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ABSTRACT The electrical generator is the key part of the electrical generation system for the oil and gas
industry, and it is easy to fail, which disturbs the availability and reliability of the electrical generation in the
power industry. Therefore, extracting and diagnosing the fault features from the process signals are useful
to diagnose the status of the machine. Though, a common challenge in many applied applications is the
practical knowledge about the risk of failure or historical records, which is totally unlabeled and difficult
to be identified by traditional fault approaches. Hence, in the present study, a novel deep learning (DL)
framework is proposed to fill the gap by balancing the three stages of fault feature extraction, fault detection,
and parameter optimization based on the long short termmemory- recurrent neural networks (RNN- LSTM),
stacked autoencoders (SAE), and particle swarm optimization (PSO) techniques. The suggested framework
focuses on failure detection through a sequence of numerous features for the unlabeled historical data and
unknown anomaly. To validate the effectiveness of the proposed DL framework, an experiment for failure
detection of the electrical generator was conducted for the data of risky environment at Yemen oil and gas
plant. The experimental results compared with the earlier studies validate that, the DL framework can address
the faults for vibration signals of the electrical generator in a well- diagnosis performance effectively.

INDEX TERMS Deep learning (DL), fault detection, long short-term memory (LSTM), oil and gas plant,
recurrent neural networks (RNN), stacked autoencoders (SAE).

I. INTRODUCTION
Electrical generation plants are concern about the availability
and reliability of mechanical equipment due to the rapid
growth of energy demand. Currently, producing electri-
cal energy without failures has drawn more attention to
power production. Mechanical failures caused about 79.6%
of machine downtime [1]. Thus, fault detection in an ear-
lier stage will accelerate the PM (Preventive Maintenance)
activities to prevent machine downtime and unscheduled
maintenance activities [2]. Practically, faults will be com-
bined during failures or abnormal operation, which makes
the fault classification more complex, as a result, detecting
and preventing the fault will be difficult [3]. Nowadays,
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data-driven approaches are broadly used in fault diagnosis
due to the availability of historical data for a fault diagnosis
requirement [4], [5]. Feature extraction approaches can be
achieved by analyzing the domains such as time, frequency,
or frequency-time [6]–[8].

In general, deep learning (DL) is a multi-layer of neural
networks involved in the processing of non-linear information
in multiple hidden layers, which has the ability to extract
and classify features. In fault analysis fields, DL can extract
the potential fault features from multi-sensor data in a con-
dition monitoring system, which includes process signals
such as vibration, temperature, flux, flow, and pressure. The
vibration signal has been broadly and revealed acceptable
performance [9].

DL is used in fault diagnosis ofmechanical equipment such
as gear transmission [10], [11], bearing [12], and multi-joint
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industrial robots [13]. In [14], an intelligent fault diagnosis
was proposed based on a deep echo state network (ESN)
and a hybrid evolutionary algorithm. Recently, deep learn-
ing models have been combined with different approaches
such as SAE [15], deep belief network (DBN)[16], and
LSTM [17], to improve the performance of fault detection
and data modeling.

For industrial applications, early fault detection can
enhance the identification of hazard patterns and achieve
reliable maintenance for mechanical equipment [18]. The
explosion of industrial data has emphasized the necessity
for the DL technique in many applications, for instance,
malware detection [19], multi-sensor fusion [20], anomaly
detection [21], and soft sensor modeling [15].

The electrical generator mostly runs in tough working
conditions with variant load in a hazardous environment, so
the occurrence of faults will directly affect the production of
power efficiency and may lead to ruinous accidents, espe-
cially electrical generation unit in a hazardous area like the oil
and gas plant [22]. Thus, fault identification and diagnostic
analysis are necessary to prevent future failures and to plan
appropriate maintenance.

In the DL studies, it was previously shown that DL frame-
works were enhanced to overcome shortcomings for feature
identification and classification in online time series. Simi-
larly, the work of [10] has demonstrated an improved frame-
work of fault diagnosis by a novel DL technique based on the
fused- Stacked autoencoders (SAEs) and quantum ant-colony
algorithm into the methodology. However, unlike the study
of [10], most of the improved DL frameworks lack a focus
on the deep learning feature optimization for different faults
without data labeling for fault detection purposes. According
to [23], DL models can offer promising tools that can assist a
decision-maker in planning and management decisions.

