh conditions,
coal mills may suffer from blockage, fire, shutdown, and
wear of its components [1]. Once abnormal conditions or
malfunctions occur, the coal flow rate as well as the qual-
ity of coal powder cannot be guaranteed, which negatively
affects the combustion state. In this case, the generated super-
heated steam cannot meet the demand of the steam turbine.
For the worst case, it may lead to furnace flame extinc-
tion and emergency shutdown of the whole unit. Therefore,
effective PM-FD methods of coal mills are urgently needed
for the operational security and reliability of the power
plant.

Quantities of modeling approaches have been proposed
for PM-FD of coal mills, which are divided separately into
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model-based methods, signal-based methods, and historical
data-driven methods [2]. Based on basic principles and cer-
tain assumptions, model-based methods establish mathemat-
ical models to characterize coal mills. Researchers realize
PM-FD of coal mills by comparing actual measurements and
models’ expectations [3]–[7]. However, due to the strong
complexity and non-linearity of coal mills [8], establishing
accurate mathematical models is by no means a simple task.
In order to avoid the difficulty of modeling, some researchers
proposed signal-based methods from the perspective of ana-
lyzing high frequency signals of mechanical equipment [9].
The health status of coal mills is evaluated based on the
comparison of time-frequency characteristics between nor-
mal and fault operating conditions [10], [11]. When utilizing
these methods, a considerable number of sensors for mea-
suring high-frequency signals need to be installed, and the
costs of installation and maintenance are relatively high [5].
Compared with the above two methods, historical process
data-driven methods do not need to take basic mechanism
principles into account [12]–[14].
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Instead, their main purpose is to obtain the differences
between normal operation data and fault operation data.
With the differences analyzed, the health status can be deter-
mined [1], [8], [15]–[17]. Hence, data-driven approaches
have become increasingly popular because of their flexibility
and maneuverability [18], [19], and they are widely applied
in PM-FD of complex industrial processes [20].

Among the dominant data-driven methods for PM-FD,
principal component analysis (PCA), artificial neural net-
works (ANN) and support vector machine (SVM) are three
of the most prevalent algorithms. In PCA methods, for exam-
ple, Qin [21], Alcala and Qin [22] and [23] proposed a
reconstruction-based contributions method and analyzed its
efficiency in guaranteeing correct fault diagnosis. Ge and
Song [24] discussed and confirmed the effectiveness of apply-
ing distributed PCA to plant-wide process monitoring. These
methods do help improve the PM-FD performance, but lack
of robustness and with inadequate monitoring accuracy for
complex nonlinear systems [25]. Zhang et al. [26] used a
KPLSmethod for PM-FD problems and verified its effective-
ness. Considering the characteristics of nonlinearity and com-
plexity of practical industrial processes, ANN-based methods
perform apparently better. Eslamloueyan [27] developed a
hierarchical artificial neural network (HANN) to isolate faults
of the Tennessee Eastman Process and testified its perfor-
mance. Ren et al. [28] combined the idea of reconstruction
and auto-associative neural network (AANN), and proved its
efficiency in fault diagnosis. However, difficulties such as
the determination of the optimum structure, local optimum,
and overfitting are still remaining to be solved [29]. SVM is
another effective fault diagnosis method based on statistical
theory [30]. It performs well in reaching the global opti-
mum by transforming complex issues into convex problems.
Kulkarni et al. [31] used an invariant SVM to improve the
faults classification performance. Mahadevan and Shah [32]
employed SVM for fault diagnosis and proved its superiority.
Although the SVM model has a simple structure and great
robustness, the balance between its soft-margin error and
trade-off constant still needs to be investigated. In summary,
the previous works suffer from some shortcomings, among
them are difficulties in handling complex nonlinear systems
with PCA, local optimum and overfitting with ANN, the
disadvantages of choosing parameters with SVM, and lack
of multi-modal considerations.

This proposal aims to overcome the shortcomings of the
earlier works and develop a novel method for dealing with
the strong nonlinearity and multi-modality of coal mills. Dif-
ferent from existing methods, the relevance vector machine
(RVM) [33] has a Bayesian framework and offers good
generalization performance through sparse predictors [34].
Most parameters are set to zero during the learning process,
which is effective for achieving good prediction results and
avoiding over-fitting problems [33]. In addition, RVM avoids
the disadvantages of determining the soft-margin error and
the trade-off constant. Furtherly, RVM has been extended to
multi-output relevance vector regression (MRVR) [35], [36],

