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ABSTRACT The distribution grid is undergoing profound changes nowadays, and state estimator has
become an essential part in the control room to enable future smart grid. The newly deployed micro phase
measurement units (µPMU) and advanced metering infrastructure (AMI) devices make the real-time state
estimation possible for distribution system. Therefore, this paper studies the incorporation and process
of the multi-source measurements and proposes a fast three-phase state estimation based on the hybrid
measurements scheme. By the process of µPMU measurements, pseudo voltage measurements are added,
which significantly increases the estimation redundancy. For AMI measurements, the harmonic components
model is used to overcome the asynchronicity problem. An improved sequential state estimation based on
the changed measurements is proposed to enable a fast estimation. IEEE 13-node and 390-node systems are
simulated to verify the efficacy and efficiency of the proposed method.

INDEX TERMS Advanced metering infrastructure (AMI), micro phase measurement units (µPMU),
sequential state estimation, hybrid measurements scheme.

I. INTRODUCTION
Power system operating states can be classified into three pos-
sible scenarios, namely normal, emergency and restorative,
as the operating conditions change. It is desirable to maintain
the operating conditions in a normal and secure state. State
estimation (SE) could be used for this purpose. Since the
set of complex node voltages (or branch currents) can fully
specify the system, they are often referred to as the static state
of the system.

State estimation has been an essential part of the energy
management system (EMS) in high-voltage level power
transmission system for decades. However, this is not the case
for distribution power system. There is a good reason for this
lagging development in distribution grid: historically, there
was no need to develop such capability given to the simplicity
of distribution system. It only needs to estimate the oper-
ating condition, e.g., peak load or fault current, rather than
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continually monitor the actual operating state. Hence,
the measurement instruments are quite few beyond the
substations. But with the increasing integrated renewable
resources, as well as the ever-growing scale of the distribution
network, the need to better monitor, observe and understand
the distribution gird is dramatically increasing [1]. Distribu-
tion system state estimation (DSSE) becomes the key enabler
for ‘‘Active Distribution Network’’ (ADN), which including
many applications, e.g., Volt/Var power management, over-
current protection, demand response, distributed generation
integration and dispatch, outage management, etc.

The two main obstacles for implementing state estimator
nowadays in distribution grid are:
• Very fewmeasurements are available, many of which are
pseudo measurements with low accuracy.

• Lack of suitable method to deal with the ever-increasing
smart meters, e.g., µPMU and AMI, due to the
unique characteristic of these measurements. Let alone
a proper approach for fast DSSE with the hybrid
measurements.
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There are other problems encountered compare to trans-
mission SE, many of which are pointed out and addressed in
the previous literature, e.g.
• Low X/R ratios and three-phase unbalances complicate
the Jacobian matrix as well as the Gain matrix.

• The state of transformer/regulator taps, switches, and
capacitor bank is not directly monitored, which jeopar-
dizes the network observability.

This paper studies the design and implementation of a fast
three phase DSSE, which makes the most use of the limited
measurements in such context. The contributions of this paper
can be summarized in three aspects:

1) The process and manipulation of the newly emerged
measurements, i.e., the µPMU and AMI measurements, are
studied. For the µPMU measurements, the pseudo voltage
measurements as well as its standard deviation are presented,
which improve the measurement redundancy in distribution
system. Further, the incident current phasors are manipulated
in rectangular coordinates in order to circumvent numeri-
cal problems. For AMI measurements, the short-term load
estimation based on harmonic components model is used to
overcome the asynchronicity problem.

2) An improved sequential DSSE based on changed mea-
surements is proposed, which enables fast state estimation.
The proposed algorithm is an extension of the original
sequential SE proposed in [2]-[4]. By only processing the
changed measurements during every execution, the estima-
tion can be done very fast.

3) The proposed algorithm using hybrid measure-
ments is verified by both IEEE test feeder and practical
implementation.

This paper is structured as follows. Section II dis-
cusses the state-of-the-art and presents a brief litera-
ture review. Section III and Section IV provide the
methodology of µPMU measurements and AMI measure-
ments process. Section V presents the modified sequential
SE algorithm. Section VI verifies the proposed approach by
simulation. Section VII introduces the field implementation
and concludes the paper.

