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ABSTRACT Grid-side electrochemical battery energy storage systems (BESS) have been increasingly
deployed as a fast and flexible solution to promoting renewable energy resources penetration. However,
high investment cost and revenue risk greatly restrict its grid-scale applications. As one of the key factors
that affect investment cost, the cycle life of battery heavily depends on its charging/discharging actions during
the operation, particularly in the presence of uncertain renewable generation. In this context, it is necessary
to consider the operation-dependent cycle life of batteries in optimal BESS sizing, which imposes great
challenges to the modeling and solving of the planning problems. In this paper, we propose a novel two-level
optimal sizing model for grid-scale BESS, considering its operation under uncertainties induced by volatile
wind generation. In the lower level, a long-term chronological operation simulation of BESS is processed
with an accurate cycle life model of batteries; in the upper level, marginal economic utility analysis and BESS
size reforming are conducted to approach the optimal size of BESS. An iterative algorithm is designed to
solve the model effectively. The proposed method is verified on a modified IEEE RTS-24 system and a real
provincial power grid of China.

INDEX TERMS Battery energy storage, optimal sizing, cycle life, marginal utility analysis.

I. INTRODUCTION
A. BACKGROUND
Recent years have witnessed the proliferation of wind energy,
the most popular renewable energy resources. However,
the intrinsic stochastic nature of wind power imposes great
challenges to power balancing and system secure opera-
tion [1]. Distinguished from other technologies, energy stor-
age systems (ESS) can provide a fast and flexible solution to
depressing power fluctuations, mitigating load peak-to-valley
difference, and flattening load profile, hence facilitating bet-
ter integration of renewable generation.

Among the current energy storage technologies, elec-
trochemical batteries energy storage systems (BESS) have
shown advantages in power density, energy density, dynamic
capability, ramp rate and cycle efficiency. With the recent
advancements [2], grid-scale battery systems has been
drawing constantly increasing attention. However, so far,
high-investment cost and revenue risk greatly restrict the
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deployment of grid-scale batteries [3]. In this context, optimal
planning, particularly the sizing of BESS, is key for invest-
ment viability. Since BESSs are relatively expensive for their
limited life span, battery lifetime assessment is necessary
when determining BESS size. Nevertheless, battery cycle life
is affected by a set of stress factors, some of which are directly
determined by the way a grid-side battery is operated, such
as state of charge (SoC) and the depth of discharge (DoD).
Thus the cycle life of BESS cannot be determined ex-ante
and is operation-dependent. Furthermore, the volatility of
wind generation brings further challenges to the prediction
of battery lifetime over the BESS project planning horizon.
In this paper, we propose a novel sizing model to incorpo-
rate precise non-linear BESS lifetime assessment during the
planning horizon and develop a two-level iterative algorithm
to solve this model effectively.

B. LITERATURE REVIEW
To cope with uncertainties induced by volatile renew-
able generation, optimal BESS planning under uncertain-
ties has been addressed in the literature of joint expansion
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planning of distributed generation and distribution net-
works by scenario-based stochastic programming (SBSP)
[4]–[6], chance-constrained stochastic programming (CCSP)
[7], robust optimization [8], and distributionally robust opti-
mization [9], where the uncertain demand and renewable
generation is captured by a number of discrete representative
scenarios, a specific probability distribution, a continuous set
of all possible scenarios and an ambiguity set of probability
distributions, respectively.

In [4], a mixed binary integer linear programming model is
proposed for the optimal BESS allocation for power system
integrated with uncertain wind power generation. Benders
decomposition is applied to reduce the computational burden
resulting from the scenario tree of the wind power output and
the involving nonanticipative constraints. References [5], [6]
propose a nonlinear scenario-based stochastic programming
framework for the joint planning of distribution network
and energy storage, considering the impact of BESS and
price-dependent demand response programs. The associated
scenario-based deterministic equivalence is formulated into
a mixed-integer linear program through linearization tech-
niques. Reference [7] considers the integrated planning of
electric power generation, natural gas network and storage.
A two-stage iterative solution algorithm is provided to solve
the chance-constrained mixed integer nonlinear program-
ming problem. In [8] and [9], robust optimization models
are applied for BESS planning in transmission networks. The
existence of a feasible solution is warranted for any load and
renewable energy scenario or distribution in a pre-specified
uncertainty set.

The planning results of both robust optimization and
stochastic programming rely strongly on the model deployed
for the uncertain parameters. Robust optimization based plan-
ning has to construct a proper uncertainty set, striking a
balance between robustness and economic efficiency. As for
the stochastic programming based methods, the selection of
probabilistic scenarios is nontrivial [10], with there being a
trade-off between computational complexity and representa-
tiveness of the scenario set. To get around this, techniques for
scenario reduction and decomposition, Monte Carlo simula-
tion, and heuristic algorithms are applied to make the stochas-
tic programming model computationally tractable. But for
practically large systems, computational burden remains a
challenge.