which has the potential of acting as a multivariate recon-
struction technique for PM-FD. However, to achieve great
map relationships between inputs and reconstructions with
MRVR, all possible deviations are needed for training [37].
Operation data collected from coal mills are mainly under
normal conditions, it is difficult to acquire all abnormal sam-
ples in the actual process. Adding certain artificial deviations
to training data seems to be an alternative way but it is hard
to implement, because the dimension of the variables is rel-
atively high. Considering the limitations of applying MRVR
in the PM-FD of coal mills, a reconstruction method based
on Bayesian inference [38], [39] is designed in this paper,
namely Bayesian multi-output relevance vector reconstruc-
tion (BMRVR). The highlight of BMRVR is that a probabilis-
tic mapping between inputs and targets is established, and
the requirement for faulty training data is eliminated. Another
important aspect is that coal mills are always running at var-
ious different operating modes due to unit load fluctuations,
resulting in the invalid assumption of a multivariate Gaussian
distribution [43]. A change in the process runningmode could
make it hard to learn the underlying data structure with only
one single model. Besides, the data structure of such multi-
variate process is quite complicated in the presence of process
characteristics such as process degradation. The application
of local PM-FD methods can help address these challenges
by dividing the data into separate groups and modeling them
separately [44]. As a result, methods for dividing the data
into various regions are of great significance being preceded
in applying local PM-FD methods. Gaussian mixture model
(GMM) [40] provides the superior capability of dividing data
samples into different modes by local Gaussian distribution,
and each Gaussian component corresponds to one possible
operating mode. Quantities of GMM based techniques have
been applied to deal with the multimode processes and the
benefits have been remarked as well [41]–[49]. Thereby
GMM can serve multi-mode PM-FD of coal mills and help
improve the reliability and accuracy.

Therefore, the contribution of this paper is that we develop
a novel multi-mode Bayesian inference-based reconstruction
method for PM-FD of coal mills. The new method can deal
with the deficiency of the traditional PM-FD methods in lack
of faulty training data and the invalid Gaussian distribution
assumption. First of all, GMM is established to model the
normal training samples, thus obtaining the prior probabilities
of different operating modes of coal mills. The local MRVR
algorithm is then taken for different Gaussian batches. Based
on the above framework, once a new input occurs, it is first
determined the operation state to which it belongs. Afterward,
Bayesian inference is employed to explore possible devia-
tions between the fault vector and normal data. The rest of
this paper is organized as follows: Section II introduces the
basic concepts and common faults of medium speed coal
mills. In Section III, the basic knowledge of GMM, MRVR
and proposed BMRVR is described. Section IV presents the
detailed process of the proposed multi-mode PM-FD frame-
work. Experiments to a self-defined nonlinear system and
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a medium speed coal mill in a coal-fired power plant are
discussed in Section V. Finally, conclusions are drawn in
Section VI.

II. DESCRIPTION OF MEDIUM SPEED COAL MILLS
In most modern coal-fired power plants, medium speed coal
mills are widely equipped because of their flexibility and
economic efficiency.

A. OPERATION OF COAL MILLS
The work in this part is based on a ZGM-113Nmedium speed
coal mill equipped in a subcritical 600MW coal-fired unit.
As shown in Fig. 1, the raw coal falls into the coal feeder,
enters the coal mill through the inlet pipe, and finally falls
onto a constant speed rotating grinding table. After being
ground, qualified coal fines are carried by the mixed primary
air and sent to the furnace for combustion. Fig. 2 shows the
schematic diagram of the pulverizing process inside the coal
mill. The raw coal is ground by the relative motion of the
roller and the bowl. On the edge of the mill, pulverized coals
are dried and carried by the mixed primary air. Large and
heavy particles will fall onto the grinding table, namely the
first separation. Coal-air mixture particles then go through
the second separation when passing the rotary separator.
During this process, larger particles fall back to the grinding
area along the wall because of the inertial interception and
the separation function. Therefore, the coal powder sent to
the furnace can meet the requirement of the coal fineness.

FIGURE 1. Structure of the medium speed coal pulverizing system.

B. COMMON FAULTS
During the operation process, common faults such as foreign
materials intrusion, coal choking, coal shortage, mill fire or
explosion, and etc. may occur [8].

1) Foreign materials intrusion: In the process of mining,
transportation and storage, the raw coal is easily mixed with
various types of foreign objects such as stones. Once some
hard-to-grind objects with a considerable size are sent to the
coal mill system, it may result in the jamming of the coal

FIGURE 2. Schematic diagram of ZGM-113N medium speed coal mills.

falling pipe, severe vibration or even mechanical failure of
the coal mill.

2) Coal choking: If the chocking occurs, the flow rate of
coal-air mixture for burning will decrease, and the amount
of accumulated coal inside the mill will keep increasing.
The possible reasons are huge changes in coal quality, high
moisture content in the raw coal, improper adjustment of
the air-to-coal ratio, too small primary air flow rate, etc.
The specific symptoms include the increase of differential
pressure between the inlet and the outlet of the coal mill,
the increase of the mill current, and the decrease of outlet
temperature.

3) Coal shortage: When such fault happens, the amount of
coal inside the mill will decrease. The common reasons are
blockage of the coal falling pipe, malfunctions of the coal
feeder, etc. The phenomena of such fault are the decrease of
differential pressure between the inlet and the outlet of the
coal mill, the reduction of the mill current, and the increase
of the outlet temperature.