II. STATE-OF-THE-ART
The state estimation technique was originally developed for
aerospace. Based on his aerospace working experiences, Fred
C. Schweppe adapted and extended it to meet the power sys-
tem needs in 1970s [5]–[7]. The static model Z = f (xture)+n
and minimization function for state vectors estimation, i.e.,
J (x) = [z − f (x)]

′

θ−1[z − f (x)] lay the foundation of
static-state estimation. Further, an approximate model was
proposed which not only simplifies the nonlinear equations
to become linear but also divides the overall problem into two
separate problems, i.e., the real power-voltage angles(P–δ)
and the reactive power-voltage magnitude (Q–V ) equalities.
However, there are several preconditions for implementing
this approximate model though, such as X/R � 1, V≈1
(all bused), and δi − δk (adjacent buses) ≈0, which are not
so evident in distribution system.

Assuming the measurements errors have a known prob-
ability distribution with unknown parameters, a likelihood
function can be obtained using the joint probability density
function for all the measurements. Hence, an optimiza-
tion function, namely the maximum likelihood function,
can be set up to estimate the unknown parameters [8].
From this deduction, the weighted least square estimation
is formed. Considering the different accuracy of each mea-
surement, weighted least square (WLS) refines the primitive
approach by adding the weights to each of the measure-

ment. Thus, the objective function will be J
∣∣
X=X̂ =

m∑
i=1

1
σ 2i

[Zi − hi(X̂ )]2 = min.
In the 1990s, researchers dedicated more efforts to the area

of DSSE. In the early days, there are very few measure-
ments available to monitor the distribution network. Mesut E.
Baran and Arthur W. Kelly innovatively proposed a branch-
current-based three-phase DSSE instead of the conventional
node-voltage-based DSSE [9]–[11]. The method enables
decoupled Jacobian Matrix on a phase basis and is compu-
tationally efficient for radial and weakly meshed networks.
After this novel method, successive efforts either dedicate to
refine the original methodology or use it for other applica-
tions, e.g., topology processing [12], [13].

In recent years, lots of smart meters have been installed at
the consumer side for billing and load monitoring purpose.
For instance, a total of 59,940,150 meters have been installed
by the end of 2019 in United States, and this accounts for 47%
of the U.S. households [14]. In British Columbia, Canada,
BC Hydro installed one million smart meters for nearly every
consumer [15]. These AMI data should be very useful as a
replacement for inaccurate pseudo-measurements. However,
the asynchronicity problem caused by the different sampling
times of the individual metering devices jeopardizes the com-
plete snapshot of the network [16].

The angle phase differences in distribution grid are not
measurable with the traditional PMU used in transmission
grid because of the value is too small. Generally, in distribu-
tion system the voltage angle between two locations will be
two orders smaller than those in transmission system (tenths
of a degree rather than tens) [17]. First developed by Power
Standards Lab (PSL) in Alameda, California, it has 0.001◦

resolution on voltage and current phase angles and 2 PPM
resolution on voltage and current magnitudes. The reporting
rate is t two times per cycle, i.e., 100/s at 50Hz or 120/s
at 60Hz [18]. Despite its accuracy, high sample rating, and
multi measurements, µPMU will not make DSSE obsolete
but improve its performance together with the traditional
monitoring system.

III. THE PROCESS OF PMU MEASUREMENTS
In distribution grid, the active and reactive power flows
and power injections, as well as the voltage magnitudes are
measured by distribution SCADA system, while the volt-
age phasors of the installed bus and current phasors of all
the incident lines are measured by µPMU. The roll-out
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of µPMU is still in its early stage (the pioneer project was
conducted in 2014 at UC Berkley), and the device is rather
expensive. It is uneconomical to implement the devices mas-
sively. Therefore, only the critical points, which means the
network will become unobservable without any one of these
points, are equipped with µPMU devices. The electric power
distribution system for SE research purpose is usually defined
as the part between the distribution substations and distri-
bution transformers, including the several main transform-
ers, many distribution transformers and low voltage buses in
between.

To increase measurement redundancy, it is desirable to
have some pseudo-measurements with comparatively high
accuracy. Thus, in this paper, the bus voltage at the other end
of the line (the line is connected to the bus where µPMU is
installed) is calculated as pseudo-measurement.

A. INCREASE REDUNDANCY
Consider the three-phase line circuit as shown in Fig.1, which
takes the magnetic coupling between different phases into
account. Assuming µPMU installed at bus 1, the three-phase
voltage phasor V1of bus 1 and the current phasor I12 of line
1-2are measured, denote as V1 = V1 6 δ1, I12 = I12 6 θ12
respectively. (In this paper, the variable in bold denotes pha-
sor, otherwise scalar)

It is easy to haveV2.a
V2.b
V2.c

 =
V1.a
V1.b
V1.c

−
 z11 z12 z13
z21 z22 z23
z31 z32 z33

 I12.aI12.b
I12.c


(1)

FIGURE 1. A three-phase line with µPMU measurements.

where matrix z represents the self and coupling impedance of
different phases.