Regarding battery cycle life, Peukert’s law [11] captures
the non-linearity relationship between cycle life and DoD of
battery, and has been widely used in battery storage involved
system designs [3], [12]–[14]. Reference [3] offers mathe-
matical models of battery lifetime assessment by applying
Peukert’s Law and provides co-optimization bidding strate-
gies balancing battery degradation and profitability in power
market. In [12] and [13], energy management and economic
scheduling of micro-grid with BESS are presented, respec-
tively, with the consideration of battery lifetime. In [14],
a droop control based cycling strategy of BESS is proposed to
reduce battery degradation costs. The aforementioned works

are built on BESS with a given configuration, i.e., a fixed
energy capacity and power rating, and focus on the battery
system operation strategies.

It is necessary to equally apply models accounting for
battery cycle life and consider the effectiveness of service
lifetime when planning decisions are made, so that the battery
can be planned and operated more economically [15]. How-
ever, due to the intrinsic high nonlinearity of Peukert’s law
and the discrete logical judgments in the rainflow counting
algorithm [16], it is difficult to obtain an analytical expression
for the cycle life assessment model and embed it into the
planning optimization problem. To this end, several sim-
plified models are adopted [15], [17], [18]. Reference [17]
considers sizing and allocation of mobile energy storage
for multi-services, where a fixed given project life in years
is assumed and linear lifetime constraints are imposed on
the battery charge exchanged with the grid. In [15] where
co-optimization of active distribution network with energy
storage is addressed, piecewise linearized battery lifetime
model based on weighted throughput method is utilized to
formulate lifetime constraints for Lead-acid battery. In [18],
a linear empirical approach based on the cycling ampere-hour
that the battery undergoes is adopted to estimate the battery
cycle life. Then the cost of energy storage is annualized
by the yearly expected life, and a gradient-based search-
ing algorithm is applied to determine the optimal sizing
of energy storage for coping with wind power fluctuations.
Reference [19] involves an accurate non-linear cycle life
model for both first and second life segment of battery.
A differential evolutionary algorithm is used to solve the
mixed-inter non-linear programming problem, thus a tradeoff
between maximizing the profitability of energy storage with
multiple functionalities and extending its lifetime duration is
achieved.

To conclude, most existing works assume a fixed service
life of BESS, or a flat capacity degradation rate, or a sim-
plified cycle life model where battery cycle life is expressed
in terms of the charge-discharge power. However, estimation
of battery lifetime could be inaccurate and consequently
place the viability of BESS under question. To cope with
the nonlinearity and discrete logical judgments invoked by
Peukert’s law and rainflow counting algorithm in sizing
problem, heuristic optimization techniques become candidate
solutions. Moreover, due to the difference in time scales of
long-term planning and short-term operation of the system,
dependence of battery cycle life on its operation strategies
imposes heavy computational burden on the planning deci-
sions, especially when available wind generation uncertain-
ties exist over the planning horizon.

C. CONTRIBUTION AND ORGANIZATION
1) CONTRIBUTION
To the best of our knowledge, consideration for dependence
of BESS lifetime on the operation under uncertainties over
the planning horizon has not been included in the existing

20180 VOLUME 9, 2021



Y. Zhang et al.: Cycle-Life-Aware Optimal Sizing of Grid-Side Battery Energy Storage

literature on grid-side BESS sizing. In this paper, we propose
a novel optimal BESS sizing model with accurate cycle life
assessment under wind generation uncertainties, and an effec-
tive algorithm to solve it. Specifically, we consider optimal
sizing of both energy capacity and power rating of BESS.
To deal with the lifetime of BESS, we iteratively conduct
chronological simulations throughout the life-cycle of BESS
and implement size reforming on the energy capacity and
power rating. The main contributions of this paper are as
follows:

(1) Modeling. We propose a two-level optimal BESS siz-
ing model to bridge the yearly planning and hourly operation
of BESS, as shown in Fig.1. The upper-level problem is to
decide the optimal power and energy capacity of the BESS
with a given lifespan of BESS. The lower-level is to simu-
late the yearly chronological operation of the power system,
including hourly BESS regulation under multiple scenar-
ios of renewable generation. Compared with existing works
[4]–[9], the proposed model does not rely on specific
modeling deployed for uncertain wind generations and
accommodates for wide-ranging applications. Compared
with existing works [15], [17], [18], the proposed model eval-
uates cycle-life degradation more accurately since a precise
Peukert’s Law based cycle life model is utilized for battery
lifetime estimation.

(2) Solution Approach. We propose an iterative size
reforming procedure to coordinate the yearly planning and
hourly operation of BESS. Specifically, we evaluate the cycle
life of BESS after each-round of hourly chronological opera-
tion simulation, and then correct the cycle life of BESS. After-
ward, with the corrected cycle life, marginal utility analysis
on power and energy capacity of BESS is conducted based

FIGURE 1. Holistic structure of the model.

on dual shadow prices. It follows a size reforming of BESS
to enhance economic efficiency and improve the planning
decision. The proposed solution approach can achieve a sat-
isfactory balance between the accuracy of the results and the
computing time as demonstrated in the numerical tests using
the data of IEEE system and a real provincial power grid of
China.