4)Mill fire or explosion: If this fault occurs, it is manifested
by a sharp increase in the outlet temperature, a significant
change in the wind pressure at the mill inlet, and even the
combustion or ignition of coal inside the mill. The main
causes are high primary air temperature, low coal flow rate,
coal accumulation in the mill, coal leakage, etc.

Whatever the kind of fault happens, the later such fault is
discovered, the greater the irreversible damage is caused to.
Therefore, timely discovery and maintenance of these faults
do help improve safety and reduce economic losses.
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III. PRELIMINARIES
A. GAUSSIAN MIXTURE MODEL
A GMM combines the advantages of both parametric and
non-parametric estimation, which is not limited to a specific
function form.GMMcan provide superior capability of divid-
ing a sample dataset into different clusters by local Gaussian
distribution, and each Gaussian component corresponds to
one possible operating mode.

Let x = [x1, x2 . . . xm]T be a m-dimensional vector col-
lected from coal mills, its probability density p (x|2) can be
expressed by different Gaussian components:

p (x|2) =
K∑
k=1

πkN (x|µk ,6k ) (1)

where 2 = {(µ1,61) , . . . , (µK ,6K ) ,π1, . . . , πK }, µk is
the k th mean vector, 6k is k th covariance matrix, πk is the
prior probability of the k th Gaussian component and satisfies∑K

k=1 πk = 1. K represents the number of total Gaussian
components, and the functionN (x|µk ,6k ) is the multivariate
Gaussian density function given by:

N
(
x |µk ,6k

)
=

1

(2π)
m
2 |6k |

1
2

exp
{
−
1
2

(
x− µk

)T
6−1k

(
x− µk

)}
(2)

It is noted that given a number of n independent and
identically distributed data X = [x1, x2 . . . xn]T ∈ Rn×m,
the observed data log-likelihood function is given by

log p (X |2)= log
n∏
i=1

p(xi |2)=
n∑
i=1

log
K∑
k=1

πkN (xi|µk ,6k )

(3)

In general, parameters can be obtained by computing the
maximum likelihood estimation (MLE) as follows:

2ML = argmax
2

{log p(X|2)} (4)

The expectation-maximization (EM) algorithm gets
around this issue by applying two steps iteratively until
meeting the convergence criterion. The hyperparameters 2
can be estimated by the EM algorithm. More details can be
found in ref. [41], [51].

B. MULTI-OUTPUT RELEVANCE VECTOR MACHINE
Given a set of input variables X =[x1, x2. . .xn]T∈Rn×m and
target outputs Y = [y1, y2. . .yn]

T
∈Rn×v, the nonlinear rela-

tionship between inputs and targets can be expressed as

Y = 〈8,W〉 + E (5)

where 〈·, ·〉 denotes the dot product, 8 =[φ (x1)φ (x2) . . .
φ(xn)]T is a designmatrixwithφ (x)= [1k (x, x1) k (x, x2) . . .
k (x, xn)]T, k (x, xi) is the kernel function. W is the weight
matrix, E =[ε1ε2. . .εn]T, and εi are independent samples
obeying the Gaussian distribution with zero mean and a
covariance matrix � =(ETE)/n∈Rv×v.

With the assumption that εi follow an independent Gaus-
sian distribution, the likelihood of the training data can be
expressed as

p (Y |W, �) = (2π )−
vn
2 |�|−

n
2 exp

(−
1
2
tr(�−1(Y−8W)T(Y−8W))) (6)

where tr(·) denotes trace of matrix.
To overcome the over-fitting problem, the estimation of

weight matrixW is introduced by

p (W |α, �) = (2π)−
v(n+1)

2 |�|−
n+1
2 |A|−

n
2

exp(−
1
2
tr(�−1WTAW)) (7)

whereA−1 = diag
(
α−10 α−11 . . .α−1n

)
=

E(wwT)
tr(�) , withw being

the column vectors ofW.W keeps to the zero-mean Gaussian
distribution with inverse variances α = [α0α1 . . . αn]T.
According to the Bayes’ rules, the posterior probability

over matrixW can be represented as follows:

p (W |Y,α, �) =
p (Y |W,�) p (W |α, �)

p (Y |α, �)
(8)

It can be further deduced to the following formulation:

p (W |Y,α, �) = (2π)−
v(n+1)

2 |�|−
n+1
2 |6|−

v
2

exp(−
1
2
tr(�−1(W−M)T6−1(W−M))) (9)

where 6 = (8T8+ A)
−1

andM = 68TY.
Great details regarding the mathematical theorem and the

solving process are provided in ref[35], [36]. During the
process of training MRVR, the application of EM algorithm
helps obtain an optimal set of parameters. When handling
multi-output regression problems, the optimal weight matrix
M can be calculated with the obtained parameters.

