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ABSTRACT Lung adenocarcinoma (LUAD) has become the most common pathological type of lung cancer
in recent years. However, the molecular mechanism of LUAD remains unclear. To reveal the laws in the
occurrence and development of LUAD, this paper first collects 676 differentially expressed genes related
to LUAD and the corresponding proteins encoded by the genes, resulting in a complex protein-protein
interaction (PPI) network. The traditional analysis methods focus on the gene interaction relationships or
the important genes separately, ignoring the fact that some important target genes may take effect jointly.
In contrast, this paper adopts a new analysis method named the overlapping gene analysis method to screen
out the closely interacted and important genes. Thereinto, the hub genes are first discovered according to
the node importance index, and then the PPI network is divided into multiple communities. The overlapping
genes are some genes belonging to both the hub genes and the genes in the same community, regarded as
gene groups. Through experiments, 10 genes are identified as a gene group. Survival analyses to the gene
group show that only PLK1, CCNB1, and CDK1 participate in the prognosis of LUAD, and relate to the
pathological stage of LUAD. These demonstrate that the three genes are extremely important in the cell
cycle, which is confirmed by the following enrichment analyses. Besides, some significant correlations are
observed among the three genes, which provide a clue that the three genes may cooperate in the occurrence
and development of LUAD. This finding provides possible clinical targets for the diagnosis and treatment
of LUAD.

INDEX TERMS Complex protein network, hub gene analysis, community analysis, cell cycle, tumor and
cancer.

I. INTRODUCTION
In recent years, the global incidence rate and mortality rate
of lung cancer have been ranking the first among all cancers.
Lung cancer, with its incidence accounting for 11.6% of
the total cancer incidence, has the highest mortality rate in
males [1], [2]. Lung adenocarcinoma (LUAD) is one type
of non-small-cell carcinoma. Its incidence rate and mortality
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rate are higher than those of squamous cell carcinoma [3], [4].
It has been a crucial task to study the pathogenesis of LUDA
and develop effective targeted drugs for curing it.

LUAD, or most cancers, is a kind of intractable disease
with low cure rates. As cancers involve complex pathogenic
factors and huge molecular networks, it is difficult to
find molecular targets to achieve the expected therapeutic
effect [5]. There have been many studies focusing on can-
cer research, including but not limited to cancer metabolic
reprogramming, cell autophagy, cell apoptosis, stem cells,
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cell cycle, angiogenesis [6], [7], cell adhesion, immunity and
vaccines, microenvironment, epigenetic regulation, and even
intestinal flora [8]. Many studies about cancers have analyzed
the specific mechanisms of tumorigenesis, and most cancer
researchers hope to develop new drugs for curing or even
conquering a certain type of tumor through the exploration
of mechanisms. Empirically, gene targets are required in
the development of most cancer-targeted drugs, which are
usually one specific gene or multiple gene combinations.
Finding these gene targets contributes to the carcinogenesis
and the targeted treatment. For LUAD, it is still a challenge
to discover effective target genes, reflected by its low curing
rate and few effective targeted drugs.

In recent years, network analysis on PPI networks has
raised the interest of researchers, such as the node centrality
method for identifying key proteins [9] and the MCODE
method for mining functional modules in the PPI net-
work [10]. Many novel network model and analysis methods
are also proposed [11]–[15]. These methods have the poten-
tials to be applied to PPI network analysis. However, most
existing studies on PPI networks focus on the role of a single
gene or the impact of a gene on the upstream and downstream
genes, while rare attention is paid to the close relationships
between multiple targeted genes which may play important
role in the occurrence of cancer. For example, the interaction
between tumor suppressor gene p53 and the potential tumor
target SET can affect tumor growth [16]. Therefore, it is
necessary to explore new network analysis methods to find
multiple potential target genomes.

With the above considerations, the main contributions of
this paper are two aspects:

1) This study adopts a novel overlapping gene analy-
sis method. This method is used to find overlapping genes
between network communities and hub genes, whose major
principle is as follows. Firstly, the hub genes in the network
are selected according to the importance index of nodes,
where the top N nodes are selected to represent the most
important N nodes. Then, the PPI network is divided into
multiple communities, where the nodes in the same com-
munity are of great relevance and the nodes in the differ-
ent communities have sparse connections. The overlapping
genes are screened out from the hub genes and the genes
in the same community. Experiments show that, for lung
adenocarcinoma, this method can retrieve closely related and
important target gene groups, instead of analyzing isolated
target genes.