In this study, the motivations for designing the hybrid DL
framework are: (1) Faults of electrical gas generator lead to
plant shutdowns or cause hazardous event such as fire or
blasting in electrical equipment. Therefore, failure detection
can be taken in failure prevention and updating the mainte-
nance planning; (2) Optimization of model parameters can
increase the model accuracy for fault detection [10]; (3) Deep
fault detection framework can be built by learning the fail-
ure patterns from important events in a time series signal
of the electrical generation process. Thus, a novel hybrid
LSTM – SAE learning algorithm is subsequently applied to
overcome the drawbacks of RNN training and usage of a
single technique separately and improve the fault detection
rate.

To our knowledge, no earlier study in the DL framework
has focused on filling the gap of two DL optimization phases
in feature extraction and fault detection for proactive main-
tenance, particularly for electrical units in a risky region
such as the oil and gas plant. Hence, a novel DL frame-
work was proposed to achieve better results in deep feature
learning and fault detection. This work aims to introduce
a novel DL framework with the goal of extracting features

and fault detection for failure prevention and maintenance
planning.

To this end, the main contributions of the present work can
be concluded as follows:

(1) A novel DL fault detection with a simple and effective
framework is designed to balance the three stages of fault
feature extraction, fault detection, and parameter optimiza-
tion based on the RNN-LSTM, SAE, and particle swarm
optimization (PSO) techniques.

(2) A novel hybridmathematical methodology can enhance
the learning ability to solve the drawbacks of RNN training,
such as error of decaying, deficient, gradient vanishing, and
backflow.

(3) The DL framework offers a good unsupervised deep
learning for unlabeled data, which allows the proposed DL
methodology to not only offer the important features adap-
tively but also realize sequences without saving the previous
sequence inputs.

(4) The proposed DL framework adds contributions to the
area of the electrical gas generator for fault detection, which
may be useful for other industrial deep learning applications,
especially in hazardous areas.

The notations used through the technical part are explained
as follows:

xdM Input samples d of a dataset with M -
dimension

x̂d Output sample vector
S(t) Input signal
c (t) Intrinsic mode function(IMF)
I The I_th dimension of high to low-

frequency components
P Optimal autoregressive order for IMF
rI The residual value of the IMF

component
ak Weighted coefficients of component k
w(t) The white noise of the IMF
cε (t) The IMF components of signal ε
zP The P-reflection vectors of the input

sample vector xd

xt Input simple x at time t
M Number of training samples
αt Forget gate layer
βt Input gate layer
γt Recurrent gate layer
ot Output gate layer to hold information

for the future step
Wα , Wβ , Wγ , Wo The weights of four layers of the neu-

ral network α, β, γ, o in the memory-
cell operations LSTM

bα , bβ , bγ , bo The biases of four layers of the neural
network α, β, γ, o in the memory-cell
operations LSTM

hd The hidden vector
f Active sigmoid function
W(1), W(2) The optimal parameter sets of weights
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b(1), b(2) The optimal parameter sets of bias
L(xd , x̂d ) The reconstruction error between x̂d

and xd

λ Decay weight parameter
W (l)
ji The weight of linking neuron i to neu-

ron j within layers (l, l+1)
nl The number of network layer within

layer l
sl The number of neurons within layer l
ρ̂g The average value of activating for

hidden unit e
ρ Sparsity parameter
Xid Position of the i_th particle with d

dimensions
Vid The velocity of the i_th particle with

d dimensions
N The population size of particles
D The dimension of searching space
r1, r3 Random values in period [0,1]
c1, c2 learning factors
pBest tid The best local of particle i in time t
gBest t The global best of the population in

time t
ω The inertia weight
θ Sparsity penalty parameter
σ Sigmoid function
Ct−1,Ct The last state and the present state
ht−1. The input state of the present and ear-

lier frames
ht The present state of the RNN hidden

layer
NT The total number of instances
hfinal The final decision output from the

RNN-LSTM network

The rest of this paper is structured as follows.
Sections 2 and 3 describe data and the proposed methodol-
ogy of the new hybrid DL framework based on the SAE,
RNN-LSTM, and PSO algorithm. Section 4 shows the dis-
cussion and results of the experimental application of the
framework via historical data of Yemen electrical generators
in the oil and gas plant. Lastly, the conclusions and future
work are presented in Section 5.