C. BAYESIAN MULTI-OUTPUT RELEVANCE VECTOR
RECONSTRUCTION
As aforementioned, to achieve great map relationships
between inputs and reconstructions with MRVR, all faulty
data of coal mills are needed for training. Considering the
limitations of applying MRVR in the PM-FD of coal mills,
a reconstruction method based on Bayesian inference is
designed, namely Bayesian multi-output relevance vector
reconstruction (BMRVR). The highlight of BMRVR is that
a probabilistic mapping between inputs and targets is estab-
lished, and the requirement for faulty training data is elimi-
nated.

In line with MRVR, a reconstruction vector x∗ can be
calculated from a new input vector x, which is provided by

x∗ =MTφ (x) (10)

with predictive covariance matrix �∗ can be expressed as

�∗ = �MP + φ (x)T6φ (x) (11)

where �MP represents the estimated noise of the training
data under normal conditions. As proposed in ref. [33,36]
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the predictive covariance matrix �∗ is a sum of two terms,
among them �MP is the noise on the training data and
�MPφ (x)T6φ (x) represents the uncertainty in the prediction
of the weights.

In this framework it is significant to note that (10) can
successfully predict the x∗ if the new x is normal, otherwise it
is hard to reconstruct the fault data to normal state because of
lacking all possible deviations when training. To overcome
this problem, a Gaussian random vector ε∗ with zero mean
and an unknown diagonal covariance matrix4 is introduced.
Then the (10) can be re-expressed as

x∗ =MTφ (x)+ε∗ (12)

Hence the following step is to estimate the deviations ε∗

through 4. Since the parameters µk ,6k of the k th Gaussian
component are available, the joint distribution of x and x∗ can
be analytically computed via[

x
x∗

]
|k ∼ N (

[
µk
µk

]
,

[
6k 6k
6k 6k +4

]
) (13)

It is not surprising to resort to EM for the estimation of
x∗ and 4. In this case, the purpose of EM is to solve the
following maximum likelihood estimation problem:

4̂
∗
= argmax

4

p(x|4) (14)

Let L (4) = log p(x|4) be the observed data log like-
lihood, after l iterations, the optimal estimated parameter is
4̂∗l (l ∈ N). The quantity of change has the sign as

L (4)− L
(
4̂
∗

l

)
= log

∑
∗

x p(x|x
∗,4)p(x∗|4)

p
(
x | 4̂

∗

l

) p(x∗|x, 4̂
∗

l )

p(x∗|x, 4̂
∗

l )

(15)

In light of the Jensen inequality, the change of likelihood
given by (15) is modified to

L (4) ≥ L
(
4̂
∗

l

)
+1(4|4̂∗l ) (16)

where

1(4|4̂∗l ) =
∑

x∗
p(x∗|x, 4̂∗l )log

p(x|x∗,4)p(x∗|4)

p(x|4̂
∗

l )p(x∗|x, 4̂
∗

l )
.

To investigate further, the aim of the E-step is to compute
the following equation:

Q(4|4̂
∗

l ) = Ex∗|x,4̂∗l
logp(x,x∗|4) (17)

It is natural to seek 4̂∗l+1 in the M-step via

4̂∗l+1 = argmax
4

[Q(4|4̂∗l )] (18)

When the difference between 4̂
∗

l+1 and 4̂
∗

l is practi-
cally equal to zero, it means that the reconstruction process
has reached convergence and the observed input has been
adjusted to a formal state.

IV. PROPOSED MULTI-MODE FAULT DIAGNOSIS
METHOD
The proposed algorithm makes use of GMM and BMRVR
to design a novel combination strategy for PM-FD of coal
mills corresponding to different running modes. As shown
in Fig. 3, the entire framework of the multi-mode fault diag-
nosis method consists of two main parts, namely offline
training and online application. The detailed implementation
steps are given in Algorithm A as well.

FIGURE 3. Schematic diagram of the proposed fault diagnosis method.

A. OFFLINE TRAINING
After completing the normalization procedure of the col-
lected normal operating data of coal mills, GMM can be
established as the first step to divide the training samples
into several running modes. The prior probability of the kth
Gaussian component can be given by πk , and the probability
density can be calculated by the weighted sum of different
Gaussian components according to (1). After obtaining the
GMMmodel, the local MRVR algorithm is taken for training
the initial relationships of different Gaussian batches.

As described in the above part, the GMM and MRVR
models are successfully obtained. However, a complete fault
diagnosis algorithm should identify the normal or abnormal
status of monitored samples correctly. As a result, it is essen-
tial to compute the control limits satisfying the requirement
of a certain confidence. In this paper, SPE [41,50] is chosen
as the fault detection index, which is defined as the squared
norm of the difference vector between the measurement x and
the reconstructed x∗. SPE can be calculated as:

SPE =
∥∥x−x∗∥∥2 = m∑

i=1

(xi − x∗i )
2 (19)
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with the control limit [25] is given by

δ2α = θ1

(
1− θ2h0(1−h0)

θ21
+

zα
√
2θ2h20
θ1

) 1
h0

(20)

where zα is denoted as the normal variable corresponding to
(1− α)×100th percentile, h0= 1− 2θ1θ3

3θ22
, θi =

∑m
k=1 λ

i
k , and

λik are the eigenvalues of the sample covariance matrix S.
S can be calculated from the residual matrix E = (X−X∗),
which takes the following formulation:

S(j, k) =
1
n

n∑
i=1

eijeik (21)

where eij= E(i, j) is the (i, j)th value of the residual matrix E.
The sample is considered normal if its SPE is within the

control limit δ2α , otherwise it is treated in a faulty state.