2) This study has found a possible targeted gene group for
the occurrence and development of LUAD from the perspec-
tive of bioinformatics. Although the importance of LUAD is
self-evident, the specific mechanism of the cell cycle in the
occurrence and development of LUAD is still not very clear.
With the help of network analysis, this paper deeply dissects
the possiblemechanism in the occurrence and development of
LUAD. It is found that three critical genes (PLK1, CCNB1,
and CDK1) are likely to cooperate to promote the occurrence
and development of LUAD by regulating the cell cycle of

LUAD cells. So far, to the best of our knowledge, there are
still few studies to jointly study the effects of the interactions
among the three genes. Our experiments provide a useful
clue: it may be valuable to take the three genes as a whole
in studying the occurrence and development of LUAD.

The rest of this paper is organized as follows. Section II
introduces related work about lung adenocarcinoma.
Section III provides the datasets and analysis tools.
Section IV provides bioinformatics experiments and analysis
results. Section V discusses the results in detail. This paper is
concluded in Section VI.

II. RELATED WORK
Current researches about the molecular targeting of LUAD
is abundant but far from enough. For the one hand, existing
studies about LUAD are associated with mutations of sev-
eral genes [17], including epidermal growth factor receptor
(EGFR) [18]–[22], B-Raf proto-oncogene (BRAF) [20], [23],
mitogen-activated protein kinase 1 (MAP2K1) [24], erb-b2
receptor tyrosine kinase 2 (HER2) [25], [26], serine/threonine
kinase 11 (LKB1) [27], [28], etc. Also, some studies have
shown that changes in the cell cycle [29]–[31], like the abnor-
mal expression of cell cycle-related molecules of topoiso-
merase (DNA) II alpha (TOP2A), cyclin-dependent kinase 1
(CDK1) may affect the occurrence and development of
LUAD [32], [33]. Meanwhile, LUAD has been reported to
be associated with abnormal signal pathways [34], [35], such
as the Ras / Raf / MEK / ERK classic tumor signaling
pathway [36], [37]. Surgery and postoperative chemother-
apy are the gold standards for the treatment of advanced
and metastatic non-small cell lung cancer, but as the effec-
tive rate of the current first-line treatment is no more than
20-30% [38], it is still essential to discover the molecular
mechanism in the occurrence and development of LUAD.

For the other, though some marketed drugs have shown
their effectiveness in curing LUAD, such as gefitinib and
erlotinib that target EGFR, the shortcomings of these drugs
are also being noticed by many researchers in recent years.
For example, gefitinib as a kind of molecular targeting drug
can cause less damage to human body and achieve good
curative effect in the clinic treatment of LUAD. However,
patients often inevitably develop resistance within months to
years [39], and the adverse reactions of gefitinib have been
paid more and more attention by researchers. The occurrence
of adverse reactions may involve multiple organs and sys-
tems, among which skin and accessories have the highest
incidence of adverse reactions. Respiratory adverse reactions
have the highest mortality rate. Serious adverse reactions can
also occur in the circulatory and urinary systems [40], [41].
In a word, the emergence of drug resistance and adverse
reactions require researchers to explore new drug targets,
which further verify the complexity and importance of cancer
research.

Fortunately, some researchers have noticed the above
questions and focused on finding new molecular tar-
gets. Nowadays, bioinformatics-based targeted molecules
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prediction of LUAD are principally targeted at genes,
miRNA, lncRNA [42], circRNA, and epigenetic regulation of
genome [43]–[46]. Although there may be overlap between
different predictions, the level, number, and accuracy of pre-
dicted target molecules are different, and the results of analy-
ses are also different. These predicted target molecules are not
all effective, but as long as LUAD remains incurable, bioin-
formatics studies on LUAD are necessary. The major reason
is that, from the determination of targeting molecules to phar-
maceuticals, it requires many experiments, such as molecu-
lar experiments, cell experiments, animal experiments, and
clinical trials, to verify the effectiveness of target molecules.
These processes require the participation of many manpower
and the investment of huge financial resources. Based on this,
scientists should try their best to understand the mechanisms
of target molecules before experiments, so that the valuable
time and social wealth can be saved as much as possible.

