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ABSTRACT Modern cyber-physical microgrids rely on the information exchanged among power electronics
devices (i.e., converters or inverters with local embedded controllers) making them vulnerable to cyber
manipulations. The physical devices themselves are susceptible to potential faults and failures. Effects
of these cyber and physical anomalies can propagate throughout the entire microgrid due to information
exchanged and the inherent low inertia of the distribution network. This work employs the parametric
time-frequency logic (PTFL) framework to detect such cyber-physical anomalies. PTFL is a formalism
to analyze the time-frequency content of the observable quantities of interest (such as current, voltage,
or frequency) of power electronics devices in comparison with the predefined time-frequency properties.
PTFL formalism is presented to detect the anomalies such as false data-injection attacks, denial-of-service
attacks, and faults on a cluster of four DC microgrids and an inverter-populated IEEE 34-bus feeder system
in a controller/hardware-in-the-loop environment.

INDEX TERMS Distributed control, formal methods, microgrid, parametric time-frequency logic.

I. INTRODUCTION
MICROGRIDS employing distributed control are scal-
able and reliable alternatives to the traditional coun-
terparts with centralized controllers that had posed a
single point-of-failure and required high communication
bandwidth [1], [2]. Microgrids with distributed control have
evolved into cyber-physical systems (CPS) due to the adop-
tion of complex embedded controllers and communication
network, and can be prone to cyber-physical anomalies [3].
An anomaly is defined here as an unexpected behavior of
a microgrid due to a fault, failure, or cyber attack [4]. The
behavior of a microgrid is defined by its output voltage and
current. The distributed control framework is vulnerable to
cyber attacks due to its dependence on local sensing of the
observable quantities (e.g., current, voltage, or frequency),
the presence of a communication network for data exchange,
and the absence of a centralized structure with a global
situational awareness to evaluate the prevailing adversarial
cyber picture [5]. The physical devices (power electronic
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converters/inverters, distributed energy sources, sensors,
transmission lines, etc) are also susceptible to poten-
tial faults and failures, referred to here as the physical
anomalies. The distorting effects of these cyber or physi-
cal anomalies can rapidly propagate throughout the entire
microgrid due to the cyber interconnection and the inher-
ent low inertia of the power distribution network in a
microgrid [6].

Recent anomaly detection approaches [7]–[16] are largely
based on state estimation techniques. Most techniques are
designed for legacy power systems, with centralized con-
trol architectures, and could have certain drawbacks; e.g.,
require detailed modeling, need the structural knowledge of
the power systems, merely indicate the presence or absence
of an anomaly, or miss quantitative information about after-
effects. A summation detector in [16] detects a cyber attack
based on current and historical data. Detection techniques
based on temporal logic provide a more comprehensive pic-
ture about an anomaly by quantifying its effects in both
time and space with respect to predefined bounds. They
can quantify the effects of an anomaly instead of provid-
ing a mere binary detection output. Existing techniques,
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FIGURE 1. Parametric time-frequency logic (PTFL) employed in a context
of a microgrid. Microgrid’s output waveforms are used as the training
data to extract the time-frequency information of anomalous traces via
PTFL analysis based on continuous wavelet transform, which will later be
used to classify traces in testing data.

e.g., [17], [18], focus on detecting abnormal signal behav-
iors in the time domain while undesirable behaviors such as
unexpected oscillations, abrupt transients, and spurious noise
could be difficult to detect without frequency information.
Moreover, a carefully-designed anomalous signal could go
undetected by such techniques if it does not violate prede-
fined bounds.