B. ONLINE APPLICATION
When a newmonitored sample x comes, it should first be nor-
malized the same way as the training samples does. The sec-
ond step is to compute the posterior probabilities and identify
the Gaussian component to which the vector belongs. Thirdly,
the reconstruction data x∗ is calculated with the application
of the local BMRVR.

The objective of the practical application is to determine
whether the testing data is under normal operation or faulty
condition. As a result, the main index SPE which depends
on the monitored sample and reconstruction data is further
calculated. If the SPE is smaller than δ2α , the given sample
is defined as normal data, otherwise it is defined as fault
data. It should be noted that we need to perform root cause
analysis when a sample is identified as faulty. Contribution
plot is an effective method, and a variable is most likely the
faulty one if it has the largest contribution to SPE statistics.
The expressions to compute all contribution indices of the
multivariate samples have the quadratic form, which can be
written as:

CSPE
i = (xi − x∗i )

2 (22)

The above contribution index indicates the magnitude of
the possibility that a specific variable has the faulty status.
In other words, the variables are more likely responsible for
the abnormality if the contribution indices are significantly
larger than those of other variables.

To evaluate the estimated results of our reconstruction
method given the Gaussian assumption of residuals, the root
means square error (RMSE) and prediction efficiency (PE
as a percentage) [52] are added and analyzed in this paper.
RMSE denotes the actual reconstruction deviation and PE
reflects the relative level of deviation. When the RMSE is
small, or the PE is close to 100%, the deviations indicates
an excellent reconstruction method. RMSE and PE are calcu-
lated as

RMSEi =

√
1
n

∑n

j=1

(
x∗i,j − xi,j

)2
(23)

Algorithm1The proposed fault diagnosis algorithm integrat-
ing GMM and BMRVR
Inputs:
Multivariate normal training data matrix Xtrain ∈ Rn×m

Require:
Initial parameters

Kmin,Kmax,2 =

{
(µ1,61) , . . . ,

(
µKmax ,6Kmax

)
,π1, . . . ,

πKmax

}
(Offline training)
s← 0, K ← Kmax
while (stopping criterion is not met) do

Calculate p(s) (xi ∈ Ck) (E-step)
Calculate µ(s+1)

k ,6
(s+1)
k ,π

(s+1)
k (M-step)

Update parameters 2ML←
arg max

2

{logp(X|2)}

K ← K − 1, if π (s+1)k ≤ ε (ε is a small positive number)
s← s+ 1

end while
Divide training data Xtrain into K Gaussian clusters with
GMM
for i = 1 to K do

Estimate hypermeters αi, 6i, Mi and �i of the MRVR
model

Calculate control limits δ2α,i of all gaussian clusters via (20)
end for
(Online application)
for j = 1 to ntest do

Determine the current running-on mode of the monitored
xj with GMM, and pick up the corresponding confidence
limits δ2α,i

Calculate the expectation with local MRVR using (10)
Repeat the E-step via (17) and M-step using (18) until the

algorithm converges and output the final reconstruction data
x∗j , namely BMRVR.

Calculate the squared prediction error (SPE) via (19)
if SPE < δ2α,i then

Declare the monitored sample is in a normal state
else
Declare fault of the monitored sample and perform root

cause analysis
end if

end for

PEi(%) = (1−

∑n
j=1

(
x∗i,j − xi,j

)2
∑n

j=1

(
x∗i,j − x̄i

)2 )× 100 (24)

where i= (1, 2, · · · ,m) represents ith variable from the m
monitored variables, and x̄i denotes the actual mean value of
ith variable.
In addition, two statistics, namely fault detection

rate (FDR) and false alarm rate (FAR), are used to access the
effectiveness of the fault diagnosis performance. FDR and
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FAR are defined and depicted by:

FDR =
TP

TP+ FN
(25)

FAR =
FP

FP+ TN
(26)

where TP is the number of isolated abnormal variables with
faulty label, FN is the number of faulty variables determined
to be normal, FP is the number of variables that are incor-
rectly judged to be abnormal under the normal state, and TN
is the number of normal variables that are not falsely detected.

What is more, the computing time (CT) for each sample
is another index related to the computational efficiency of
different PM-FD methods.

