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ABSTRACT Aiming at the time-consuming problem of the full-wave (FW) simulation of the scattering
characteristics of the traditional graphene reconfigurable reflectarray antenna, a fast prediction method of
electromagnetic (EM) response based on deep learning is proposed. The convolutional neural network (CNN)
method in deep learning is effectively used in the research of this paper. This method first discretizes the
input vector (patch geometry, chemical potential, frequency, incident angle, etc.) of the graphene reflectarray
antenna, and then preprocesses the data into a two-dimensional image suitable for CNN training, and finally
uses CNN to train the model instead of extensive FW simulation calculations, the EM response of the
reflectarray antenna is calculated. The training results of three algorithms of support vector regression (SVR),
radial basis function network (RBFN) and CNN are comprehensively compared. The experimental results
show that CNN method has good performance and accuracy in the EM response prediction of the graphene
reconfigurable reflectarray antenna, with an accuracy of over 99%, and can also save at least 99% of time.

INDEX TERMS Convolutional neural network (CNN), electromagnetic (EM) response, graphene, recon-
figurable reflectarray antenna.

I. INTRODUCTION
The planar reflectarray antenna is a new type of high-gain
antenna that uses a planar structure to replace the complex
curved structure in the traditional parabolic antenna, which
effectively reduces the design difficulty [1].Microstrip reflec-
tarray antenna is composed of feeder and microstrip antenna
array. There are many microstrip reflection unit cells on the
reflection plane, and different phase compensations can be
realized by controlling the size of each unit cell without
loading a complex feed network. The reflectarray antenna
has broad application prospects [2]. The emergence of the
reconfigurable reflectarray antenna enables it to change the
basic working characteristics of the independent radiating
unit cell to adapt to more diverse system requirements and
complex and changeable application environments [3].

Graphenematerials have good electrical conductivity, elec-
trical conductance controllability, and plasmon characteris-
tics in antenna design. Good conductivity makes it have better
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radiation than traditional metal antennas. By applying bias
voltage, the chemical potential of graphene can be changed
its surface conductivity, which in turn changes the value of
graphene’s surface impedance [4], [5]. Therefore, graphene
materials have certain application potential in the research of
reconfigurable antennas.

When the radiation patch of the reflectarray antenna
unit cell uses graphene material, the electromagnetic (EM)
response of the reflectarray antenna can be theoretically
changed by changing the surface characteristics of graphene
by applying voltage. There are many different methods for
the analysis of reflectarray antennas. Since there is no simple
closed-form expression, in view of the quasi-periodicity of
this antenna, the commonly used method is the full-wave
(FW) analysis method assuming partial periodicity [6]–[8].
The simulation of this periodic independent element can be
proved to be very effective by the method of moments [6]
or equivalent finite time domain analysis [7]. These methods
can be used to calculate the EM response of any possible
cell configuration, and the results are relatively accurate.
Although there are many specific analysis methods for the
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scattering characteristics of reflectarray antennas, thesemeth-
ods require multiple boring and repetitive simulations of all
possible unit cells, which have problems such as compu-
tational efficiency and large memory requirements. There-
fore, reasonable and effective use of reflectarray antennas
for high-efficiency communication, and efficient analysis and
calculation of the periodic array scattering characteristics to
reduce EM interference have become an urgent problem to be
solved. In this context, the paper is of great significance for
the efficient analysis and calculation of the EM response of
the reflectarray antenna.

In recent years, the artificial intelligence method of
machine learning has been widely used in the field of EM
engineering, such as EM scattering [9], antenna diagno-
sis [10], parameter reconstruction [11], etc. Some effective
machine learningmethods [9], [12]–[14] for analyzing reflec-
tarray antennas are also proposed. In [9], the author used
support vector regression (SVR) to predict the EM response
of single-layer ‘‘Phoenix’’ unit cell, but the network topology
structure of SVR is relatively complex, and the computational
efficiency is not particularly obvious.