2) ORGANIZATION
The rest of the paper is organized as follows. The opti-
mal sizing model of grid-side BESS is stated in Section II.
Section III introduces the chronological operation simulation
on the BESS-integrated power system, where an accurate
cycle life model of energy storage battery is considered.
Section IV presents marginal utility analysis on the BESS
allocation plan and conducts size reforming. Case studies
on IEEE system and real-scale provincial power grid are
introduced in Section V. Finally, Section VI concludes the
paper.

II. OPTIMAL SIZING MODEL OF GRID-SIDE BESS
In this paper, grid-side BESS is allocated to mitigate wind
power fluctuations and reduce wind power spillage. Grid-side
investors are to determine the optimal BESS sizing (i.e. the
energy capacity and power rating of BESS) with the goal of
economical optimality of the entire grid system. Considering
the high uncertainty and volatility of wind power, a scenario-
based stochastic programming method is employed to derive
an initial BESS allocation strategy.

A. OBJECTIVE FUNCTION
The objective function of the optimization problem is:

min
PBES,EBES

(
πBES

+ πwc
+ π ls

+ πg
)

(1)

where the decision variables, PBES and EBES, denote the
power rating and energy capacity of BESS, respectively. The
objective in (1) consists of investment costs of BESS πBES,
production costs of conventional generators πg, penalty of
curtailments on wind power πwc, as well as the penalty of
load shedding π ls. The aforementioned cost items will be
explained as follows:

1) INVESTMENT COST OF BESS
πBES denotes the total investment cost of BESS that being
divided into each year, with a specific formation of

πBES
= AF

(
CepPBES + CeeEBES

)
(2)

AF =
I (1+ I )Y

ep

(1+ I )Y ep
− 1

. (3)

In (2), Cep and Cee are the unit investment cost of the power
rating and energy capacity of BESS, respectively. The BESS
total fixed investment cost (CepPBES+CeeEBES) is converted
to an annual value by multiplying the annuity factor (AF) AF .
This factor is defined in (3) where I denotes the discount rate
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of grid-side BESS equipment, and Y ep denotes the anticipated
battery shelf life in years.

2) COST OF WIND CURTAILMENT
To promote renewable energy accommodation, penalties on
the curtailment of wind are considered. πwc denotes the
annual cost of wind curtailment, with a specific formation of

πwc
= 365

∑
s∈S

∑
t∈T

∑
i∈W

ωsCwc
i

(
pwg,max
s,t,i − pwgs,t,i

)
(4)

where Cwc
i is the penalty coefficient for unit curtailed wind

power of wind farm i. pwg,max
s,t,i and pwgs,t,i denote the hourly

available wind power and the hourly consumed wind power
of wind farm i at time slot t in scenario s. ωs is the discrete
probability of scenario s. S represents the set of selected
scenarios, T denotes the set of time slots in a scenario, and
W denotes the set of wind farms.

3) COST OF LOAD SHEDDING
π ls denotes the annual cost of load shedding, with a specific
formation of

π ls
= 365

∑
s∈S

∑
t∈T

∑
i∈N

ωsC ls
i

(
ples,t,i − p

l
s,t,i

)
(5)

where C ls
i denotes the loss of unit load shedding at bus i,

ples,t,i and p
l
s,t,i denote the active power demand and the active

power consumption of bus i at time slot t in scenario s,
respectively. N denotes the set of buses in the grid.

4) COST OF CONVENTIONAL GENERATORS
πg denotes the annual generation cost of conventional gener-
ators, with a specific formation of

πg
= 365

∑
s∈S

∑
t∈T

∑
i∈G

ωs

(
C2
i (p

g
s,t,i)

2
+ C1

i p
g
s,t,i + C

0
i

)
(6)

where pgs,t,i denotes the active power output of conventional
generator i at time slot t under scenario s. G is the set of all
conventional generators. C0

i , C
1
i , C

2
i are the cost coefficients

of conventional generator i.

B. RESTRAINT CONDITIONS
This model is based on a direct current (DC) power flow [20]
and leaves out the reactive power of BESS and network. This
simplification is adopted in many existing studies [3]–[9],
[15], [18], [19], since BESS’s support on real power balance
is the main focus. All constraints are listed as follows.

1) RESTRAINT CONDITIONS OF CONVENTIONAL
GENERATORS
The active output of conventional generators should fulfill the
following operation conditions:

pg,min
i ≤ pgs,t,i ≤ p

g,max
i , ∀s ∈ S, t ∈ T , i ∈ G

(7)

|pgs,t,i − p
g
s,t−1,i| ≤ pgri , ∀s ∈ S, t ∈ T , i ∈ G (8)

where pg,min
i and pg,max

i represent the minimal and maximal
active output of conventional generator i, respectively; and
pgri denotes the ramping rate of conventional generator i.