To capitalize on the time-frequency information for
cyber-physical anomaly detection, this work adopts the para-
metric time-frequency logic (PTFL) formalism [19] in the
context of power electronics-intensive microgrids, as shown
in Fig. 1. It takes two types of data sets as inputs: the training
set composed of the anomalous traces, and the testing set
composed of both the anomalous and the good traces. These
data sets are obtained from the output waveforms, referred to
as traces, of the microgrid, shown as the output data in Fig. 1.
This PTFL framework extracts the anomalous time-frequency
content from the training data, and subsequently uses them
to detect the anomalous traces present in the testing data.
One of the advantages of the considered PTFL technique
is that it does not require the modeling knowledge of the
microgrid. Instead, the anomalous traces of the microgrid are
essentially required for anomaly detection. These traces are
readily available through measurements of output current and
voltage waveforms. Important time-frequency information,
from such traces, is extracted through continuous wavelet
transform. This class of temporal logic stands apart from
its counterparts (e.g., signal temporal logic [5]) in following
ways:
• A given trace could be analyzed in both time and fre-
quency domains to detect not only the cyber and physical
anomalies but also the unwanted noise in the microgrid
output.

• This technique successfully detects an anomalous trace,
irrespective of its magnitude, even if it doesn’t violate
predefined bounds.

• Temporal constraints for a given testing data can be
specified to determine the exact time duration for which
an anomaly occurs.

FIGURE 2. Morlet (morl) wavelet is shown with the scaling parameter a
and the shifting parameter τ . CWT involves the convolution of
complex-conjugate of daughter wavelets, resulting from variation of a,
with s(t).

The remainder of this article is organized as follows: Signal
analysis of the output traces using continuous wavelet trans-
form is reviewed in Section II. In Section III, an overview
of the PTFL is provided in the context of microgrids.
Anomaly detection using PTFL is discussed in Section IV.
In Section V, various cyber-physical anomalies are detected
for DC and AC microgrids in a controller/hardware-in-
the-loop (CHIL) environment. Section VI concludes the
article.

II. TRACE ANALYSIS USING CONTINUOUS WAVELET
TRANSFORM
The continuous wavelet transform (CWT) is used to sift
through the time-frequency content from themicrogrid traces
(output waveforms). Formally, the real-valued voltage and
current measurements over time (i.e., i(t) and v(t) for all
t ∈ R≥0, where R≥0 represents the set of all positive real
numbers) are considered as traces that define the micro-
grid behavior. The time-frequency information of microgrid
traces is obtained by computing the time-frequency energy
density of the CWT coefficients. We first review the concept
of CWT, and provide examples of DC-DC converter and
DC-AC inverter to illustrate how CWT of a given trace (such
as the output voltage) provides important time-frequency
information which can be used to detect an anomaly.

A. CONTINUOUS WAVELET TRANSFORM
CWT [15] involves convolution of the trace s(t) and daughter
wavelets created out of a zero-mean mother wavelet, ψ(t) ,
where

+∞∫
−∞

ψ(t) dt = 0. (1)

This work considers the Morlet (morl) wavelet [20], shown
in Fig. 2, as the mother wavelet. The corresponding daughter
wavelets, ψa,τ (t) , are given by

ψa,τ (t) =
1
√
|a|
ψ

(
t − τ
a

)
, (2)

where a is the scaling parameter, and τ is the shifting
parameter along the time axis. A smaller a corresponds to a
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FIGURE 3. A DC-DC buck converter is affected by an anomalous sawtooth
trace: (a) Distorting the voltage sensor of a buck converter; (b) Output
voltage waveform; (c) CWT using morl wavelet; and (d) Single-sided
amplitude spectrum using FFT.

compressed daughter wavelet and a larger a results in a
stretched one. The change in a for the mother wavelet pro-
duces a daughter wavelet with a particular pseudo-frequency
in the frequency domain.

The CWT of the trace s(t) is obtained by the convolution
of s(t) with the complex-conjugate of the daughter wavelet
function in (2),

Wf (a,τ ) =

+∞∫
−∞

s(t)ψ∗a,τ (t) dt, (3)

The time-frequency energy density of these CWTcoefficients,
given by

PWf = |Wf (a,τ )|
2, (4)

will be used in PTFL-based anomaly detection framework,
discussed later in Section III.
The concepts to obtain the time-frequency energy density

for PTFL are elaborated using examples of a DC-DC buck
converter and a DC-AC inverter, the building blocks of DC
and AC microgrids, respectively.