The pseudo-measurement V2 is obtained from (1). How-
ever, the standard deviation ofV2 needs to be calculated to use
it identical to the real measurements. In this paper, the clas-
sical uncertainty propagation theory is used to calculate the
standard deviation of the pseudo-measurements [19], [20].
Consider phase A for illustration, rewrite V2.a in the rect-
angular coordinates:

V2.a = V r
2.a + jV

i
2.a (2)

where the superscript ‘‘r’’ denotes the real parts of the vector
and ‘‘i’’ denotes and imaginary parts. Thus we have

V r
2.a = V1.a cos δ1.a − r11I12.a cos θ12.a + x11I12.a sin θ12.a

− r12I12.b cos θ12.b + x12I12.b sin θ12.b
− r13I12.c cos θ12.c + x13I12.c sin θ12.c (3)

V i
2.a = V1.a sin δ1.a − r11I12.a sin θ12.a − x11I12.a cos θ12.a

− r12I12.b sin θ12.b − x12I12.b cos θ12.b
− r13I12.c sin θ12.c − x13I12.c cos θ12.c (4)

From (3) and (4), it is evident that the real part and imagi-
nary part of the calculated voltage are functions of the voltage
and current phasors measured by µPMU. Thus, V r

2 and V i
2

can be expressed as

V r
2.a = fV .r2.a (V1.a, δ1.a, I12.a, θ12.a, I12.b, θ12.b, I12.c, θ12.c)

(5)

V i
2.a = fV .i2.a

(V1.a, δ1.a, I12.a, θ12.a, I12.b, θ12.b, I12.c, θ12.c)

(6)

According to the classical uncertainty propagation theory,
the standard deviation of V2 can be expressed as follow [19]:

σ (V r
2 ) =

√√√√ 4∑
k=1

[∂V r
2 /∂x(k)]

2[σ (x(k))]2 (7)

σ (V i
2) =

√√√√ 4∑
k=1

[∂V i
2/∂x(k)]

2[σ (x(k))]2 (8)

where x = [V1.a, δ1.a, I12.a, θ12.a, I12.b, θ12.b, I12.c, θ12.c], and
σ (x(k)) is the standard deviation of theµPMUmeasurements
which are supposed to be known according to the instrument
specification. The partial derivatives are computed in Table 1,
where r, x are the line resistance and reactance respectively.

TABLE 1. Partial deviation of the pseudo voltage measurements.

It is worth pointing out that the reliability of the pseudo
voltage measurements is relatively high due to the high accu-
racy of the µPMU measurements. In this way, the measure-
ment redundancy is increased with very reliable data, which
will boost the SE accuracy significantly.
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B. CURRENT PHASOR MEASUREMENT
To include the current phasor measurements, the rectangular
coordinates are used to calculate the Jacobian matrix in this
paper. For most SE methods, the polar coordinates are used
for computing measurement functions and Jacobian matrix,
and the µPMU itself provides voltage and current phasors in
the polar form. However, in distribution network where the
shunt conductance and susceptance are normally negligible
due to the short lines, the partial derivatives of the current
measurements will be undefined (the denominator will be
zero) if polar coordinates are used.

According to (1), the line current can be expressed as:

I12 = (V1−V2) · Y (9)

whereY is the admittancematrix. Chose phase A for analysis,

I12.a = Y11(V1.a − V2.a)+ Y12(V1.b − V2.b)

+Y13(V1.c − V2.c) (10)

The entries of Jacobian matrix relating to the current mea-
surements can be expressed as:

∂I r12.a
∂V1.a

= g11 cos δ1.a − b11 sin δ1.a (11)

∂I r12.a
∂δ1.a

= −g11V1.a sin δ1.a − b11V1.a sin δ1.a (12)

∂I i12.a
∂V1.a

= g11 sin δ1.a + b11 cos δ1.a (13)

∂I i12.a
∂δ1.a

= g11V1.a cos δ1.a − b11V1.a sin δ1.a (14)

where I r12 and I i12 represent the real and imaginary parts of
I12 respectively.
It is evident that the numerical problem can be circum-

vented when use the rectangular coordinates for current mea-
surements, and the partial deviates are more concise when put
state vectors in rectangular form [21]. It is worth noting that
the state vectors are still in polar form because it would be
easier for power flow, power injection, and voltagemagnitude
manipulation.