2) RESTRAINT CONDITIONS OF WIND OUTPUT
The wind power consumption should be limited by its avail-
able maximal wind output:

0 ≤ pwgs,t,i ≤ p
wg,max
s,t,i , ∀s ∈ S, t ∈ T , i ∈W. (9)

3) RESTRAINT CONDITIONS OF LOAD SHEDDING
The actual active power consumption of bus i at time slot t
under scenario s should be limited by its active power
demand:

0 ≤ pls,t,i ≤ p
le
s,t,i, ∀s ∈ S, t ∈ T , i ∈ N . (10)

4) RESTRAINT CONDITIONS OF BATTERY ENERGY STORAGE
The charging and discharging of BESS should fulfill the
following conditions:

0 ≤ pchs,t ≤ PBES, ∀s ∈ S, t ∈ T (11)

0 ≤ pdcs,t ≤ PBES, ∀s ∈ S, t ∈ T (12)

pchs,t · p
dc
s,t = 0, ∀s ∈ S, t ∈ T (13)

µ · EBES ≤ Es,t ≤ µ · EBES, ∀s ∈ S, t ∈ T (14)

Es,t = Es,t−1 + ηch · pchs,t −
pdcs,t
ηdc

, ∀s ∈ S, t ∈ T

(15)

E0 = E|T | (16)

where pchs,t , p
dc
s,t and Es,t are the charge power, discharge

power and the energy of BESS at time slot t in scenario s,
respectively. Constraints (11)-(12) imply that the charging
and discharging power of BESS are limited by its power
rating. Constraint (13) is the complementarity constraint of
BESS device. ηch and ηdc are the charging and discharging
efficiencies of BESS. µ and µ are the upper and lower limits
of the SoC of BESS, respectively. Constraint (14) is the
restraint condition of energy storage capacity. Constraints
(15) and (16) guarantee the energy balance of BESS where
|T | denotes the total number of time slots.

5) RESTRAINT CONDITIONS OF POWER NETWORK
Power balance constraint (17) ensures the sum of all types of
generation is equal to total power consumption at each time
interval.∑
i∈G

pgs,t,i +
∑
i∈W

pwgs,t,i + p
dc
s,t = pchs,t

+

∑
i∈N

pls,t,i, ∀s ∈ S, t ∈ T (17)

Let plines,t,l denote the power flow on transmission line l at time
t in scenario s. For any scenario s ∈ S, time t ∈ T and any
transmission line l ∈ L:

plines,t,l =
∑
i∈G

GSFgl,i · p
g
s,t,i +

∑
i∈W

GSFwgl,i · p
wg
s,t,i
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−

∑
i∈N

GSFl,i · pls,t,i + GSFBESl ·

(
pdcs,t − p

ch
s,t

)
(18)

where GSFl,i is the generation shift factor (GSF) to line l
from bus i; GSFgl,i the GSF to line l from generator i; GSFwgl,i
the GSF to line l from wind farm i; GSFBESl the GSF to line l
from the BESS;L is the set of transmission lines in the power
grid. Constraint (19) enforces the bidirectional power flow
limits of the transmission lines.

−pline,max
l ≤ plines,t,l ≤ p

line,max
l , ∀s ∈ S, t ∈ T , l ∈ L. (19)

C. FINDING INITIAL BESS ALLOCATION STRATEGY
To determine an initial allocation strategy of grid-side BESS
considering the uncertainty of wind output, first, we select
eight typical scenarios consisting of four daily wind curves
with the most significant reverse peak regulation characteris-
tics, of spring, summer, autumn and winter, respectively, and
two daily load curves of working day and non-working day,
respectively. Then a BESS-concerned SBSP is established
as (20), where the typical scenes are intuitively assigned
equal probabilities.

min
PBES,EBES

(
πBES

+ πwc
+ π ls

+ πg
)

subject to (7)-(19) (20)

Note that the storage operational cost is neglected in (20)
as the grid-side BESS is owned by the power grid com-
pany itself. The bi-linear constraint (13) makes the prob-
lem (20) strongly non-convex and difficult to solve. Usually,
the complementarity constraint (13) can be precisely lin-
earized by introducing auxiliary binary variables [21]. More-
over, the (epigraph of) quadratic generation cost function πg

can be piecewise linearized. Thus (20) is converted into a
mixed integer linear programming (MILP). Then the optimal
solution to problem (20), (P0BES,E

0
BES), is set as the initial

BESS allocation strategy.