II. DATA AND METHODS
Recently, secondary data for deep learning methods have
been used in different research areas due to their outstand-
ing performance. Secondary data were collected from DCS
(Distributed Control System) of the electrical generator in
Yemen oil and gas plant.

The training of the proposed framework was carried out
with the simulation computer, which has environment con-
figurations as described in Table 1.

For fault diagnosis, the ensemble empirical mode decom-
position (EEMD) was implemented in this work to
pre-process the recorded signals of non-stationary fault.

TABLE 1. Experimental environment.

FIGURE 1. Deep Learning pipeline for physics data.

EEMDwas used to provide the fault representative frequency
to be effectively distinguished as normal or fault. Traditional
machine learning methods greatly depend on extracted fea-
tures of artificial discriminative as the inputs. Besides, data
augmentation and the SAE-LSTM framework were applied
for feature extraction and fault detection. The Deep Learning
pipeline for physics data is illustrated, as shown in Fig. 1.

A. DATA INGESTION
In this paper, all the vibration signals are obtained from
the DCS of the electrical generator. In this study, about
2000 samples were divided into a training data set (80%) and
a testing dataset (20%) before fed to the proposed DL frame-
work. These simples are categorized into two groups of train-
ing and testing dataset, which may be faulty or non-faulty.

For data ingestion, ensemble empirical mode decompo-
sition (EEMD) was used in this framework to pre-process
the recorded signals of non-stationary faults due to impor-
tant information of fault events, which is mostly revealed in
high-frequency Intrinsic mode functions (IMFs). EEMD was
used to provide the frequencies of vibration signals, which
are effectively distinguished the information of normal or
fault. Equations (1) and (2) provide further elaborations on
the mathematical computations, which have been extensively
discussed in an earlier study by [12].

EEMD converts signal S(t) into numerous IMFs, as follow:

S (t) =
I∑
ε=1

cε (t)+ rI (1)

where rI is the remaining value, and cε (t) (ε = 1, 2, · · ·I )
are represented components of high to low frequency from
different intrinsic mode functions.

For an intrinsic function with zero-mean of c (t), the model
is represented as:

c (t) =
P∑
k=1

akc (t − k)+ w(t) (2)

where P is the order, ak denotes for weighted coefficients
(k = 1,2 · · ·P), and white noise w(t).

VOLUME 9, 2021 21435



M. Alrifaey et al.: Novel DL Framework Based RNN-SAE for Fault Detection of Electrical Gas Generator

FIGURE 2. The proposed DL framework.

III. THE PROPOSED DL FRAMEWORK
In this section, the proposed DL framework was established
based on the RNN-LSTM, SAE, and PSO techniques to
achieve better results in deep feature learning and fault detec-
tion. The secondary data from the industrial plant was consid-
ered to validate a deep learning framework and fault detection
during the executing of the proposed methodology. Fig. 2
illustrates the proposed framework for fault detection in a
risky oil and gas industry.

A. FAULT FEATURE EXTRACTION BY SAE
Stacked autoencoder (SAE) is a type of deep neural network,
which is firstly offered in 2007 [9]. SAE is developed from a
basic AE model and has multiple layers of autoencoder with
individual pre-training via layer by layer of the autoencoder.
The data input of SAE is taken from the output itself, which
reduce data dimension and leverage for the effective encoding
of learning. Specifically, SAE can be used for feature extrac-
tion without class labeling.

Deep autoencoder has more than three layers of the neural
network [24]. For big and row data of industrial working

conditions, extracting features can improve the performance
of predictive maintenance in several states via fault classi-
fication and detection. SAE can identify the features and
successfully determine the distinguished information of the
machine conditioning signals [24].