B. INSTANTIATION FOR A DC-DC CONVERTER
A 30 Hz sawtooh trace is assumed to distort the output
voltage sensor of a buck converter (Fig. 3(a)) at t = 0.15 s.
This anomalous output voltage trace, shown in Fig. 3(b),
is used to generate the CWT coefficients for various pseudo-
frequencies, as shown in Fig. 3(c). The color coding indicates

FIGURE 4. An inverter is affected by an anomalous sinusoidal trace
modulated from t = 0.5 s to t = 3 s: (a) Inverter circuit; (b) Voltage
waveform; (c) CWT using the morl wavelet; and (d) Single-sided
amplitude spectrum using FFT.

the magnitude of the CWT coefficients varying between the
dark blue color (that corresponds to a lesser magnitude) to
yellow color (that corresponds to a larger magnitude) for
a given pseudo-frequency. The pseudo-frequencies around
30Hz produce larger CWT coefficients indicating anomalous
data in that range. Using this information, one can identify
the presence of an anomalous trace in Fig. 3(c) at t = 0.15 s
onward. Although this difference is quite visible in Fig. 3(b),
this would not be the case for lesser magnitudes of anomalous
traces. The fast Fourier transform (FFT) of this trace results
in its corresponding frequency components (i.e., DC compo-
nent and 30 Hz) as depicted by the single-sided amplitude
spectrum in Fig. 3(d).

C. INSTANTIATION FOR A DC-AC INVERTER
The output voltage for the phase ‘a’ of a 60 Hz inverter
(Fig. 4(a)), is shown in Fig. 4(b). An anomalous sinusoidal
trace with 10 Hz frequency is initiated at t = 0.5 s and
removed at t = 3 s. The zoomed-in view of the output
voltage in Fig. 4(b) demonstrates that this anomalous trace is
undetectable in time domain. However, CWT clearly exhibits
this anomaly, initialized at t = 0.5 s and removed at t =
3 s, as shown in Fig. 4(c). The pseudo-frequencies around
50 Hz and 70 Hz (the frequencies of the anomalous data)
produce the larger CWT coefficients. Moreover, one can also
observe the variations in the CWT coefficients that start from
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t = 0.5 s until t = 3 s. This picture is further clarified by
a single-sided amplitude spectrum of the trace that generates
the corresponding frequency components (60 Hz being the
base and 50 and 70 Hz as the anomalous frequencies) as
shown in Fig. 4(d).

III. PARAMETRIC TIME-FREQUENCY LOGIC
Time-frequency logic (TFL) formulas constitute predicates
defined over traces [19]. A predicate is formally written
in form of constraints over the frequency of s(t), e.g.,
f ≤ 60 Hz. The temporal operators, namely, always and
eventually denoted by G and F , respectively, define the tem-
poral part in a TFL formula. The temporal operator always
requires the given TFL formula to be true for the entire trace,
whereas the temporal operator eventually requires that the
TFL formula holds true only for some valuation in the trace.
Each temporal operator is evaluated for the given temporal
constraints, e.g., [0, τ ] ∀ τ ∈ R≥0, shown as a subscript. For
example, a TFL formula can be stated in plain words as the
frequency of the output voltage should always remain less
than or equal to 70 Hz in the temporal range [0, 3.5] , and
formally expressed as

φf = G[0,3.5](f ≤ 70). (5)

The TFL formula in (5) holds true for the inverter trace
in Fig. 4. Instead of frequency, the TFL formula could contain
the time-frequency energy density of CWT coefficients given
by (4) and known as the spectral trace. This work employs
such a spectral trace, denoted by ζ (f , t), e.g.,

φζ = G[0,3.5]
(
ζ (f , t) ≥ 1

)
. (6)

The TFL formula in (5) employs numeric values for both
temporal and threshold constraints. Instead, PTFL employs
two types of symbolic parameters in the TFL formulas, i.e.,
1. Temporal parameters: These correspond to the intervals

bounding the temporal operators, e.g., G[0,20] in (5) is
replaced with G[τ1,τ2]. Generally, the set of temporal
parameters in a PFTL formula are given by