V. CASE STUDY
In this section, the proposed multi-mode PM-FD method is
evaluated using a self-defined nonlinear system and two real
fault cases of a medium speed coal mill. Following the data
collection and preprocessing, the procedure of the proposed
PM-FD scheme proceeds in five main steps:

Step 1: Establish GMM model with the training sam-
ples under normal conditions, which estimates parameters
2 = {(µ1,61) , . . . , (µK ,6K ) ,π1, . . . ,πK } according to
equations (1)-(4).

Step 2: Divide training samples into K Gaussian clusters
with the established GMM model.

Step 3: For all Gaussian clusters, establish local MRVR
models one by one, estimate hypermeters αi, 6i, Mi and
�i using (6)-(9), and compute confidence limits δ2α,i (i =
1, 2, · · · ,K) in (20).
Step 4: Determine the current running-on mode of newly

observed sample with GMM, calculate the expectation with
corresponding local MRVR according to (10), and the expec-
tation is further reconstructed with the application of the
Bayesian improved algorithm (BMRVR) using (12).

Step 5: Calculate the fault index SPE via (19) and, finally,
fault detection and diagnosis by comparing fault indices with
confidence limits.

To further testify the superiority of the proposed method,
different approaches e.g. PCA [22], KPCA [23], KPLS [26],
AANN [28], MRVR, multivariate Gaussian process regres-
sion (MGPR) [50] and their GMM-based variants are used
to make comparisons. For these GMM-based variants, GMM
are first applied for data classification, and the corresponding
local PM-FD methods are further utilized for fault detection.

The configuration of the computational platform is spec-
ified as follow: 1) the CPU is an Intel processer, E5-2643
3.4GHz; 2) the RAM volume is 16.00G; 3) the Operation
system is Windows 10; and 4) the coding environment is
Python v3.7.

A. VALIDATION BY A SELF-DEFINED NONLINEAR SYSTEM
To illustrate the validity of the proposed fault diagnosis
method, a simulation study is carried out in this section.
We first introduce a strong nonlinear simulated process with

six variables. The process established by self-defined func-
tions is given by

x1 = u1 + γ1
x2 = 0.2(u21 − 2u1 + 3)+ γ2
x3 = 2eu1/10 + γ3
x4 = 0.8u2 + 1.5+ γ4
x5 = cos(u2 + γ5 x6 = 1.1|u1 − u2| + γ6

(27)

where γi ∼ N (0, 0.05) is the normally distributed noise.
Three different operating modes are studied to analyze the
performance of the proposed multi-mode, which can be illus-
trated as: mode 1: u1∼N (4, 0.25), u2∼N (12, 0.8), mode 2:
u1 ∼ N (7, 0.45), u2 ∼ N (2, 0.15), mode 3: u1 ∼
N (11, 0.65), u2 ∼ N (15, 0.7). A total of 2400 normal oper-
ating samples (with each mode 800) are generated according
to (27).

All samples are first scaled to the range of [0,1] via the
following equation:

x
′

=
x − xmin

xmax − xmin
(28)

where x and x
′

represent the original and scaled variable,
respectively. xmax and xmin denote the maximum and mini-
mum value of the raw data. Another set of 2400 (with each
mode 800) testing samples are obtained according to (27) as
well. As described in Table 1, four different types of faults
(200 samples with each) are introduced to every mode.

TABLE 1. Faults status and corresponding description.

The experimental test on the self-defined system is carried
out in this part. As shown in Fig. 4, the performance of opera-
tion mode identification is sufficient to meet the requirements
for both training and testing data. Fig. 5 illustrates the detec-
tion results of the three different fault statuses for mode1,
mode2 and mode3, respectively. As expected, the proposed
algorithm can capture data anomalies once a fault occurs.

After applying the proposed reconstruction model, we cal-
culate the RMSEs and PEs of all variables under different
modes and fault types. As shown in TABLE 2, RMSEs of
all variables are quite small and the corresponding PEs are
relatively high. It is apparent that the reconstruction capacity
of the proposed GMM-BMRVR approach is effective.

The experimental test on the self-defined system is also
carried out in this part. As shown in Fig. 4, the performance
of operation mode identification is sufficient to meet the
requirements for both training and testing data. Fig. 5 illus-
trates the detection results of the three different fault statuses
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TABLE 2. Reconstruction performances of the proposed BMRVR under different modes and faults.

FIGURE 4. Classification results of different operation modes for both
training and testing samples.

FIGURE 5. Training results of three different fault statuses for (a) mode1,
(b)mode2, (c)mode3.

for mode1, mode2 and mode3, respectively. As expected,
the proposed algorithm can capture data anomalies once a
fault occurs.

To further isolate the faults, the contribution plot of three
different fault statuses for mode1, 2 and 3 is shown in Fig. 6.
As depicted, under the condition of fault 1, the other five
SPE contributions are smaller than the control limit. When
fault 2 and 3 are introduced to testing samples, although the

FIGURE 6. Training results of three different fault statuses for (a) mode1,
(b)mode2, (c)mode3.

contribution of a specific variable slightly exceeds the 99%
control limit, the contributions of fault variables are much
higher than the normal ones, and the effect of isolating faults
is significant.