Several practical studies have also revealed the mining
capability of SAE to offer important information from the
frequency domain regarding the analysis problems [25]. SAE
has advantages in dimensionality reduction by using a hidden
layer as a feature extractor of any desired size, which can
predict the same input data at the output without requiring
labels. Fig. 3 illustrates the structure of an SAE three layers
for the unsupervised learning and feature extracting. SAE
layers consist of input, output, and hidden layers, which
provide extracted features. SAE layers are divided into two
parts, the encoder network (input-hidden) and the decoder
network (hidden-output).

Supposing that unlabeled training samples
xd = {xd1 , x

d
2 , · · ·, x

d
M }, every sample xd has P reflection

vectors xd = {z1, z2, · · · , zP}. The encoder process and
decoder process for every input sample xd and datasets
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FIGURE 3. Structure of feature extracting SAE neural network.

{xd }Md=1 are expressed as follows:

hd = f (W(1)xd + b(1)) (3)

x̂d = f (W(2)hd + b(2)) (4)

where hd is the hidden vector, x̂d is the output vector, f
denotes the active sigmoid function ,W(1), W(2) denote for
the weight, and b(1), b(2) denote for the bias.

The error of reconstruction L(xd , x̂d ) between x̂d and xd

is defined as the following:

L
(
xd , x̂d

)
=

1
2

∥∥∥xd − x̂d∥∥∥2 (5)

The general cost function of samples is expressed as:

J (W , b) =

[
1
M

M∑
d=1

L
(
xd , x̂d

)]
+
λ

2

nl−1∑
l=1

sl∑
i=1

sl+1∑
j=1

(W (l)
ji )

2

(6)

where λ denotes the parameter of decay weight, W (l)
ji is

the weight of linking neuron i to neuron j within layers
(l, l + 1), nl and sl denote the number of the network layer
and the number of neurons within layer l.
Equation (6) consists of two terms, which are the total

dataset error of reconstruction and the penalty weight. The
second term is used to avoid over-fitting by limiting the value
of weights.

The total cost function of SAE is depicted as:

Jsparse (W , b) = J (W , b)

+ θ

e∑
g=1

(ρ log
ρ

ρ̂g
+ (1− ρ) log

1− ρ
1− ρ̂g

)

(7)

where ρ̂g is the average value of activating for
(g = 1, 2, · · · , e) hidden unit, ρ is a parameter of sparsity,
θ denotes a parameter of sparsity penalty, which is utilized in
controlling the relative significance for the terms of penalty
and reconstruction.

The above-mentioned hyperparameters are optimized by
applying the Particle Swarm Optimization (PSO) algorithm,
which is an evolutionary procedure that executes a compu-
tation process to catch optimum solutions on search space
presented earlier [26]. PSO is modeling the cooperative
behavior for the swarming of birds or fish. Besides, the
PSO procedure has been effectively implemented across a
wide area, such as forecasting of traffic flow [27], opti-
mization power losses in the distribution system [28], the
self-adaptive mechanism [29], and fault diagnosis in power
transformers [30].

In PSO, every ith particle Xid has positions X = {Xi1,
Xi2, . . . ,XiD}, and the velocity vectors V = {Vi1,
Vi2, . . . .,ViD}. Furthermore, positions and velocity will be
determined after the computation of the fitness function.

For velocity V t+1
id and position X t+1id are determined, as

follows:

V t+1
id = ω.V t

id + c1.r1.
(
pBest tid − X

t
id
)

+ c2.r2.
(
gBest t − X tid

)
(8)

X t+1id = X tid + X
t+1
id (9)

where i = 1, 2, . . . ,N ; d = 1, 2, . . . ,D;N and D are pop-
ulation size and dimension of searching space respectively;
r1 and r3 are random values in period [0,1]; c1 and c2 are
learning factors; (pBest tid , gBest

t ) are the best local of particle
i in time t and the global best of the population in time t ,
respectively; ω is the inertia weight.

The PSO algorithm can be described in the following steps:
(a) Initialization, initialize the particle position Xid , and

velocity Vid in d dimensions of the searching space
randomly.

(b) Calculate the fitness for every particle in the swarm.
(c) Compare each fitness in each iteration with its earlier

best fitness pBest tid . Then, select the value with bet-
ter fitness to be pBest tid of the current location in the
d-dimensional space.