T = {τ1, τ2, τ3, . . . , τρt }, (7)

where ρt is the total number of temporal parameters.
2. Threshold parameters: These correspond to the con-

straints in the TFL predicates, e.g., ζ (f , t) ≥ 1 in (6) is
replaced with ζ (f , t) ≥ θ . Generally, the set of threshold
parameters in PTFL formula are given by

2 = {θ1, θ2, θ3, . . . , θρn}, (8)

where ρn is the total number of threshold parameters.
The corresponding PTFL formula for (6) is written as

φζ = G[τ1,τ2]
(
ζ (f , t) ≥ θ

)
. (9)

Alternatively, a PTFL formula can be transformed to a
TFL formula by assigning appropriate numeric values to all
τ ∈ T and θ ∈ 2. This work detects cyber-physical
anomalies in microgrids by adopting the parameter synthesis
approach, elaborated in Section IV, for a given PTFL formula.

FIGURE 5. The PTFL-based technique [19] can identify the anomalous
signal through parameter synthesis. It takes the training and the testing
data sets as input, computes the corresponding parameter values using
Breach tool [21] for a given PTFL formula, and mines those values to
identify a corresponding TFL formula that can classify the test data as
either good or anomalous.

IV. PTFL-BASED ANOMALY DETECTION
This technique involves parameter synthesis [22] for the
PTFL formulas, i.e., it computes the numeric values for the
parameters T and 2, and stores those values to find a TFL
formula [19], as shown in Fig. 5. The data classification can
then be performed using the stored TFL formula to segregate
the good data and the bad data, where the data not satisfying
the TFL formula is identified as the bad data, as shown in the
lower part of Fig. 5. The details are provided in the following
sections.

A. PARAMETER SYNTHESIS
Parameter synthesis requires two sets of time-series data,
namely, the training data and the testing data. The training
data contains the anomalous traces only. The testing data con-
tains both the anomalous traces and the good traces (without
anomaly). CWT of both data sets results in spectral traces to
form two matrices, 6train and 6test , computed using (4) cor-
responding to the training and testing data sets, respectively.

This approach requires the corresponding PTFL formula
to compute the parameter values in (7) and (8). Consider the
following PTFL formula based on the CWT of a trace

8 =

m∧
i=1

F[τ1,τ2]
(
ζi(f , t) ≥ θi

)
∀f1, f2, . . . , fm, (10)

where ζi(f , t) is a given spectral trace [19]. It states that the
energy densities of the trace ζi(f , t) over a frequency range
for a given number of frequencies, m, are eventually more
than a threshold value θi. The structure of this formula is
similar to (9), except that it is evaluated over a range of
frequencies. The parameter synthesis approach finds τ1, τ2,
and θi.

During a training process, since the PTFL formula 8
captures time-frequency behaviors of traces and the spectral
traces in 6train, a time-frequency parameter synthesis built
on the Breach toolbox [21] automatically searches for the
temporal and threshold parameter values within predefined
ranges. The corresponding TFL formula, 8′, satisfied by all
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FIGURE 6. Out of total 20 testing traces, the proposed technique has
successfully identified 5 anomalous traces (shown in blue color) for the
Buck converter voltage through parameter synthesis, with zero
misclassification rate.

spectral traces of the training set, is obtained by substituting
those mined values into the PTFL formula (10).

Given the spectral traces in 6test , our approach checks the
satisfaction of8′ w.r.t to those traces and then classifies them
as either good or anomalous. It also provides the misclassi-
fication rate of the anomalous data. A lower rate indicates
more success in detecting the anomalous data.