In this paper, the traditional voltage magnitude and angle
are chosen as state vectors, while the measurements are
expressed in rectangular coordinates forms.

IV. THE PROCESS OF AMI MEASUREMENTS
The early DSSE tend to use the statistical load data to
overcome low measurement redundancy problem. However,
the historical measurements or estimated load data are rather
inaccurate, e.g., the variation of the pseudo measurements is
assumed to be 20%,30%, and 50% in [22]–[24], respectively.
With such imprecise data, the result would be compromised
inevitably. With the proliferation of smart metering devices,
the active and reactive power injection is available now at
the consumer end. The consumer side meters are originally
used for billing purpose with 15- or 30-mins sampling inter-
vals. In previous literature, such as [25], [26], the authors

recognized that there is a significant delay in AMI data due
to the low report rate. In this paper, we allow 2 mins delay
between the data being sampled in the field and received
by the control room. This amount of delay is testified in
the practical implementation as we consider the transmission
time.

Due to the power loss from the low-voltage distribution
transformer to the consumers are relatively small (very short
lines), the transformer’s load is simply the summation of the
data collected by the AMI meters at a certain time. As shown
in Fig. 2, each of the nodes (LV transformer) is seen as
the start point of the low-voltage network, which includes
about 100-150 households normally in the urban distribution
network. The active and reactive power of the transformer I
at time t can be expressed as follows:

Pit
.
=

N∑
n=1

pit,n (15)

Qit
.
=

N∑
n=1

qit,n (16)

FIGURE 2. A simplified MV network.

However, the smart meters do not transmit the data all
at the same time due to the bandwidth limitation. As illus-
trated in Fig. 3, the sampling and update interval are both
15 mins, while there is approximate 2 mins delay between
the two. Each of the meters may have its own sampling
instant. We assume that a distribution transformer (DT) con-
tains three consumers, i.e., Meter 1, Meter 2, and Meter 3 as
shown in Fig. 3. If we want to know the power injection
at time 2, Meter 1, Meter 2, and Meter 3 can only provide
the measurements which are sampled at time 0, −14, and
−11 respectively. Therefore, a snapshot of the entire network
is not possible due to the asynchronized sampling instant.

Consider that it is a short-term load forecast here (less than
16 min), and the load variation can be seen as a distorted
sinusoid, the harmonic components model that expressed in
Fourier series is used to represent the load variation [27]. The
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FIGURE 3. The time series of AMI sampling & update procedure.

short-term load forecast can be denoted as follow:

l(t) = l ′(last)+
N∑
n=1

[
an cos(

2πnt
96

)+ bn sin(
2πnt
96

)
]

(17)

where l ′(last) denotes the last update load value and the sec-
ond part denotes the load variation from the last sampling to
the time where state estimation is performed. The denomi-
nator is 96 because there are 96 samples per day (a daily
circle), andN is the orders of the harmonic components. Here,
different orders of harmonics are used for different meters
accordingly.

Still consider Fig. 3 and the example illustrated in the
last paragraph. We assume DSSE is performed at time 2
(the operation point). For Meter 1, Meter 2, and Meter 3,
the interval between the last sampling (LS) and the operation
point (OP) is 2, 16, and 13, respectively. It is found that the
maximum order of the harmonics is 5 in order to keep calcula-
tion efficiency [28]. Table 2 shows the harmonic orders used
for different LS& OP intervals. Hence, for Meter 1, Meter 2,
and Meter 3, the load forecast in time 2 can be presented as:

meter1 : l(2) = l ′(2)+ a1 cos(
π

48
)+ b1 sin(

π

48
) (18)

meter2 : l(2) = l ′(−12)+
5∑

n=1

[
an cos(

πn
48

)+ bn sin(
πn
48

)
]

(19)

meter3 : l(2) = l ′(−9)+
4∑

n=1

[
an cos(

πn
48

)+ bn sin(
πn
48

)
]
(20)

Note that in (19) and (20), we set t = 1 in the sine and
cosine function because that the next update time is near the
operation point (t = 2). The moment t = 0 is assumed as the
beginning of the day. Parameters an and bn are the unknown,
which need to be calculate from the historical data.