To demonstrate the advantages of the proposed GMM-
BMRVR method, a performance comparison of different
approaches is carried out. The average evaluated indices
(FDR, FAR) as well as CT are listed in TABLE 3. It is appar-
ently shown that the FDR values corresponding to the three
different types of faults are all over 95%. Correspondingly,
FARs fluctuate in a small range of around 5%. For a piece of
testing sample, the average CT of 2.15milliseconds is reason-
able as well. It is noticed fromTable 3 that GMM-basedmeth-
ods provide better results compared to those classical single
PM-FD methods like PCA [22], AANN [28] and KPLS [26].
On the other hand, for GMM-like methods, when GMM-
PCA and GMM-AANN are utilized to deal with the fault
data, the corresponding FDRs are smaller and FARs fluctuate
significantly. In particular, GMM-PCA is inadequate when
facing the complex nonlinear systems. GMM-KPCA, GMM-
KPLS, GMM-MGPR and GMM-MRVR produce relatively
good results when handling the given nonlinear system,
but there is still some gap compared with GMM-BMRVR.
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TABLE 3. Comparison of different algorithms in the case of isolating faults.

To sum up, the proposed GMM-BMRVR performs well in
PM-FD problems of different fault types.

B. FAULT DIAGNOSIS OF A MEDIUM SPEED COAL MILL
The work in this part is based on a ZGM-113N medium
speed coal mill equipped in a subcritical 600MW unit. Com-
bined with existing research [1], [53] and relevant theoretical
knowledge [54], 15 operating variables listed in Table 4 are
selected to establish a coal mill fault diagnosis model. The
coal mill studied in this paper was thoroughly overhauled,
and, after that, a total of 28,800 historical data samples were
acquired for ten days. The sampling interval is 30 seconds,
and the range of unit load range is between 300 and 600MW.
Due to the frequent changes of the grid load command,
samples of different load segments are unevenly distributed.
Therefore, to ensure the uniformity of the training samples,
we divided the load range into 10 segments at an interval
of 30MW and chose 400 samples in each load segment
through random non-repeated sampling. Finally, 4000 pieces
of data were selected as the training dataset to build the PM-
FDmodel. In this section, two typical fault events are studied,
namely mechanical failure and coal blockage.

The GMMmodel is firstly established based on the normal
historical data acquired. All the historical data are divided
into five running modes, and Fig. 7 shows the classification
result of four main related variables, in which the size of
scattered particles represents the coal flow rate from the coal
feeder. After the completion of the GMM model, the local
MRVR training models are established for each mode and the
corresponding data cluster. Based on the above local MRVR
models, the control limits for different modes are obtained.

In practical operation processes of medium coal mills,
when a fault occurs, it is unrealistic to obtain the actual
data under the corresponding normal running conditions.
As a result, we tested the gmm-bmrvr method by adding
step faults to two variables, namely coal-air mixture outlet
temperature and the motor current of coal mill. To fully
verify the performance of the proposed method, we varied
the magnitude of the step faults from 20% to 100% with

TABLE 4. Operating variables for establishing fault diagnosis model.

FIGURE 7. Operation modes classification result of the coal mill based on
GMM.

the step size as 20. as shown in figure 8, the deviations
between the reconstruction data and the actual normal values
arE small for different fault magnitudes. RMSES and PES
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TABLE 5. Reconstruction performances of two examples.

FIGURE 8. Examples of data reconstruction performance with the
magnitude of step fault from 20% to 100%.

for those adding-faults data are also calculated after being
reconstructed by the proposed method. As listed in Table 5,
both rmses are small and the pes are higher than 90%, which
confirms that the given method can correctly handle different
faults. therefore, the gaussian assumption of residuals in our
manuscript can satisfy the practical requirements.

1) FAULT CASE (1): MECHANICAL FAILURE
It started at 9:20 a.m., the coal flow rate oscillated around
40 t/h, but the current swung between 73-102A, which should
have been less than 80A. Such phenomenon lasted for two
hours before discovered. The fluctuation of coal mill current
and the historical data plot of the coal flow rate are shown
in Fig. 9. After the maintenance, it was found that there were
some big foreign matters in the coal mill.

FIGURE 9. Historical variation trend of relevant parameters at different
stages of fault case (1).

Here the testing results of fault case (1) are illustrated
in Fig. 10 and Fig. 11. As discussed above, the primary

FIGURE 10. Testing result of the fault case (1) by the proposed method.

manifestation of the mechanical failure is the apparent fluc-
tuation of coal mill current and the other parameters are rela-
tively normal. As shown in Fig. 10, during the whole process,
the coal mill’s running mode is classified to mode 5. The
SPE value begins to exceed the control limit from 9.30 a.m.
and generally remains high. In particular, it is found that the
value of SPE is lower than the 99% control limit in some
periods. This is analytically due to the intermittent influence
on the coal mill’s operation when there is a foreign body,
resulting in the motor current returning to normal operation at
some moments. This situation will also lead to a reduction in
FDR. However, as depicted in Fig. 11, the contribution plot
of variables during the failure process reveals that the root
lies in the current of coal mill. Moreover, the failure started
at 9.20 a.m., but it was not discovered and dealt with by
the operator until 11.20 a.m. As expected, the proposed fault
diagnosis model significantly provides the early warning of
the failure.