B. IMPLEMENTATION ON POWER ELECTRONICS DEVICES
This technique is evaluated for the buck converter and the
inverter examples elaborated in Section III. The training data
is composed of 20 anomalous traces under false data-injection
attack (FDIA) with frequency randomly varying between
30 to 35 Hz, while the testing data has five anomalous traces
and 15 good traces. The frequency of FDIA to generate
the anomalous traces is randomly varied, firstly, to see if
anomalous traces could be identified irrespective of the fre-
quency variations and, secondly, for better visualization of
anomalous data. As depicted in Fig. 6, the proposed technique
successfully classifies anomalous traces from the testing data
using the PTFL formula in (10). The testing data set is plotted
with the anomalous traces shown in blue and the good traces
shown in green. The misclassification rate was found to be
zero indicating perfect identification of anomalous traces.
Some of the parameters corresponding to (10) computed by
PTFL technique are, m = 3, τ1 = 0, τ2 = 0.22 s, and
θ3 = 0.99 for f3 = 27.98 Hz to result in

φζ3 = F[0,0.22]
(
ζ3(f , t) ≥ 0.99

)
, (11)

for f3 = 27.98 Hz. The parameterized formula in (11) in
conjunction with other such formulas for f1 and f2 is then
evaluated for the testing data to classify the good and bad
traces as shown in Fig. 6.

This technique is also applied to the inverter example
in Section III. The training data is generated such that the
original trace is modulated with the anomalous trace having
a randomly-varying phase for each iteration. The random
phase variation is induced, firstly, to verify that the proposed
technique successfully detects the frequency variations irre-
spective of the phase and, secondly, for better visualization of
plotted data in time domain. The training data set is composed
of 20 anomalous traces, and the testing data set is composed
of five anomalous traces and 15 good traces (without the

FIGURE 7. Out of total 20 testing traces, the proposed technique has
successfully identified 5 anomalous traces (shown in blue color) for the
inverter voltage through parameter synthesis with zero misclassification
rate.

FIGURE 8. A single inverter is affected due to an anomalous noisy trace
with a white Gaussian noise: (a) Voltage waveform; (b) CWT using morl
wavelet; (c) Single-sided amplitude spectrum using FFT; (d) The proposed
technique has successfully identified the 5 anomalous traces with noise
(shown in blue color) for the inverter voltage through parameter
synthesis while 15 good traces are identified that did not contain noise
content (shown in blue color) with a zero misclassification rate.

addition of an anomaly). Examples of the parameters cor-
responding to (10) computed by the PTFL technique are,
m = 6, τ1 = 0, τ2 = 8.68 ms, and θ2 = 5.996 for
f2 = 74.61 Hz. This parameterized PTFL formula is then
evaluated for the testing data to classify the good and bad
traces. As shown in Fig. 7, the proposed technique using
the PTFL formula in (10) successfully classifies anomalous
traces from the testing data, with a zero misclassification rate.
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FIGURE 9. Physical components are emulated in Typhoon HIL, control
schemes are implemented in dSAPCE MLBXs, and communication among
MLBXs is facilitated through an Ethernet switch.

FIGURE 10. Four clusters of dc microgrids employing distributed
cooperative control: a) Each cluster has six buck converters; b) Each
converter uses its neighbor information for voltage regulation and load
sharing.

C. DETECTION OF ANOMALOUS SIGNALS WITH NOISE
Since noise tends to affect the frequency content and, hence,
the time-frequency characteristics of the original trace, this
technique can effectively classify the noisy traces due to
the integration of CWT. Consider the inverter example with
a white Gaussian noise added to the voltage of phase A,
as shown in Fig. 8(a). The training data set has 20 anoma-
lous traces, and the testing data is composed of five anoma-
lous and 15 good traces (without noise). CWT and FFT
analysis for the output voltage are provided in Fig. 8(b)
and (c), respectively. Although the noise intensity is small
enough, the parameter synthesis technique successfully
classifies five anomalous traces (with noise), highlighted
with blue color in Fig. 8(d), with a zero misclassification
rate.

FIGURE 11. All converters are affected by unconstrained FDIA: (a) CWT
using morl wavelet; (b) Single-sided amplitude spectrum using FFT;
(c) The proposed technique has successfully identified six anomalous
traces (shown in blue color) for the DC microgrid through parameter
synthesis with zero misclassification rate.

FIGURE 12. Short-circuit fault is emulated in the third converter of the
third microgrid: (a) CWT using morl wavelet; (b) Single-sided amplitude
spectrum using FFT; (c) Out of total 24 testing traces, the proposed
technique has successfully identified six anomalous traces (shown in
blue color) for the DC microgrid through parameter synthesis with zero
misclassification rate.