In [28], the authors use Anderson-Darling and Shapiro-
Wilk tests to prove that the load variation of the ‘‘outdated
signal’’ is normally distributed. It means that the error of the
outdated signal can be modeled as random variables, which

TABLE 2. The harmonic orders of different intervals.

also related to the LS and OP intervals. Also, we assume the
standard deviation varies linearly in the interval. Thus the
standard deviation at the operation point is calculated as:

σ (op) =

√
σ 2(last)+

INlength
16

(
σ 2(last)− σ 2(last − 1)

)
(21)

where σ 2(last) and σ 2(last − 1) are the variance of the latest
update and the second latest update, respectively. INlength
denotes the length of the interval.

V. PROPOSED STATE ESTIMATION METHOD
Under normal operation, only a small portion of the mea-
surements have changed its value compare to the time of the
previous estimation performance. Compare to the unchanged
measurements, the changed measurements dominate the vari-
ation of state vectors. Based on the method explained above,
we proposed an approach that only processes the changed
measurements sequentially to conduct the state estimation.
The possibility of only employing truncated measurements
is that a good number of redundant measurements exist.
If the measurements redundancy is rather low, e.g., the redun-
dancy is 1(which means the network is merely observable),
the unchanged or barely changed measurements can’t be
omitted. The necessity of deploying truncated measurements
is that the estimation is conducted very frequently, and the
measurements are updated very fast. With such a short esti-
mation performance interval, a good portion ofmeasurements
will maintain unchanged or barely changed. The use of only
changed measurements rather than the whole measurements
will undoubtedly accelerate the estimation performance.

In a definite network with known parameters and topology,
the nonlinear measurement function can be denoted as

z = h(x)+ υ (22)

Using WLS algorithm, the objective function is

J(x) = [z− h(x)]TR−1[z− h(x)] (23)

The state vector x, which enables the least J(x) are defined
as the optimal estimated state variable, denoted as x̂. In (23),
z is the measurements matrix, h(x) is the measurement func-
tion, and R−1 is the diagonal matrix with elements of mea-
surements weight, which is the reciprocal of the measurement
variance.

During two consecutive estimations, the measurements
matrix is changed1z.The sensitivity relation of state variable
change and measurement change, i.e., 1x and 1z, is ana-
lyzed. First, we use the truncated Taylor series to linearize
h(x) in the vicinity of x0, which can be expressed as

h(x) ≈ h(x0)+H(x0)1x (24)
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where 1x = x− x0.

H(x0) =
∂h(x)
∂x

∣∣∣∣
x=x0

(25)

H(x) is a m∗n Jacobian matrix. Substituting (25) into (24),
the objective function is formulated as

J(x) = [1z−H(x0)1x]TR−1[1z−H(x0)1x] (26)

where 1z = z − h(x0). Unfolding and manipulating (26),
the objective function is equivalent to

J(x) = 1zT [R−1 − R−1H(x0)6(x0)HT (x0)R−1]1z

+

[
1x−6(x0)HT (x0)R−11z

]T
6−1(x0)[1x

−6(x0)HT (x0)R−11z] (27)

where 6(x0) = [HT (x0)R−1H(x0)]−1. From (27), the first
part of the equation is irrelevant to 1x. In order to obtain the
minimum J(x), the second part should be 0. Hence,

1x = 6(x0)HT (x0)R−11z (28)

Thus, the sensitivity relationship between1x and1z at x0
can be denoted by the sensitivity matrix (m× n) as below,

Sx0 =
1x
1z
= 6(x0)HT (x0)R−1 (29)

The sensitivity of the state vectors to one measurement zi
at x0 is Sx0,i, a column of S correspond to zi. Assuming that
z1, z2, · · · zm are the changed measurement since the previous
estimation performance, the measurement function is written
as zm = h(xm)+ υm.

In the proposed estimation approach, a WLS estimator is
required to start the performance using all the measurements
available. From which, the initial state x̂0, sensitivity matrix
Sx0 are obtained. Due to the real x0 is unknown, x̂0 is used for
solving the sensitivity matrix.

x̂m = x̂m−1 + Sx̂,m ·1zm
Sx̂ = 6(x̂)HT (x̂)R−1

Pm = Diag{[I − kmHm(x̂m)]Pm−1}

km =
Pm−1HT

m(x̂m−1)

τmσ 2
m +Hm(x̂m−1)Pm−1HT

m(x̂m−1)

(30)

The equation set for the proposed sequential state estima-
tion based on changed measurements for distribution gird are
as (30), where Hm is the mth row vector of the measurement
Jacobian matrix; Pm is the error covariance matrix after the
process of mth changed measurement; Diag denotes the diag-
onal elements of the matrix; km is coefficient of the error
covariance; σ 2

m is the variance of the mth measurement and
τm is the tuning parameter used to compensate the omitted
non-diagonal elements in error covariance. The empirical
value of the tuning parameter range between 0.1∼1.0 [4].