III. CHRONOLOGICAL OPERATION SIMULATION OF THE
BESS-INTEGRATED POWER SYSTEM
By solving the multi-scenario stochastic programming (20),
an initial grid-side BESS allocation strategy (P0BES,E

0
BES) is

obtained. However, this configuration scheme is based on
a limited number of typical scenes, not fully considering
the impact of wind uncertainties. Moreover, this planning
assumes that the BESS has a fixed lifetime Y ep, which may
be not valid if the BESS has more or less frequent cycling
than expected. As a matter of fact, the real lifetime of battery
is sensitive to operation. In this regard, we run a life-cycle
chronological operation simulation (COS) on the given con-
figuration scheme to estimate the realistic service life of
BESS, and then adjust the allocation plan through marginal
benefit analysis that will be introduced in Section IV. This
design is economically optimal while addressing the uncer-
tainties of wind power and the unique degradation character-
istics of BESS.

A. CYCLE-LIFE MODEL OF BESS
Electrochemical batteries have limited cycle life because of
the fading of active materials caused by the charging and
discharging cycles. In this paper, we focus on lithium-ion
batteries, for which the DoD is themost important operational
factor in battery degradation and cycle life assessment. The
lithium-ion BESS can perform a certain number of cycles at
a specific DoD [3]:

N fail
d = N fail

100 · d
−kP (21)

where N fail
d and N fail

100 are the maximum number of
charge-discharge cycles at a specific DoD of d and a DoD
of 100% before the battery’s failure, respectively. kP and
N fail
100 are positive inherent parameters that can be provided by

the battery manufacturer. By keeping the loss of cycle life a
constant, the equivalent 100%-DoD cycle number neq100 of nd
cycles at DoD of d is derived as:

neq100 = nd · dkP , (22)

implying that a deeper DoD, a smaller kP or more frequent
cycles (i.e., a larger nd ) gives rise to a shorter service life of
the battery.

A full cycle consists of one charging half cycle and one
discharging half cyclewith the sameDoD. In reality, however,
two contiguous charge/discharge sessions might be asym-
metric. In this regard, the rainflow counting method [16] is
applied to an SoC profile to identify cycles. Consider a daily
SoC profile SoCday, the rainflow algorithm outputs all the
cycle depth as:(

dhalf, d full
)
= Rainflow

(
SoCday

)
(23)

where dhalf is the vector of half cycles and d full is the vector
of full cycles. For the specific steps of rainflow algorithm,
see [16]. Thus a battery’s daily equivalent 100%-DoD cycle
number is derived:

neq,day100 =

∑
j
0.5

(
dhalfj

)kP
+

∑
j

(
d fullj

)kP
. (24)

Then the realistic yearly service life of BESS is

Y rl
=

N fail
100∑365

day=1 n
eq,day
100

(25)

which may be different from the expected one Y ep. This
discordance may affect the economical optimality of BESS
allocation strategy. Next, we will show how realistic service
life is obtained through all-year chronological operation sim-
ulation.

B. CHRONOLOGICAL OPERATION SIMULATION
1) STEP 1: DATA PREPARATION
First, we prepare data for the long-term BESS-concerned
chronological operation simulation: the wind output profiles,
load forecasts, parameters of conventional generators and
states of critical tie-lines are needed. The annual chronologi-
cal wind output profiles can be obtained by utilizing historical
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measured data, or generated according to meteorological data
and the output characteristics of wind turbine generators.
Note that possible future expansion on system load during
the simulated period can be taken into account.

2) STEP 2: DAILY OPERATION MODELING AND EVOLVING
Given the BESS allocation plan, year around operations are
simulated by consecutively running daily simulations to ana-
lyze the interactions between the renewable generations and
grid-side BESS during the whole-life-cycle of BESS. To this
end, a daily COS model is formulated to find the optimal
hourly operation of BESS which is characterized by the daily
SoC profile SoCday, and that of the conventional generators.
Note that simulations on days can be carried out in parallel to
accelerate the annual COS.

By reducing (20) into one scenario (i.e., one specific
day) and substituting PBES and EBES by the given allocation
scheme

(
PkBES,E

k
BES

)
(when k = 0 it denotes the initial

allocation plan), a BESS-integrated DC optimal power flow
problem is formulated as the daily operation model of COS.
Note that in the daily operation model, the complementarity
constraint of BESS, equality (13), is relaxed to simplify the
problem into a linear program to accelerate the computation.
Though this may give rise to the situation that charging and
discharging occur simultaneously, its influence on BESS’s
lifetime is quantified by recording the daily SoC profile.

Moreover, the duality of the linear BESS-integrated DC
optimal power flow problem is solved, for the dual variables
of constraint (11), (12) and (14) are needed to calculate the
marginal revenue (MR) of the BESS, as further explained in
the Subsection IV. Notations are taken as follows:

µ · EkBES ≤ Edayt ≤ µ · EkBES (dual: λdayt , λ
day
t ) (26)

pch,dayt ≤ PkBES (dual: φch,dayt ) (27)

pdc,dayt ≤ PkBES (dual: φdc,dayt ) (28)

3) STEP 3: RESULT OUTPUT
After the modeling and solving step, results from all parallel
daily processes are combined as an annual outturn. First,
a realistic service life of BESS in years, Y rl, is obtained
through (23)-(25). Moreover, values of dual multipliers λ, λ,
φch and φdc are recorded.