V. CONTROLLER/Hardware-IN-THE-LOOP EVALUATION
The PTFL-based anomaly detection technique is evalu-
ated in a controller/hardware-in-the-loop (CHIL) environ-
ment shown in Fig. 9, wherein Typhoon HIL 604 systems
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FIGURE 13. IEEE 34-bus feeder augmented with four inverters employing
distributed cooperative control: a) distribution network with the
communication topology among inverters; b) distributed cooperative
control to regulate inverter voltage and frequency using its neighbor data.

emulate physical components, dSPACE DS1202 Microlab
Boxes (MLBXs) implement control schemes, and an Ether-
net switch communicates among MLBXs. This work con-
siders the distributed cooperative control paradigm for both
DC and AC microgrids, wherein a converter (inverter) in
DC (AC) microgrid is considered as an agent that exchanges
information with its neighbors over a sparse communication
graph. Interested readers can refer to [23] and [24] to see
the general discussion about cooperative control of DC and
AC microgrids, respectively. The misclassification rate is
zero in all the following case studies signifying that PTFL
technique is 100 % successful in classifying the anomalous
signals.

A. CLUSTER OF DC MICROGRIDS
Four DC microgrid clusters, with distributed cooperative
control, shown in Fig. 9, are emulated in the CHIL setup
of Fig. 10. Each cluster contains six DC-DC Buck convert-
ers emulated in a single Typhoon HIL604 device with their

FIGURE 14. Inverter 1 is effected due to an FDIA targeting the controller
with 20 Hz sawtooth trace: (a) CWT using morl wavelet; (b) Single-sided
amplitude spectrum using FFT; (c) Out of total 20 testing traces,
the proposed technique has successfully identified six anomalous traces
(shown in blue color) through parameter synthesis with zero
misclassification rate.

corresponding cooperative controllers in a separate dSPACE
MLBX.

1) FDIA
The output voltages are contaminated with a false data trace
(a sawtooth voltage with 60 Hz). A training data set is
generated that contains 24 anomalous traces. The testing
data contains six anomalous traces and 18 good traces. Both
data sets are subjected to the proposed technique to obtain
the results shown in Fig. 11. Only CWT and FFT analy-
sis results for the output voltage of converter 1 are shown
in Fig. 11(a) and Fig. 11(b), respectively. The color coding
in Fig. 11(a) indicates the magnitude of the CWT coefficients
varying between the dark blue color (indicating a lesser mag-
nitude) to yellow color (indicating a larger magnitude) for
a given pseudo-frequency. The pseudo-frequencies around
60 Hz produce larger CWT coefficients indicating that the
trace contains the anomalous data in that range. It is also
evident that the anomalous trace is injected at about 10.2 s,
as shown in Fig. 11(a). This anomalous frequency component
(60 Hz) is also depicted in Fig. 11(b). The six anomalous
traces (shown in blue), out of total 24 traces, are success-
fully detected within the testing data with zero misclassifi-
cation rate, and the good traces are shown in green color
in Fig. 11(c).
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FIGURE 15. Incoming communication links of inverter 4 are subjected to
a DoS attack: (a) CWT using morl wavelet; (b) Single-sided amplitude
spectrum using FFT; (c) Out of total 20 testing traces, six anomalous
traces (shown in blue color) are identified with zero misclassification rate.

2) SHORT-CIRCUIT FAULT
The second study considers a short circuit fault emulated in
the third converter of the third DC microgrid. The output
currents of corresponding converters are considered to extract
the required time-frequency information. The training data
contains 24 anomalous traces, and the testing data contains
six anomalous and 18 good traces. CWT and FFT analyses
for the output current under normal working conditions (i.e.,
without fault) are provided in Fig. 12(a) and (b), respec-
tively. During initial analysis based on CWT and FFT, it was
observed that frequency components around 16 Hz exist in
good traces as depicted in Fig. 12(b), which are non-existent
in the anomalous trace. This distinguishing characteristic is
employed to classify the good and anomalous traces for a
given testing data set under the short-circuit scenario. Both
the data sets are subjected to the proposed technique to obtain
the results shown in Fig. 12. This technique has successfully
detected six anomalous traces (shown in blue) out of total
24 traces, where the good traces are shown by the green color
in Fig. 12(c).