At present, deep learning technology has been widely used
in various fields such as language processing [15], image
processing [16] and antenna design [17]. In this work, the
author innovatively uses the convolutional neural network
(CNN) in deep learning to predict the scattering characteris-
tics of graphene reconfigurable reflectarray antenna elements
in different polarization states (co-polarization and cross-
polarization). Compared with traditional neural networks,
CNN adopts a parameter sharing mechanism, which greatly
reduces the number of network parameters, thereby effec-
tively avoiding overfitting. In addition, CNN also uses a local
connection method, which greatly improves network training
efficiency and generalization ability.

The paper first discretizes the geometry of the graphene
radiation patch, chemical potential, frequency and angle of
the incident wave. Then use the FW simulation software
(CST microwave studio) to simulate the reflectarray antenna
element to obtain the CNN training data set. After offline
training, the nonlinear regression model of the scattering
coefficient matrix is established and the EM response of
the graphene reconfigurable reflectarray antenna unit cell
under different parameters is quickly predicted in real time.
Finally, the prediction results of CNN are compared with
the results obtained by the SVR method, the Radial Basis
Function Network (RBFN) method, and the FW simulation
method.

The paper is organized as follows. The second part pro-
vides an overview of the graphene surface conductivity
and the radiation field of the reflectarray antenna. The
third part explains the specific method of using CNN to
predict the EM response of the graphene reconfigurable
reflectarray antenna unit cell. The fourth part discusses the
numerical results of CNN compared with other machine
learning methods. The fifth part is a summary of the
full text.

II. CHARACTERISTICS OF GRAPHENE RECONFIGURABLE
REFLECTARRAY ANTENNA
Graphenematerials can be represented by infinitely thin, two-
dimensional, non-local anisotropic surface conductivity [4].
Assuming that there is no additional magnetic field, the sur-
face conductivity of graphene becomes isotropic, which can
be represented by σs(ω,0,T , µc), where ω = 2π f is the
radiation angular frequency, f is the frequency, 0 = 1/(2τ )
is the electron scattering rate, τ is the propagation relaxation
time (assuming τ = 1ps [18]), T is the room temperature
(T = 300K [5]), and µc is the chemical potential. The
surface conductivity formula can be derived from the Kubo
equation [19], [20]:

σs(ω,0,T , µc)

=
je2(ω − j20)

π}2
[

1
(ω − j20)2

∫
∞

0
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−
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)dε

−

∫
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0
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where e is the electron charge, } = h/2π is the reduced
Planck constant, ε is the energy, fd(ε) = (e(ε−µc)/kBT + 1)−1

is the Fermi-Dirac distribution, and kB is the Boltzmann con-
stant. We can see from (1) that the conductivity of graphene
is composed of two parts, one is expressed as the intra-band
contribution of graphene (σintra), and the other is expressed
as the inter-band contribution of graphene (σinter). In the case
of low terahertz band (the center frequency in this work is
f0 = 1 Thz), only the intra-band contribution can be con-
sidered, so the surface conductivity can be approximately
expressed as [18], [20], [21]:
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= −
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(2)

By applying bias voltage, the surface conductivity of
graphene can be changed by changing its chemical potential,
and thus the reconfigurability of the reflectarray antenna can
be realized.

The microstrip reflectarray antenna is mainly composed
of an illumination feeder and an array composed of many
isolated microstrip patch unit cells, as shown in Fig. 1. The
incident wave emitted by the feeder illuminates the reflec-
tive surface, and the incident phase of the incident wave to
each reflectarray element is proportional to the distance from
the center of the feeder to the element. After the different
phases of each element are arranged, a specific phase shift
distribution is formed on the reflective surface. The incident
wave is compensated by different phases and then radiated,
that is, the main beam is formed by superposition in a given
direction [1].