It is worth noting that the sensitivity matrix does not have
to calculate during every sequential process. The calculation
frequency depends on the accumulation of the errors. If some
emergencies happen, e.g., sudden heavy loads change, fault,

topology changes, the sensitivity matrix should be calculated
immediately. Another issue is the threshold value, which
determines how much change of the measurement value can
be regarded as ‘‘changed measurement’’. This is an engineer-
ing problem, because it depends on the process ability of the
hardware and the accuracy requirement of the system. The
basic principle is that it should be neither too large nor too
small, and different types of measurements should employ
different threshold values.

VI. CASE STUDIES
The proposed hybrid measurements based fast state estima-
tion was implemented in Matlab R2019a and has been tested
on IEEE 13- and 390-node test system. The reason why we
chose these two test systems is that the IEEE 13-node test
feeder is a very small test system and yet displays some
very interesting characteristics, such as unbalanced spot and
distributed loads, in-line transformer, etc.While the 390-node
test system is a medium size benchmark featured with unbal-
anced heavily meshed low voltage networks. The majority
of end-use customers in North America are served by radi-
ally operated distribution feeders. But in areas where there
is a high load density and a need for very high reliability,
Low Voltage Network (LVN) systems have been built. The
390-node test system is a Low Voltage Network Test Sys-
tem (LVNTS) that is fundamentally different in design and
operation from typical radial distribution feeders, such as
the 13-node test feeder. All the following simulations are
executed on a computer with Intel Core i7 4.2 GHz, 16 GB
of RAM and Windows 7 Ultimate Edition 64-bit operation
system.

A. IEEE 13-NODE TEST SYSTEM
The one-line diagram of the IEEE 13 node test feeder is
shown in Fig. 4, and the complete data for this system can
be found in [29]. This feeder displays some very interesting
characteristics, such as: a). Short and relatively highly loaded
for a 4.16kV feeder; b). In-line transformer; c). Unbalanced
spot and distributed loads; d). Overhead and underground
lines with variety of phasing; e). One substation voltage
regulator consisting of three single-phase units connected in
wye. Therefore, this feeder provides a good test for the most
common features of distribution analysis software.

The location of the µPMU is based on the Optimal PMU
Placement (OPP) algorithm introduced in [30], which is suit-
able for radial distribution network. AMImeters are supposed
to be installed at every load point, which is not specified in
the figure. Table 3 illustrates the location of the meters and
redundancy. For µPMU measurements, there are additional
7 voltage pseudo voltage measurements calculated through
the direct measurements as we elaborated in Section III. In the
simulation, the power loss of the lines is not considered.

The three-phase power flow simulator is used to gener-
ate the measurements with addition of normally distributed
noise. Table 4 presents the accuracy of the three types of
metering devices.
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FIGURE 4. IEEE 13-bus distribution system.

TABLE 3. The measurement configuration for simulation system.

TABLE 4. The measurement accuracy (deviation).

According to the proposed methods, we first calculate
the pseudo voltage measurements, and it renders 7 addi-
tional measurements. It is worth noting that the classical
uncertainty propagation theory is deployed to determine the
calculation radius of the pseudo measurements. Otherwise,
this process can be non-stop with undesirable values. For the
AMI measurements, the proposed approach mainly deals
with the time delay between the sampling time and receiving
time. To evaluate the efficacy of the proposed method, we
compare the proposed approach with two other distribution
system state estimation methods, i.e., a generalized state esti-
mation incorporated of Synchronized Phasor Measurements
(GSE-PM) proposed in [31], and a practical multi-phase dis-
tribution state estimation solution incorporating smart meter
and sensor data proposed in [25]. The former one takes
the phasor measurements into consider, while the latter one
takes care of the AMI data. Here, we abbreviate our hybrid
measurements based method as HMBF-SE.

Fig. 5 is the voltage magnitude comparison of node 4
between the three different methods. Fig. 5(a) shows a sharp
voltage surge during a sudden load decrease at node 4. From
comparison, it can be seen that the proposed the HMBF-SE

FIGURE 5. Voltage magnitude comparison between the proposed
HMBF-SE and the GSE-PM proposed in [31], and MP-DSE proposed
in [25]. (a) sharp load decrease at 10s. (b) sharp load increase at 5s.

has a better following performance during load drop. Fig. 5(b)
shows a sharp voltage dip during a sudden load increase at
node 4. From the comparison, it can be seen that the curve
of the proposed HMBF-SE is very similar to the true value,
while the other two methods have a bigger deviation.