IV. MARGINAL UTILITY ANALYSIS AND SIZE
REFORMING OF BESS
In this section, given the results from the chronological
operation simulation, the optimality of the BESS allocation
is evaluated from the perspective of marginal utility (MU),
which is defined as the difference between the MR and the
marginal cost (MC). In economic theory, MU analysis is an
effective tool to help companies determine the optimal yield
of goods. A firm should expand production until the point
where MC is equal to MR. Motivated by this, the
relationship between the MR and MC of the power/energy
capacity of BESS helps to find the optimal sizing that max-

imizes system utility, especially when the MR and MC are
evaluated under the realistic cycle life of BESS.

A. MARGINAL REVENUE OF BESS
An annualized marginal grid-side benefit provided by the
BESS is calculated based on the annual COS results, as in
(29) and (30).

MRPBES =
∑365

day=1

∑
t∈T

(
φ
ch,day
t + φ

dc,day
t

)
(29)

MREBES =
∑365

day=1

∑
t∈T

(
µ · λ

day
t − µ · λ

day
t

)
(30)

For the BESS with current sizing which is
(
PkBES,E

k
BES

)
,

MRPBES is the annualized MR of its power capacity and
MREBES is the annualized MR of its energy capacity. Namely,
additional per unit of capacity of power (energy) can reduce
the yearly costs of system by MRPBES (MREBES) when addi-
tional BESS investment cost is not considered. Note that this
marginal contribution of BESS to power system is evaluated
fully considering the fluctuations of wind power throughout
the year.

B. MARGINAL COST OF BESS
TheMC of BESS is calculated based on its life span as in (31)
and (32)

MCP
BES(Y ) =

I (1+ I )Y

(1+ I )Y − 1
Cep (31)

MCE
BES(Y ) =

I (1+ I )Y

(1+ I )Y − 1
Cee (32)

where Cep and Cee are investment cost for per-unit of the
capacity of power and energy of BESS, respectively, and are
converted into annual values. If Y takes the value of a fixed
expected cycle life Y ep, then the capacity of power or energy
has a fixed MC. If Y takes the value of a realistic cycle life
Y rl, then the MC of BESS configuration can be varying and
operation-dependent. Note that only one-time investment cost
is considered here. Since the grid-side BESS is controlled
by operators, operation costs caused by unmet discharged or
charged energy does not exist. Additional operational cost,
e.g. damage to the state of health of BESS caused by over-
charge/-discharge, can be indirectly considered through the
operation-dependent variable life span Y rl.

C. SIZE REFORMING OF BESS
The normalized MU of the capacity of power and energy of
BESS can be calculated by (33) and (34), respectively. If the
corresponding MU is greater than zero, additional capacity
allocation to the current scheme is economically beneficial to
the system, till the point MU decreasing to zero. Otherwise,
a reduction on the current configuration of BESS is better, till
the point MU increasing to 0.

MUP
BES =

MRPBES −MC
P
BES(Y

rl)

max
(
MRPBES,MC

P
BES(Y

rl)
) (33)
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MUE
BES =

MREBES −MC
E
BES(Y

rl)

max
(
MREBES,MC

E
BES(Y

rl)
) (34)

Therefore, if |MUP
BES| and |MU

E
BES| are both less than a

pre-set precision ε > 0, we regard the current allocation plan(
PkBES,E

k
BES

)
as optimal. Otherwise, we do size reforming on

the current scheme
(
PkBES,E

k
BES

)
as in (35) and (36).

Pk+1BES = PkBES ·
(
1+ α ·MUP

BES

)
(35)

Ek+1BES = EkBES ·
(
1+ α ·MUE

BES

)
(36)

k here denotes the iteration round of size reforming and
α > 0 is the step size which can be a fixed value or vary
with the step k . The adjusted configuration plan is denoted
by
(
Pk+1BES,E

k+1
BES

)
. Then annual COS on the

(
Pk+1BES,E

k+1
BES

)
-

integrated power system is needed, for further marginal utility
analysis on this configuration.

The block diagram for the proposed optimal BESS sizing
method based on simulation-based marginal utility analysis
is illustrated in Fig.2.

V. CASE STUDY
In this section, we test the proposed annual COS and MU
analysis based grid-side BESS allocation strategy. Simula-
tions are carried out on amodified IEEERTS-24 buses system
and a provincial system of China, with MATLAB on a laptop
with Intel(R) Core(TM) i5-5200U 2.20GHz CPU and 4GB of
RAM.

A. SETUP
We do some modifications to the IEEE RTS-24 system:
1) A wind farm with a capacity of 300MW is located at bus

1. The BESS candidate position is also bus 1.
2) The active power load of the system is modified as

in Table.1.
3) The power limits of transmission lines (1,2), (1,3) and

(1,5) are set as 80MW, 50MW, 80MW, respectively.

TABLE 1. The proportion of each load.