Assuming thatN×N reflectarray elements are periodically
arranged on the plane, and the feeder radiates EM waves
to the graphene patch to generate reflected and scattered
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FIGURE 1. The structure of reflectarray antenna.

fields, the radiation field of every nth (n = 1, . . . ,N 2)
graphene reflectarray antenna unit cells can be superimposed
as follows [9], [12], [22]:

E(θ, ϕ; f ) =
N 2∑
n=1

{[R(θn, ϕn; f )+ S(θn, ϕn;µc, f ,Wn,Ln)]

·EF(θn, ϕn; f ) exp(jk0(αn sin θ cosϕ

+βn sin θ sinϕ))}, (3)

where θn and ϕn are the angles of incidence from the feeder
to the nth patch, f is the working frequency, sin θ cosϕ and
sin θ sinϕ are the direction cosines of the wave, αn and βn are
the coordinates of the center of the nth patch element, k0 =
(2πc0)/f is the free-space wavenumber (c0 being the speed of
light),Wn and Ln are the width and length of the nth graphene
patch R(θn, ϕn; f ) = {Rxy(θn, ϕn; f ); x, y = {θ, ϕ}} is the
plane wave reflection matrix, and S(θn, ϕn;µc, f ,Wn,Ln) =
{Sxy(θn, ϕn;µc, f ,Wn,Ln); x, y = {θ, ϕ}} is the scattering
matrix, respectively, while

EF(θn, ϕn; f )

=
|rF|
|rn − rF|

EF(θn, ϕn; f )
EF(0, 0; f )

× exp(jk0 |rn − rF| − |rF|)[cosϕnθ̂ + sinϕnϕ̂] (4)

is the field pattern radiated by the feeder on the nth element,
rn is the location of the nth patch element, rF is the feeder
position, and EF(θ, ϕ, f ) is the element factor.

When the incident wave irradiates on the graphene patch,
an additional scattering field is generated. According to (3),
the incident field can be represented by the scattering coef-
ficient matrix S(z), z , [W ,L, µc, f , θ, ϕ], which indicates
that the scattering coefficient S(z) is an important component
for characterizing the graphene reconfigurable reflectarray
antenna element. The output value S(z) is a function of input
variables such as the geometric size of the graphene patch
(W ,L), the graphene chemical potential µc, the working
frequency f , and the angle of the incident field (θ, ϕ). In
this paper, the regression analysis of CNN is mainly used
to replace the traditional FW simulation tool to obtain the

alternative model, and then the predicted value Ŝ(z) of the
scattering coefficient matrix is obtained to approximate the
true value S(z), that is, Ŝ(z) ≈ S(z), z ∈ Z(Z , {W ∈

[Wmin,Wmax];L ∈ [Lmin,Lmax];µc ∈ [µc min, µc max];
f ∈ [fmin, fmax]; θ ∈ [θmin, θmax] ;ϕ ∈ [ϕmin, ϕmax]}).

III. USE CNN TO CHARACTERIZE GRAPHENE
REFLECTARRAY ANTENNA ELEMENT
As a major research direction in deep learning [23], CNN is
a feedforward multi-layer perceptron neural network, which
mainly uses local receptive field and weight sharing mecha-
nism to reduce the training parameters to a great extent [24],
so that the training of deep network model can be realized.
The CNN model is based on supervised learning, which
can spontaneously extract data features from a large number
of training samples, avoiding poor prediction results due to
improper construction of features. In this paper, CNN is used
instead of the traditional FW simulation tool to rapidly predict
the EM response of the graphene reconfigurable reflectarray
antenna element so as to improve the efficiency of antenna
design and optimization.

The complex scattering coefficient of the graphene reflec-
tarray antenna unit cell will change with different degrees
of freedom, so the output of CNN is the complex scattering
coefficient matrix of the antenna unit cell in the co-polarized
and cross-polarized state, and the input is a 6- dimensional
vector (i.e., 6 degrees of freedom) containing the width and
length of the patch (W ,L), the graphene chemical potential
µc, the working frequency f , and the incident angle in spheri-
cal coordinates (θ, ϕ). Asmentioned above, we need a sample
set to train CNN, which is obtained by FW simulation. For
this, we need to discretize each input parameter.