III. DATASETS AND ANALYSIS METHODS
A. DATASETS
The dataset GSE2514 and the dataset of lung adenocarcinoma
(LUAD)-related genes from the Gene Expression Profiling
Interactive Analysis (GEPIA) database are utilized in this
paper.

The dataset GSE2514, downloaded from Gene Expres-
sion Omnibus (GEO) database [47] (http://www.ncbi.nlm.
nih.gov/geo), contains 20 tumor samples and 19 normal sam-
ples. It is based on the platform of GPL8300 (Affymetrix
Human Genome U95 Version 2 Array).

FIGURE 1. Volcano plot of GSE2514.

Fig. 1 describes the screening conditions for the dataset
GSE2514. where each point is related to a gene in our dataset.
In the x-axis, log2 (Fold Change) is the base-2 logarithm of
fold changes between tumor samples and normal samples.
In the y-axis, −log10(p − value) represents the negative of
the base-10 logarithm of the corrected P-value of the gene
in the microarray experiment. The qualified genes have the
following characteristics: the expression of the gene differs
by more than 2 times in tumor samples and normal samples,

and the microarray experiment of this gene shows that adj.
p-value < 0.05. Therefore, in the figure, the red points rep-
resent that the expression of the genes in tumor samples is
more than twice that in normal samples (up-regulated), and
the points in blue represent that the expression of the genes
in normal samples is more than twice that in tumor samples
(down-regulated). The black dots represent genes that do
not meet the screening conditions in the dataset GSE2514,
for their expression differences between tumor samples and
normal samples are less than 2-fold, or whose adj. p-value is
larger than 0.05.

The dataset of GEPIA, which is downloaded from
GEPIA (http://gepia.cancer-pku.cn/detail.php). It contains
483 LUAD samples and 347 normal samples. LIMMA is
used to distinguish tumor vs paired normal samples. As rec-
ommended in the GEPIA database, the cutoff criteria of
| log2 FC| > 1, q − value < 0.01 and adj.p − value < 0.05
are considered statistically significant.

B. ANALYSIS TOOLS
1) IDENTIFICATION OF DIFFERENTIALLY
EXPRESSED GENES (DEGs)
The dataset GSE2514 is extracted from GEO2R. GEO2R
is an interactive web tool that enables users to compare
two or more groups of samples in a GEO series so that
the genes differentially expressed across experimental con-
ditions can be identified. GEO2R performs comparisons on
original submitter-supplied processed data tables using the
GEO query and limma R packages from the Bioconduc-
tor project. The data are downloaded for further screening.
adj.p − value < 0.05 and | log2 FC| > 1 are consid-
ered statistically significant. The overlapping DEGs among
GSE2514 and GEPIA are produced by FunRich. So is the
Venn diagram.

2) PROTEIN-PROTEIN INTERACTION (PPI) NETWORK
CONSTRUCTION AND ANALYSIS
The PPI of DEGs is constructed by STRING (version
11.0, http://string-db.org) database [48], including 676 nodes
and 5099 edges (Fig.2). Combined score>0.4 is consid-
ered statistically significant. Cytoscape (version 3.6.1) is
an open-source software platform for visualizing complex
networks and integrating these with any type of attribute
data [49].

3) GO AND KEGG PATHWAY ENRICHMENT ANALYSIS
The Database for Annotation, Visualization and Integrated
Discovery (DAVID, version 6.8, https://david.ncifcrf.gov/)
provides a comprehensive set of functional annotation tools
for investigators to understand the biological meaning behind
a large list of genes [50], [51]. To further characterize the
biological process (BP) and the pathway of DEGs, DAVID is
used for Gene Ontology (GO) and the Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway enrichment analysis.
p− value < 0.05 is considered statistically significant.
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FIGURE 2. PPI network of DEGs.