The modified IEEE RTS-24 system is shown in Fig.3.
Parameters about line impedance, line capacity and conven-
tional generators can be found in [22]. For cost coefficients of
conventional generators, see Matpower CASE24_IEEE_RTS
data file [23].

FIGURE 2. The specific steps of optimal BESS sizing based on
simulation-based marginal utility analysis.

Limited by the capacity of sent-out gateway as well as
the reverse peak regulation characteristics of wind power,
the wind farm at bus 1 suffers fromwind curtailment. To miti-
gate wind power fluctuations and reduce wind power spillage,
grid owner plans to allocate a battery energy storage system
nearby, i.e., at bus 1.

Two typical daily load profiles are considered: working day
and non-working day, as shown in Fig.4(a). The peak load
of the system on the working day is 3165.6MW, and that
of the non-working day is 2648MW. The wind power data
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FIGURE 3. Modified IEEE RTS-24 system.

come from 2012 NREL position (116.6W◦,36.9N◦) and we
scale it to fit the capacity of 300MW. Fig.4(b) shows four
representative daily wind curves with the most significant
reverse peak regulation characteristics of spring, summer,
autumn and winter, respectively. Wind generation is assumed
to have zero marginal cost and is hence free.

The BESS-related parameters are given in Table.2.

TABLE 2. The BESS-related parameters.

B. SIMULATION RESULTS
1) INITIAL BESS ALLOCATION BASED ON SBSP
First, we solve the multi-period DC-OPF model for the cost
of the modified IEEERTS-24 systemwithout grid-side BESS
devices under 8 typical scenarios. The cost of system without
BESS is shown in Table.3. Wind spillage and curtailment
occur in the scene of spring and summer, during midnight.
Consequently, the system pays for an annual penalty cost
of 24.74 million USD, contributing to 5.14% of the annual
total costs.

Then, we solve the scenario-based stochastic program-
ming (20) and obtain an initial BESS configuration: P0BES
is 97.87MW and E0

BES is 519.35MW.h. Cost of the

FIGURE 4. (a) Two typical daily total load profiles. (b) Typical wind output
curves of four seasons.

TABLE 3. Cost of modified IEEE RTS-24 system without BESS (uniform
annual value, unit: million USD per year).

TABLE 4. Cost of modified IEEE RTS-24 system with initial BESS plan
(uniform annual value, unit: million USD per year).

modified IEEE RTS-24 system with the BESS allocation of(
P0BES ,E

0
BES

)
is shown in Table.4. With this BESS configu-

ration, the annual comprehensive cost is reduced by 2.84%,
from 481.55 million USD to 467.87 million USD. This is
because the integration of BESS increases short-term system
operation flexibility, permitting greater participation of wind
and reducing the generation cost of conventional generators
and penalty on wind curtailment. Fig.5 shows the wind con-
sumption curve with and without BESS adjacent to the wind
farm, as well as the charge/discharge profiles of the BESS.
It can be seen from Fig.5 that when the expected output of
a wind farm is large, it is often accompanied by charging
of energy storage to reduce wind abandonment. When the
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FIGURE 5. Wind power without and with BESS. (a) Working day of Spring.
(b) Working day of summer.

expected output of wind farm is small, BESS will release
energy to reduce the fluctuation of the joint wind farm.

2) MARGINAL UTILITY ANALYSIS AND SIZE REFORMING
Given the initial BESS allocation plan, we analyze the
marginal utility of power rating P0BES which is 97.87MW and
energy capacity E0

BES which is 519.35MW.h, through annual
chronological operation simulation. The annual COS and size
reforming process is iteratively done to find the configuration
that has both zeroMUP

BES and zeroMU
E
BES. The final config-

uration result would be optimal concerning wind fluctuations
throughout the year and operation-dependent battery cycle
life.

Size reforming on power rating and energy capacity are
shown in Fig.6 (a) and (b), respectively. Note that results in
these two subfigures come from the same iterative process,
since EBES and PBES are two configuration parameters cou-
pled in one system and consequently cannot be analyzed sep-
arately. After 14 rounds of COS and size reforming, the final
BESS configuration plan is as follows: P14BES is 123.27MW,
with MCP

BES(Y
rl) being 7762.15$, MRPBES being 7939.32$,

and the normalized marginal utility of power rating MUP
BES

being 2.23% which is smaller than the pre-set tolerance
ε = 5%; E14

BES is 465.11MW.h, with MCE
BES(Y

rl) being
31048.62$, MREBES beging 30124.35$, and the normalized
marginal utility of energy capacity being 2.98%. Realistic
BESS life derived through an accurate cycle life model is
presented in Fig.6(c), indicating that the anticipated service
life of BES may deviate from its real life a lot.

Fig.6(a) also shows that the MR of the BESS power rat-
ing decreases with increasing power rating configuration.
Similarly, Fig.6(b) indicates that the MR of BESS energy
capacity increases with decreasing battery capacity. These are
coincident with the theoretical result in [24] that the marginal
value from storage (without considering investment cost) is
decreasing with storage size.