Fig. 6 is the voltage angle comparison of node 4 between
the three different methods. Fig. 6(a) and Fig. 6(b) show
a voltage angle fluctuation during a sharp load variation.
It is clear that the proposed method, i.e., HMBF-SE can best
reflect the angle variation, while the GSE-PM and MP-DSE
either has a lower angle estimation or a higher angle esti-
mation. Even after the load fluctuation, the angle estimation
of GSE-PM and MP-DSE remain inaccurate because of their
inadequate process of phasor measurements or the AMI data.

B. IEEE 390-NODE TEST SYSTEM
The majority of end-use customers in North America are
served by radially operated distribution feeders. But in areas
where there is a high load density and a need for very
high reliability, Low Voltage Network (LVN) systems have
been built. LVNs are fundamentally different in design and
operation from typical radial distribution feeders, and these
differences require different methods for computational anal-
ysis. The LVNTS has been designed to present challenges to
distribution system analysis software in the following areas:
a)Heavily meshed and networked systems; b) Systems with
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FIGURE 6. Voltage angle comparison between the proposed HMBF-SE
and the GSE-PM proposed in [31], and MP-DSE proposed in [25].
(a) sharp load decrease at 2s. (b) sharp load increase at 2s.

numerous parallel transformers; c) Modeling of parallel low
voltage cables.

The IEEE 390 node low voltage system is representative
of low voltage network systems that are deployed in urban
cores in North America. The power system in an urban core
can be a combination of spot networks and grid networks.
The LVNTS is composed of a single 120/208 V grid system
and 8 277/480 V spot networks, all are wye-grounded. The
grid system and spot networks are supplied by 8 13.2 kV
distribution feeders supplied from a single substation, all
are delta connected. Appendix A shows the one-line dia-
gram of the entire LVNTS, with node numbers included.
Primary voltages are shown in red and secondary voltages
are shown in blue. Because of the complexity of the LVNTS,
Figure 1 will be expanded into three separate figures; the
primary distribution feeders, the grid network, and the 8 spot
networks.

Due to the heavily meshed and networked characteristic of
the 390 node LVN, the placement of theµPMU is determined
based on the algorithm proposed in [32], rather than the

algorithm used in the aforementioned 13 node test system.
The specific meter placement is omitted here for simplicity
and the measurement accuracy is the same as Table 4. Then
we still compare the voltage magnitude angle estimation of
the proposed method with the methods proposed in [25]
and [31].

Fig. 7 is the voltage magnitude comparison of node 93
between the three different methods. From Fig. 7, the perfor-
mance of the proposed method is better than the other two
methods in the heavily meshed network during sharp load
variation.

FIGURE 7. Voltage magnitude comparison between the proposed
HMBF-SE and the GSE-PM proposed in [31], and MP-DSE proposed
in [25]. (a) sharp load decrease at 0s. (b) sharp load increase at 0s.

Fig. 8 is the voltage angle comparison of node 93 between
the three different methods. During sudden load increase or
decrease, the angle will oscillate for several seconds. After the
oscillation, the true voltage angle will deviate from the origi-
nal one because we do not consider any regulation measures
here.

C. THE EFFICIENCY OF THE PROPOSED METHOD
To verify the efficiency of the proposed method, which
only tackles the changed measurements during every
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FIGURE 8. Voltage angle comparison between the proposed HMBF-SE
and the GSE-PM proposed in [31], and MP-DSE proposed in [25]. (a) sharp
load decrease at 0s. (b) sharp load increase at 0s.

iteration, we observe the whole iteration process of the state
estimation. Here we deploy the IEEE 390 test system to
conduct this simulation. Firstly, a full WLS algorithm using
all the measurements is conducted to start the estimation.
Thus the initial state and sensitivitymatrix is obtained. For the
first iteration, there are 332 changedmeasurements, including
all the six types of measurements metered by SCADA, AMI
and µPMU. It must point out that the changed measurements
are randomly chosen and preset manually. The changed mea-
surements account for roughly 20%of the total measurements
and the threshold value is set to 1% for the voltage (current)
magnitude, 5% for the power flow and load variation, 0.01