B. INVERTER-AUGMENTED IEEE 34-BUS SYSTEM
An IEEE 34-bus feeder system augmented with four invert-
ers, shown in Fig. 13, is emulated in the CHIL setup of Fig. 9.
Four inverters employ distributed cooperative controllers that
exchange information over the communication graph shown
in Fig. 13. For PTFL analysis, the output voltages of the

FIGURE 16. A 3 phase-to-ground fault is emulated in inverter 2: (a) CWT
using morl wavelet; (b) Single-sided amplitude spectrum using FFT;
(c) Out of total 20 testing traces, the proposed technique has successfully
identified six anomalous traces (shown in blue color) for the IEEE 34-bus
feeder through parameter synthesis with zero misclassification rate.

corresponding inverters are considered to extract the required
time-frequency information in all the subsequent case studies.
Moreover, the training data set contains 20 anomalous traces,
and the testing data set contains six anomalous and 14 good
traces.

1) FDIA
A 20 Hz sawtooth FDIA voltage targets the controller of
inverter 1 in the AC microgrid of Fig. 13(a). CWT and FFT
analysis for the output voltage of inverter 1 are provided
in Fig. 14(a) and (b), respectively. The pseudo-frequencies
around 20Hz, 40Hz, 60Hz (the mains frequency), and 80Hz
produce larger CWT coefficients. Larger CWT coefficients
around the pseudo-frequencies of 20 Hz, 40 Hz and 80 Hz
indicate that the trace contains the anomalous data in that
range. Moreover, the time-frequency information also indi-
cates that the anomalous trace is injected at about 5.8 s,
as shown in Fig. 11(a). The anomalous frequency as well as
its harmonics are depicted in Fig. 14(b). The PTFL-based
technique has successfully detected six anomalous traces
(shown in blue) out of total 20 traces. Good traces are shown
in green color in Fig. 14(c).

2) DoS ATTACK
In this context, denial-of-Service (DoS) attack involves
paralyzing few or all the communication links of the commu-
nication network. Under this scenario, the incoming commu-
nication to inverter 4 is targeted. CWT and FFT analysis for
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the output voltage of the inverter 4 are provided in Fig. 15(a)
and (b), respectively. The time-frequency information indi-
cates that DoS attack is initiated at about 6 s, and severely
effects the 60 Hz main frequency, as shown in Fig. 11(a).
After about 6 s, the pseudo-frequencies around 30Hz produce
the larger CWT coefficients. The PTFL-based technique has
successfully detected six anomalous traces (shown in blue)
out of total 20 traces, with the good traces shown in green
in Fig. 15(c).

3) 3 PHASE-TO-GROUND FAULT
This type of fault is emulated in inverter 2. CWT and FFT
analysis for the output voltage of inverter 2 are provided
in Fig. 16(a) and (b), respectively. The time-frequency infor-
mation in Fig. 16(a) indicates that the anomaly occurred
around 6 s that severely effected the main 60 Hz frequency.
Six anomalous traces (shown in blue), out of the total
20 traces, are properly identified, as shown in Fig. 16(c).

VI. CONCLUSION
A comprehensive cyber-physical anomaly detection frame-
work, based on the PTFL formalism, is presented in the
context of DC and AC microgrids to detect FDIA and DoS
attacks and physical faults. This approach has an edge over
the other temporal logic-based techniques in that it extracts
the time-frequency information from a given training data set
to successfully detect the anomalous traces within another
data set. It is also independent of the threshold levels and can
successfully detect the anomalous traces containing noise.
The proposed technique is verified for DC andACmicrogrids
in a CHIL environment. For future work, one could extend
this detection technique to include classification of various
cyber-physical anomalies. This would require amending an
intelligent mechanism that can classify anomalies based on
their respective signatures or characteristics. This would be
useful, e.g., to distinguish among simultaneous anomalies
with various time durations.
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