The width and length of the graphene patch are divided
into I divisions respectively, so there are A (A = i2, i =
1, . . . , I , Wi represents patch width, Li represents patch
length) total of possible antenna unit cells. In addition, we
need divide the graphene chemical potential into B divi-
sions (µc(b), b = 1, . . . ,B), C divisions for the working
frequency (fc, c = 1, . . . ,C), D divisions for the elevation
angle (θd , d = 1, . . . ,D), and E divisions for the azimuth
angle (ϕe, e = 1, . . . ,E). In this case, we need to use the
FW method to perform R = A × B × C × D × E differ-
ent simulations to establish a training sample set. The time
required for one FW calculation for each antenna element is
T FW
sin ≈ 180s. If the input parameters are more finely discrete,

assuming there are R = 5 × 104 antenna elements, the
required time is T FW

all ≈ R×T FW
sin = 9×106s (about 105 days).

Although using FW simulation to perform multiple repeti-
tive calculations can simply and accurately obtain the EM
response of the graphene reflectarray antenna unit cell, this
process is not only time-consuming and labor-intensive, but
also requires a lot of storage space. For solving the problem of
data storage and computing time, this paper proposes a deep
learning method based on CNN. To this end, a data sample
Q , {zr , S(zr ); zr , [Wi,Li, µc(b), fc, θd , ϕe], r = 1, . . . ,R}
is established by FW calculation of the above A antenna
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FIGURE 2. Architecture of the convolutional neural network.

elements under different chemical potentials, working fre-
quencies and incident angles, and then a certain number of
samples are randomly selected from the R data samples as
the training set for CNN to learn.

This paper uses the deep learning toolbox that comes
with MATLAB2020 to build a CNN model, which is
mainly composed of input layer, convolutional layer,
fully-connected layer and regression layer, as shown
in Fig. 2.

As the common CNN is mainly used to extract image
features and accept data in matrix form for operation, the
data is matrixed before entering the input layer. Since the
transformed data matrix itself has relatively low dimension-
ality, there is no need to perform additional dimensionality
reduction operations on the data, so the step size of all convo-
lutional layers in CNN is set to 1, and the pooling layer that
plays the role of reducing the feature dimension in the neural
network is removed. A batch normalization layer is added
behind each convolutional layer, and LeakyReLU activation
function is accessed behind the batch normalization layer.
In addition, the dropout layer is added in front of the fully-
connected layer to prevent overfitting when the number of
iterations increases. In the process of training the network,
the optimization algorithm of mini-batch gradient descent
(MBGD) is used. The network performs 40 rounds of train-
ing, sets the initial learning rate to 0.001, and reduces the
learning rate after 30 rounds of training. Finally, trainNetwork
is used to create a network, and then a prediction model of
the EM response of the graphene reconfigurable reflectarray
antenna unit cell is obtained.

In order to verify the accuracy and effectiveness of the
method in this paper, the calculation formula of error index
and calculation efficiency is given below to quantitatively
evaluate the performance of the proposed method. The mag-
nitude and phase errors ξ1 and ξ2 of the scattering coefficient
matrix S(z) are defined as follows [9], [12]:

ξ1 ,
1
M

M∑
m=1

∥∥∥ŜCNN(zm)− S(zm)∥∥∥2
‖S(zm)‖2

, (5)

where S is the accurate scattering coefficient matrix calcu-
lated by FW method, and Ŝ is the predicted, ‖·‖ is the norm

FIGURE 3. Schematic diagram of reflectarray antenna unit cell containing
two layers of dielectric substrate.

of matrix 2, and M is the number of samples in the test set.

ξ2 ,
1
4M

M∑
m=1

∣∣∣∣∣ 1π arg

[
ŜCNN(zm)
S(zm)

]∣∣∣∣∣
2

, (6)

where the normalization of π indicates that the phase is actu-
ally expressed in radians, and the coefficient 1/4 refers to the
four entries of the scattering matrix. Another evaluation fac-
tor, computational efficiency, that is, the time saved by CNN
compared with FW simulation, is defined as follows [9]:

1TCNN , 1−

∣∣∣∣∣TCNN
train + T

CNN
test

T FW

∣∣∣∣∣, (7)

where T FW , M × T FW
sin represents the time required to

calculate the FW simulation of M test sets, TCNN
train represents

the time required for the CNN training process, and TCNN
test

(can be ignored) represents the time required for the CNN
test process.