(d) Compare the best local for all particles with each other
in time t and set the global best location of population
in time t to the greatest fitness gBest t .

(e) Update the particle velocity and position according
to (8) and (9), respectively.

(f) Perform steps (b)–(e) until iteration reached the maxi-
mum criteria.

The objective of training the autoencoder is to learn the
features of spare and representative through minimization of
cost function and (W , b) parameter sets.
The average activating value is expressed as follows:

ρ̂g =
1
M

e∑
g=1

hdg (10)

The optimal parameter setsW(1),W(2), b(1), and b(2), which
can be learned simultaneously using the minimizing process,
which is called the training process of the SAE, as shown in
Fig. 4.
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FIGURE 4. The SAE training algorithm.

B. FAULT DETECTION USING (RNN-LSTM) WITH TIME
SERIES
RNNs are presented to analyze ambiguous in sequential
patterns for the spatial and temporal sequential data [31].
Vibration signals have continuous amplitude values that are
sequential data denote in samples for varied amplitude. Sam-
pling converts data from continuous to discrete, making the
vibration context easier to understand and analyze in the
rotary machine conditioning.

RNNs can realize sequences without saving the previous
sequence inputs, so sequences of long term, which is called in
deep learning as the problem of gradient vanishing. To solve
the problem of gradient vanishing, a special architecture of
RNN named LSTMwas offered in 1997 to solve the problem
in RNN training, such as error of decaying, deficient, and
backflow [32]. LSTMhas the advantage of leverages memory
cells with forget gates over standard RNN [33].

The essential idea of the LSTM structural design is a mem-
ory cell, which has the capability to keep its information using
non-linear gate units and control the flow of information from
or into the cell. Moreover, forget gates add enhancements in
the learning ability to forget (eliminate) information stored
in the memory cell. Furthermore, connections of peepholes
allow the LSTMs to realize accurately timed patterns and
calculate the internal states within the matrices of cost and
weight [34].

In Fig. 5, LSTM contains four unique layers of the neural
network (α, β, γ ,o), which are different from one layer of
traditional RNN.

To understand the memory-cell operations of LSTM,
assuming at time t and input xt in (11), the forget gate of the
first layer can be represented as αt that removes information

FIGURE 5. LSTM-Memory cell.

of the memory cell once required and saves the previous state
of information before emptying the memory.

αt = σ (Wα. [ht−1, xt ]+ bα) (11)

where σ denotes the sigmoid function, [] is the operation of
concatenate, and Wα denotes the α layer weight.

Input gate layer of the second layer βt is applied to select
the suitable value that should be updated and obtained as:

βt = σ (Wβ . [ht−1, xt ]+ bβ ) (12)

Then, updating and storing values via the layer of tanh γt , as
follows:

γt = tanh (Wγ . [ht−1, xt ]+ bγ ) (13)

Next, the last state Ct−1 is updated by the present state Ct , as
following:

Ct = αt .Ct−1 + βt .γt (14)

where γt denotes the recurrent component, which is calcu-
lated via ‘‘tanh’’ as the activating function for the input state
of the present and earlier frames ht−1.
The last layer will be a layer of sigmoid function for output

gate ot to hold information for the future step. The output gate
ot can be obtained as:

ot = σ (Wo. [ht−1, xt ]+ bo) (15)

The present state of the RNN hidden layer is determined as
follows:

ht = ot tanh (Ct ) (16)

where Wα , Wβ , Wγ , and Wo are the layer weights; and bα ,
bβ , bγ , and bo are the layer biases.

Training sequence patterns of data (such as time series)
are not able to be recognized by one cell of LSTM. Hence,
the structure of stacking multiple memory cells was proposed
for learning the long term sequence and dependency in time
series data.
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FIGURE 6. Vibration signal in time and spectrum domains for the shaft of
the electrical generator.

Lastly, Softmax classifier was applied to get the final
decision output from the RNN-LSTM network, which can be
expressed as:

hfinal = softmax(ht) (17)

C. TESTING THE PERFORMANCE OF PROPOSED DL
FRAMEWORK
The proposed DL framework will be trained and tested with
a dataset of 2000 samples. The performance of the proposed
DL framework and other models will be evaluated to com-
pare their precision and recall values. The fault detection
performance of the DL framework is evaluated with respect
to features to validate the effect of features on fault detection.