FIGURE 6. (a) Power rating reforming of BESS. (b) Energy capacity
reforming of BESS. (c) Realistic and expected life of BESS.

3) VERIFICATION OF OPTIMALITY
Theoretically, the simulation-based marginal utility analysis
cannot characterize the sensitivity relationship between all
values of continuous decision variables PBES,EBES and the
objective function. In this subsection, we verify that the pro-
posed method achieves an error-bounded configuration plan
within 14 rounds of annual COS and size reforming iterations.
First, we discretize the continuous configuration parameters
PBES,EBES into a two-dimensional grid with adaptive pixels.
Then we run annual COS on each pixel and map the normal-
ized MU on this grid.

The range of PBES is [97,128]MW and the range of EBES
is [425,522]MW.h. In order to alleviate computation burden
as well as ensure the accuracy of the contour map, the size of
pixels is varying and adaptive to local steepness. The contour
map of MUP

BES is shown in Fig.7(a) and that of MUE
BES is

depicted in Fig.7(b). In addition, the trajectory of size forming
is given, showing how the initial configuration is adjusted to
the point within pre-set tolerance ε = 5%.
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FIGURE 7. (a) Contour map of MUP
BES . (b) Contour map of MUE

BES .

FIGURE 8. A provincial power grid of China employed as case study. The
black circles are buses of 220 kV and over, the green squares are the wind
farms and the red triangle denotes the candidate location of BESS.

Moreover, we compare the proposed method with the
most frequently used scenario-based stochastic programming
in Table.5, from the perspective of service life and total
system cost during the entire cycle life of BESS. Here the

FIGURE 9. Typical output curves of wind farms in four seasons:
(a) summer, (b) winter, (c) spring, and (d) autumn.

FIGURE 10. (a) Power rating reforming of BESS. (b) Energy capacity
reforming of BESS.

operation cost includes generation cost and penalty on wind
curtailment and load shedding. When applying SBSP to
BESS sizing problem, there may be a big deviation between
the expected life of BESS and the realistic one. Even if the
anticipated life is accurate, such as 8 years in this case,
the configuration plan derived through SBSP leads to higher
system costs, since it fails to evaluate the revenue of BESS
under hourly fluctuations of renewable generation during the
whole life cycle.
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TABLE 5. Cost of modified IEEE RTS-24 system with different BESS configurations (uniform annual value, unit: million USD per year).

TABLE 6. Normalized typical daily total load profiles.

C. VERIFICATION ON A PROVINCIAL SYSTEM OF CHINA
To demonstrate the scalability and efficiency of the proposed
framework on practical size system, a provincial power sys-
tem of China is adopted for case study, as shown in Fig.8.
There are 398 buses of 220kV and over, 594 branches,
147 conventional generators and 82 wind farms in the system.
Power flows through 220kV and over transmission lines are
considered. Locations of wind farms are illustrated in Fig.8
with green square symbols. One centralized battery energy
storage system is to be built with a connection point labeled
by the red triangle symbol in Fig.8. We run yearly COS
based on real load and wind power data of the grid from 2019.

We select 8 representative scenarios, which are work-
ing day of summer (Scen 1), non-working day of summer
(Scen 2), working day of winter (Scen 3), non-working day of
winter (Scen 4), working day of spring (Scen 5), non-working
day of spring (Scen 6), working day of autumn (Scen 7) and

non-working day of autumn (Scen 8). Normalized typical
daily load profiles of the system are given in Table.6. The
base value is selected as the maximum total power load of
system in 2019, which is 6.4097×104MW. Typical curves of
the 82 wind farms are illustrated in Fig.9.

The initial BES allocation plan is as follows: P0BES is
113.34.87MW and E0

BES is 222.58.35MW.h, while the nor-
malized marginal utility of this configuration is −40.86%
and −9.23%, respectively. This indicates that the initial
allocation through SBSP leads to an over investment on
BESS, especially the power rating. After 11 rounds of iter-
ations, the reformed BES size is: P11BES is 55.60MW, E11

BES
is 128.64MW.h with MUP

BES is −2.93%, MUE
BES is −4.36%

and the realistic service life is Y rl
= 10.96. The iterative size

reforming process is shown in Fig.10.

VI. CONCLUSION
In this paper, we have proposed an optimal BESS sizing
method considering the operation-dependent cycle life of
batteries. It is showed that our two-level model can more
accurately estimate the cycle-life deregulation of batteries
and the revenue of BESS under hourly fluctuation of uncer-
tain renewable generation, hence provides more reasonable
sizing strategies. The tests on IEEE benchmark system and a
real power grid demonstrate the effectiveness and practicality
of the proposed method.

The scope of this work was limited to the sizing of battery
energy storage in consideration of battery cycle-life. Installa-
tion location is not optimized. Therefore, it is recommended
that future studies related to BESS allocation planning should
consider the decision on installation location.
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