IV. NUMBERICAL RESULTS
The structure of the common basic reflectarray antenna unit
cell includes square patch, square ring, round patch, ring,
etc. Other complex reflectarray antenna unit cell structures
are generally realized by arbitrarily combining basic struc-
tures, adding or removal of part of the basic structures.
As shown in Fig. 3, the rectangular patch is taken as the
research object in this paper, and the graphene patch with
a thickness of 38 nm is printed on a two-layer dielectric
substrate (dx = dy = λ0/10, λ0 is the wavelength at center
frequency f0). The first dielectric layer is a high-resistance
quartz layer with a dielectric constant of 3.78 and a thickness
of 50 nm. The second layer is made of low resistance silicon,
which canmaintain a uniform level with the metal floor under
applied voltage. The silicon wafer has a dielectric coefficient
of 11.9 and a thickness of 25 µm.

In this work, suppose the graphene patch size Wi,
Li ∈ [8µm, 14µm], the graphene chemical potential µc(b) ∈

[0 eV,1 eV], the working frequency fc ∈ [0.8 THz, 1.1 THz],
the elevation angle θ ∈ [0 deg, 40 deg], and the azimuth angle
ϕ ∈ [0 deg, 45 deg]. R = 4× 4× 6× 4× 5× 4 = 7680 data
samples are obtained by discrete sampling of the parameters
of these antenna elements. From the above 7680 samples,
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FIGURE 4. The magnitude of Sθθ (z) varies with frequency f , element
size L, incident angle θ , and chemical potential µc.

6000 samples are randomly selected as the training set, and
the rest are used as the testing set.

Although CNN is a multi-input and multi-output system,
the author has confirmed that the single output has a shorter
training time than the multi-output, and can control the net-
work topology more accurately. After the equivalent model is
established by using CNN, several data not belonging to the

FIGURE 5. The phase of Sθθ (z) varies with frequency f , element sizeL,
incident angle θ , and chemical potentialµc.

training sample are randomly selected from vector space Z
as validation sets to verify the effectiveness of the proposed
method.

Fig. 4(a) shows the variation curve of the magnitude of
Sθθ (z) based on CNN with the working frequency f , and
also shows the calculation results based on SVR, RBFN,
and FW simulation, where W = 9µm,L = 10µm,

FIGURE 6. Actual versus estimated values of (a)-(c) Re[Sθθ (zm)],m = 1, . . . ,M, and (d)-(f) Im[Sθθ (zm)], m = 1, . . . ,M when using (a) and (d) CNN, (b) and
(e) SVR, and (c) and (f) RBFN prediction methods.
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FIGURE 7. The magnitude of Sθϕ (z) varies with frequency f , element
sizeL, incident angleθ , and chemical potentialµc.

µc = 0 eV, θ = 0 deg, ϕ = 45 deg. Fig. 4(b) shows
the variation curve of Sθθ (z) magnitude with the patch side
length L, where f = 1 THz and other parameters remain
unchanged. Analogously, Fig. 4(c) and (d) show the varia-
tion of co-polarization component Sθθ (z) magnitude with the
incident angle θ and chemical potential µc, respectively. We
can observe from the plots that the results obtained by CNN
are very close to the true values, and are significantly better
than SVR and RBFN in predicting the scattering magnitude.

Under the same conditions, Fig. 5 shows the phase of Sθθ (z)
changes with frequency f , patch size L, incident angle θ and
chemical potential µc.

As we expected, the difference between CNN and FW
simulation is very small, the maximum difference from the
FW simulation does not exceed 7 deg.