The accuracy, precision, and recall can be determined as:

Accuracy =
True Positives+ True Negatives

NT
(18)

where NT denotes the total number of instances.

Precision =
True Positives

True Positives+ False Positives
(19)

Recall =
TrueP ositives

True Positives+ False Negatives
(20)

IV. RESULT AND DISCUSSION
A. DATA PREPROCESSING
In this step, the EEMD method was conducted to pre-
process the collected vibration signals to get several IMFs.
Fault features are typically discovered in the high frequency
of IMFs and mostly could not reveal major differences in
the vibration signals within the time dominion, as can be
seen from Fig. 6. The components of IMFs were obtained
by (1)-(2) with the selected component number and optimal
order (I = 4,P = 25). Then, the component of IMFs was
converted into the vectors as inputs to the SAE network to
obtain the features of fault signals in the next step.

B. DEEP FEATURE LEARNING
In this step, features of vibration signals were automatically
extracted by The SAE approach, which is an unsupervised

TABLE 2. The detailed structure of the proposed SAE network.

TABLE 3. Optimized SAE parameters using PSO.

learning network with the dimension reduction of original
features.

The SAE network is constructed to extract the fault fea-
tures from unlabeled time series data, which can be used
for further usage and investigation of fault detection by the
LSTMapproach. The deep SAE network that was used during
the experiment has five hidden layers with dimensional data
2000-1000-300-100-5. For example, depth and breadth of
dimensional data of (2000-200) denote that original signals
have dimension 2000 to get the pre-processed signals with
dimension 200 as inputs, essentially help in reducing the com-
putation of feature extraction. SAE Depth shows an essential
role due to defining the extracted feature qualities. Table 2
shows the total numbers of hidden layers, neurons for each
hidden layer, and the learning rate of each layer.

In this experiment, the SAE network is set to five hidden
layers as recommended in [35] with the learning rate (0.2-0.3)
based on the procedure in [12]. In Table 2, the setting
value (200-100-30-10-5) means that five hidden layers, with
200 neurons in the first hidden layer, 100 neurons in the
second layer, and (30-10-5) neurons for other hidden layers.
Selecting or designing a proper network structure depends on
the dimension of original signals, pre-processed signals, and
the size of hidden layers to be set by trial and error to improve
accuracy [10].

The configuration structure of SAE hidden layers and their
optimized parameters (such as a sparsity parameter ρ, and
sparsity penalty θ ) were optimized by the PSO before using
the SAE network in the training process of the DL framework.
The number of particles in the PSO swarm was set as 20, and
the maximum number of iterations was set as 100.

Table 3 illustrates the optimized sparsity penalty parame-
ters for SAE hidden layers with optimal sparsity parameter
(ρ = 0.11).

Fig. 7 shows that the optimization process at the iteration
number 72 inclined to be the steady-state, and the recognition
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FIGURE 7. The optimization process using the PSO algorithm.

FIGURE 8. 3D visualization of dimensional features extracted by SAE.

rate of training samples extended 99.32%. Hence, a well-
trained deep feature learning network can be achieved after
the completion of the SAE optimization process.

Though, there was some of the group overlapping between
different vibration events (faulty, non-faulty) on the single
deep feature, so for more clearance, faulty events need to
be projected with more than two features. It was difficult to
present the features completely, so the first three projected
features were chosen for 3D visualization of dimensional
features extracted by SAE, as displayed in Fig. 8.

However, it is noted that the extracted features are domi-
nant in deep learning approaches, which were stored in the
feature database to be used in the DL framework testing
phase. After training the SAE, fault detection in time series
data can deeply learn the multiple features sequence. There-
fore, the final step of the proposed DL framework was held
in the fault detection phase using RNN-LSTM.

C. FAULT DETECTION USING DL FRAMEWORK
The RNN-LSTM approach was applied in this stage to learn
long term dependencies in data of time series to assist in
detecting the faults efficiently. In this respect, 2000 samples

FIGURE 9. Graph of Accuracy versus Number of Epochs.