FIGURE 11. Contribution plot result of fault case (1).

2) FAULT CASE (2): COAL BLOCKAGE
As shown in Fig. 12, starting at 6.30 a.m., the current of the
coal mill and the differential pressure between inlet and outlet
began with oscillating rise. The upward trend became signifi-
cant at 7.00 a.m. and continued until 7.40 a.m. From 6.30 a.m.
to 7.40 a.m., the primary air flow rate was decreasing all
the time. In addition, the coal-air mixture outlet temperature
started to decline distinctly at 6.30 a.m. and remained low
until 7.40 a.m. The coal mill began to block from 6.30 a.m.,
and it was not discovered and processed by the operator until
7.40 a.m., which seriously affected the normal operation of
the equipment.

Figure 13 shows the testing result of the coal blockage by
the proposed method. It is illustrated that the whole process
went through three different operating modes, among which
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FIGURE 12. Historical variation trend of relevant parameters in different
stages of fault case (2).

FIGURE 13. Testing result of the fault case (2) by the proposed method.

are mode 4, mode 2 and mode 1. The 99% control limits also
vary with the operation mode. According to the on-site main-
tenance report, the fault started from 6.30 a.m. and was not
discovered and handled until 7.40 a.m. With the application
of the proposed method, the value of SPE begins to exceed
the control limit at 6.40 a.m. and a significant deviation
occurs at around 7.10 a.m. In other words, our method can
give an alarm at least 30 minutes earlier than when the fault
is actually found. Through the comprehensive analysis of
Fig. 13 and Fig. 14(b), the period between 7.10 a.m. and
7.40 a.m. is the stage where the fault occurs significantly,
with the corresponding operationmode is mode 2. During this
period, the contribution values of the four main fault variables
are evidential and the fault isolation is successfully reached.
From 6.30 a.m. to 7.10 a.m., the failure is in the early stage
and only the coal-air mixture outlet temperature changes

FIGURE 14. Contribution plot result of fault case (2) with (a) Mode4,
(b) Mode 2, (c) Mode 1.

TABLE 6. Performance comparison results of different algorithms for
isolating abnormal variables.

remarkably. Fig. 13(a) also shows that the contribution value
of the temperature is higher than other variables. In addition,
as shown in Fig. 13(c), the coal mill is in the recovery
stage from 7.40 a.m., the corresponding contribution values
gradually decrease and eventually fall below the control limit.
It is worth mentioning that our model still has a small limi-
tation. As revealed in Fig. 12, from 7.00 a.m. to 7.10 a.m.,
the misclassification problem caused by the proximity of
the classification boundary limits the performance to some
extent. However, despite such deficiencies, the performance
of the model is still acceptable.

To further verify the superiority of the proposed GMM-
BMRVRmodel, different fault diagnosis methods are utilized
to make comparisons. TABLE 6 depicts the PM-FD results
of single classic methods and GMM-based variants. In these
two cases, all GMM-based methods like GMM-KPCA show
their improvements at the level of both FDR and FAR to
single methods like PCA. For those GMM-like methods,
it turns out that GMM-BMRVR has larger FDR and smaller
FAR for both fault case (1) and fault case (2), which means
it performs better than others. Then come GMM-KPCA,
GMM-MRVR, GMM-KPLS and GMM-MGPR, while the
traditional GMM-PCA falls behind other models. The PCA-
based model does not work very well when dealing with
complex nonlinear processes such as coal mills. Moreover,
in terms of CT, the proposed GMM-BMRVR has a satisfying
performance.

In summary, after applying two fault cases in reality
and comparing them with different methods, the proposed
GMM-BMRVR model performs better.

VI. CONCLUSION
To tackle the PM-FD problem of complex non-linearity and
multimodality of coal mills, a novel Bayesian multi-mode
method is proposed in this paper. During the modeling
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process, GMM is utilized for mode identification and MRVR
is performed as a regression model to obtain the intrinsic
knowledge and the control limit of the normal operating
data in each mode. To overcome the problem of lacking
all possible deviations in the training dataset, the Bayesian
inference is adopted to help reconstruct the newly observed
samples. The proposed method is evaluated by a numerical
example and two realistic industrial fault cases. After the
experimental verification, the proposed method is proved to
have advantages in dealing with different kinds of faults of
coal mills. In our further study, we will resort to reduce the
redundant information of parameters and retain meaningful
data to further enhance the model efficiency.
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