Fig. 6 shows the scatter plots of the real parts
Re[Sθθ (zm)],m = 1, . . . ,M and the imaginary parts
Im[Sθθ (zm)],m = 1, . . . ,M of the complex scattering coef-
ficient matrix S(z), z , [θ, ϕ;µc, f ,W ,L], where Y = X
represents the ideal bisector. The figures show that the scatter
distribution of CNN is closer to the ideal bisector than that
of SVR and RBFN, which can also be well proved by the
correlation coefficient R2 shown in plots. The higher R2,

the stronger the correlation and the higher the accuracy.
Plus, from the perspective of quantitative analysis, according
to (5) and (6), the prediction errors of the Sθθ (z) magnitude
and phase of the three methods of CNN, SVR, and RBFN can
be obtained respectively. They are ξCNN1 = 0.0091, ξCNN2 =

0.0113, ξSVR1 = 0.0162, ξSVR2 = 0.0364, ξRBFN1 = 0.0533,
and ξRBFN2 = 0.0602 respectively.

In order to further prove the effectiveness of the method
proposed in this paper, Fig. 7 and Fig. 8 show the variation
of the magnitude and phase of the cross-polarized component
Sθϕ(z) with frequency f , graphene patch size L, incident angle
θ and graphene chemical potentialµc, respectively. Fig. 7 and
Fig. 8 take the same input parameters as Fig. 4 and Fig. 5.
Fig. 9 also shows a scatter plot of the real and imaginary parts
of the complex number Sθϕ(z). Considering the symmetrical
characteristics of the reflectarray antenna element, although
the prediction accuracy of the cross-polarization component
is slightly inferior to that of the co-polarization component,
we can see from Fig. 7-Fig. 9 that CNN model can still
more accurately match the FW simulation, regardless of the
magnitude or phase, although the cross-polarized coefficient
presents a highly nonlinear behavior.

According to (5) and (6), the magnitude and phase errors of
the cross-polarization coefficient Sθϕ(z) can also be obtained.
They are ξCNN1 = 0.0285, ξCNN2 = 0.0318, ξSVR1 = 0.1166,
ξSVR2 = 0.0963, ξRBFN1 = 0.1417, and ξRBFN2 = 0.1532
respectively.

In terms of calculation efficiency, the design process of
each graphene reflectarray antenna is independent of each
other. It is traditionally done by using commercial FW simu-
lation software. Changing the parameters of different anten-
nas requires multiple calls to simulation software tools. For a
very large and complex antenna, it may require hundreds or
even thousands of calls to the tool, and it may take several
hours to complete the design of an antenna. We can see
that the use of machine learning methods to accelerate the
design and analysis of antennas is an inevitable trend of
development. This work is performed on a desktop computer
with an Intel Core i7-7700 CPU at 3.6GHz. The time to
complete a FW calculation is T FW

sin ≈ 180s. According to (7),
1TCNN

= 0.996, which saves 99.6% of time compared
with the FW solver, significantly speeds up the prediction of
the EM response of the graphene reconfigurable reflectarray

FIGURE 8. The phase of Sθϕ (z) varies with frequency f , element sizeL, incident angle θ , and chemical potentialµc.
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FIGURE 9. Actual versus estimated values of (a)-(c) Re[Sθϕ (zm)],m = 1, . . . ,M, and (d)-(f) Im[Sθϕ (zm)],m = 1, . . . ,M when using (a) and (d) CNN, (b)
and (e) SVR, and (c) and (f) RBFN prediction methods.

antenna. 1T SVR
= 0.64 and 1TRBFN

= 0.87 can also be
obtained according to (7), that is, the time saved by using SVR
and RBFN is 64% and 87% respectively.

V. CONCLUSION
In this paper, a new method to characterize the reflectar-
ray antenna element is presented. The radiation patch of
the antenna element is made of graphene materials to realize
the reconfigurability of the reflectarray antenna. By taking the
patch geometry, chemical potential, incident wave frequency
and angle as input, the EM response of the graphene reconfig-
urable reflectarray antenna element is fully characterized by
using CNN. In addition, according to (5)-(7), compared with
the prediction performance of SVR and RBFN, CNN is supe-
rior to SVR and RBFN in terms of calculation accuracy and
calculation efficiency. Regardless of the co-polarization com-
ponent or the cross-polarization component, the prediction
accuracy and calculation efficiency of CNN reached 99%,
which verified the effectiveness of the method proposed in
this paper. At the same time, it also proves that deep learning
has greater application prospects in the field of antennas.
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