TABLE 4. Overall accuracy comparison between the proposed framework
and other models.

were selected and applied to train and validate RNN-LSTM
to be used in the fault detection phase of the proposed DL
framework, as was illustrated in Fig. 2. Subsequently, the
collected dataset (2000 samples) was divided into two parts,
the training dataset (80% (including 800 samples for the
normal state and 800 samples for every fault state) and the
remaining 20 for the testing dataset.

For verifying effectiveness, the proposed DL framework,
models of ANN and RNNwere also evaluated for the data set.
In Fig. 9, the proposed DL framework has a better accuracy
rate than ANN and RNN because of the stage of feature
extraction and optimization in its methodology.

The overall accuracy, the running time of fault detection,
F1-score, and precision and recall values of models are sum-
marized in Table 4. The accuracy of the proposed framework
is the highest when compares to other approaches, which are
ANN (49.5%), RNN (69.0%). It is noticeable that the time
efficiency for the proposed DL framework is higher with
rapid detection time (0.17 sec) compared with other methods,
as indicated in Table 4. The running time of fault detection
was executed in this paper on an experimental environment
with configurations, as described in Table 1.

In order to validate the fault detection of the proposed
DL framework, a testing dataset of 400 samples (including
300 samples for the normal state and 100 samples for every
fault state) was leveraged for validating. Likewise, the pro-
posed DL framework was evaluated with respect to features
to conclude the effect of features on fault detection and which
feature is more effective. As can be seen from Table 5, the
detection accuracy was calculated based on the extracted
features and four data partitions. The predominant feature
(F1, F3, and F4), which were provided by SAE, increased the
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TABLE 5. Performance of DL framework for fault detection.

accuracy of fault detection. The highest accuracy of detection
was for feature 3 (F3) and the combination of features (multi-
features) at data partition of (90/10).

The increase in detection accuracy with the changing of
data partitions is obvious. Moreover, detection at multiple
features has better performance than other features.

The next step after fault detection is alerting and preparing
maintenance tasks. According to the hybrid RCMmodel [18],
the CBM task is to be assigned for high-risk failure, while
PSM for medium risk, and CM for low risk.

From Tables 4-5, the proposed framework has a better
performance than other methods due to advantages in fea-
ture extraction and fault detection phases with a detection
accuracy of 99.67%. Additionally, the results reveal that the
proposed deep learning framework is capable of detecting
faults from industrial data without labels. This can profes-
sionally help data engineers to extract feature automatically
and overcome relying on human experience based on the
unsurprised fault detection approach.

V. CONCLUSION AND FUTURE WORK
This study presents a newDL framework for fault detection of
the electrical generator from process signals. There are a lot of
challenges in fault detection for process signals of traditional
methods due to a large number of different types of process
signals and hazards in the oil and gas. Variations of failure
modes in the hazardous area cause difficulty to predict or
diagnose the hidden faults; furthermore, the presence of haz-
ardous gas and electricity, which increases the chance of fault
misdetection. Though, the deep learning method has been
performed greatly in a hazardous condition for identifying
faults from the huge database of machine process signals.

The experimental results demonstrate that the proposed
DL framework is capable of detecting faults and extracting
deep features by deep processing methodology for vibration
signals, which can reduce the fault risks of the electrical
generator in risky oil and gas areas. Also, the framework
offers good unsupervised deep learning for unlabeled data.
Moreover, industrial plants could add to this DL framework
to detect and categorize their risky faults, which avoid future
shutdowns, specifically in hazardous zones such as petro-
chemical and nuclear-powered plants.

The main contribution of the research is developing the DL
framework for fault detection systems in hazardous oil and
gas plan. For limitations and future directions of the present
work, the proposed DL framework was applied for fault
detection and did not cover fault prediction. Also, looking for
multi-objective optimization of hyperparameters and analysis

of the extracted fault features are additional challenging tasks.
All of these could be improved by future researches. In
future research, we will extend our DL framework in online
fault diagnosis and ranking by means of different artificial
techniques that can help operators and engineers to analyze
and study the root causes of machine failures for an effective
maintenance plan and failure prevention.
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