◦

for the voltage (current) angle. The result of certain state
variables after 16 iterations is shown in Table 5. FromTable 5,
it can be seen that the algorithm converges after 16 iterations
and all 6 state variables reach a very high estimation accuracy.
The convergence criteria ξ = 4.16 × 10−5. For all the
752 state variables, the statistic estimation error is calculated

TABLE 5. The evolution of four chosen state variables
(l = 1 ∼ 16).voltage: p.u., angle: degree.

by the following equations:

S̄M =
1
T

T∑
t=1

[
1
m

m∑
i=1

(
zi,t − Si,t

σi

)2
] 1

2

(31)

S̄E =
1
T

T∑
t=1

[
1
m

m∑
i=1

(
hi,t (x̂)− Si,t

σi

)2
] 1

2

(32)

where zi,t , hi,t (x̂), Si,t are the measurement value, estimated
value, and true value for one estimation, respectively. For a
normal measurement system S̄M ≈ 1. It is calculated that
S̄E = 0.66, thus S̄E/S̄M = 0.66 < 1. It is evident that the
proposed approach could estimate not only the unmetered
variables but also enhance the measurement accuracy. The
objective function J

(
x̂
)
is supposed to be m-n if the estima-

tion is optimal, where m is the total measurements number
and n is the total state variables. From Table 5, it can be seen
that J

(
x̂
)
= 244 ≈ m− n.

The actual CPU executing time is examined and compared
for three different approaches, i.e., the proposed method,
WLS and weighted least absolute value (WLAV). Each of
the eight different distribution test feeders, i.e., 13, 34, 37,
123, 390, 800, and 1500, are simulated 10 times using the
three different estimation algorithms. Table 6 shows that for
small scale distribution systems, the CPU time spent by the
three algorithms respectively are roughly identical. However,
as the system is scaling up, the proposed approach which
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TABLE 6. The CPU executive time comparison (unit: seconds).

only uses the changed measurements to conduct SE saves a
lot of time. For instance, the simulation time of the proposed
method, WLS and WLAV algorithm for 390-node test feeder
is 9.32, 16.13, 19.32 sec. respectively. For the 800-node
system, the CPU time cost by the proposed method is only
50% of that cost by WLS.

VII. DISCUSSION AND CONCLUSION
A. DISCUSSION
The test version of the proposed method is implementing in
one district of Guangzhou, a southern city of China. This
pilot project covers 20 square kilometers, including three
110kV to 10 kV substations and twenty-two 10 kV feeders.
In this project, 100 µPMUs and nearly 600 AMIs have be
installed. In the confined trial district, the estimation accu-
racy, consistency, and speed of the estimator are overall
satisfying.

There are some shortcomings of the proposed method
which need to be improved in the future. One is the limited
ability to deal with the three-phase unbalance. It is found that
the estimation accuracy will be jeopardized if the three-phase
unbalance of the feeder is more than 2%. Another concern
is the performance consistency as the growing integration
of distributed photovoltaic generation. The renewable energy
integration will change the network topology profoundly
and aggravate the three-phase unbalance problem. Another
important issue regarding robust SE is bad data detection and
identification, which is not discussed in this paper. Sequential
state estimation itself has the advantage of dealing with lever-
age point and bad data. Nevertheless, it is worth improving
the bad data processing mechanism since the data quality will
be descending as the aging of the metering and transmission
system.

B. CONCLUSION
This paper proposed an improved sequential SE algorithm
base on multi-source measurements, which makes the most
use of the newly installed meters and the legacy monitor-
ing system. The hybrid measurements structure improves
the measurement redundancy and the manipulation of the
extremely accurate µPMU data adds additional pseudo-
measurements which further raise redundancy. All the mea-
surements are manipulated in rectangular coordinates in
order to avoid numerical problem. The harmonic compo-
nents model is used to forecast the extremely short-term load
estimation, in this way, a snapshot of the entire network is
obtained.

FIGURE 9. The one-line diagram of the entire LVNTS.

The simulation verifies the proposed estimation approach
from four aspects: feasibility, accuracy, and efficiency. Some
conclusions can be drawn from the test results: 1) the pro-
posedmanipulation of theµPMU andAMI data is effective to
avoid numerical problems while obtaining a consistent snap-
shot of the entire network; 2) the additional pseudo voltage
measurements boost estimation accuracy; 3) the proposed
approach based on changed measurements can deal with
massive and highly frequent data.

Through field implementation, some shortcomings of the
proposed approach are exposed, which signposts the path for
our future work.

APPENDIX A
See Fig 9.
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