4) GEPIA DATABASE VALIDATION
The overlapping genes are obtained among the top 20 hub
genes and the most significant community. The GEPIA
database is used for survival analysis and pathological stage
analysis of the overlapping genes. The cutoff criteria are set
to default. In the overall survival, disease-free survival (RFS),
and pathological stage analysis, p-value<0.05 is considered
statistically significant. Then, the pairwise correlation of the
screened genes is analyzed. Pearson is selected for the Cor-
relation Coefficient. The non-log scale for the calculation
and the log-scale axis for visualization are used. The above
analyses are based on the RNA sequencing expression data
of the TCGA database and the GTEx database.

C. THE OVERLAPPING GENE ANALYSIS METHOD
As the PPI network is established, the degree of nodes in
the network can be calculated out. The top N protein nodes
with the highest degree are obtained as the hub nodes. Then,
the most significant community in the PPI network is dis-
covered based on the method of vertex weighting by local
neighborhood density and outward traversal from a locally
dense seed protein. Because of the correspondence between
protein and gene, the overlapping genes between the top
N hub genes and the most significant community can be
selected out, termed as a gene group. Then, survival analyses
and tumor pathological stage analyses are performed on the
gene group to further select the geneswith significant survival
differences. Finally, the correlation analyses are performed on
the obtained genes, the genes with strong correlations which
are regarded as a key gene group are selected as possible

clinical targets for the diagnosis and treatment. The concrete
operation steps are as follows.

Step 1. Dividing the whole PPI network into communi-
ties by the MCODE algorithm [52] and selecting the most
significant community. As shown in Fig. 4 (a), the most
significant community includes 49 nodes and 1138 edges.
MCODE has advantages over other graph clustering meth-
ods on two aspects: having a directional mode that allows
fine-tuning of target clusters without considering the rest of
the network and allowing the check of cluster interconnectiv-
ity of PPI networks. Parameter selection: Degree Cutoff: 2,
Cluster Finding: Haircut, Node Density Cutoff: 0.1, Node
Score Cutoff: 0.2, K-Core: 2, Max Depth: 100. Selecting
the top 20 genes with the highest degree as the hub genes,
as shown in Fig. 4(b). The number of overlapping genes of
the most significant community and the hub genes is shown
in Fig. 4(c).

Step 2. Using the GEPIA database to conduct survival
analyses and pathological stage analyses on the gene group,
which is the overlapping genes between the top 20 hub genes
and the most significant community.

Step 3. Selecting the genes with statistical differences in
the cell cycle through survival analyses. Then, the correlation
analyses are applied to the selected genes, which result in
a key gene group that may provide clinical targets for the
diagnosis and treatment.

IV. EXPERIMENTS
A. IDENTIFICATION OF DIFFERENTIALLY
EXPRESSED GENES (DEGs)
The dataset of GSE2514 contains 396 up-regulated genes
and 578 down-regulated genes. The dataset of GEPIA con-
tains 823 up-regulated genes and 2356 down-regulated genes.
DEGs as the overlapping part between GSE2514 and GEPIA
contain 213 up-regulated genes (Fig. 3(a)) and 463 down-
regulated genes (Fig. 3(b)).

FIGURE 3. The differentially expressed genes (DEGs).

B. GO AND KEGG PATHWAY ENRICHMENT ANALYSIS
An online analysis tool DAVID is utilized to analyze the
biological process and pathway of the top 20 hub genes
and the most significant community. Fig. 5(a)-(b) describes
the biological process for the top 20 hub genes and the
most significant community, respectively. The y-axis rep-
resents the biological process, whose two values shown in
the x-axis represent the number of genes that participated in
the biological process (referring to the bars in orange), and
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FIGURE 4. PPI networks of the most significant community and the hub genes.

the negative of the base-10 logarithm of the corresponding
p-value (referring to the bars in blue), respectively. Combing
Fig. 5(a) and Fig. 5(b), it is found that most of the biological
processes in which these two parts of genes are overlapped
with each other and are closely related to the cell cycle.
Fig. 5 (c)-(d) describe the KEGG pathway analyses of the top
20 hub genes and the most significant community in lung
adenocarcinoma (LUAD) samples, respectively. The x-axis
represents the pathway, whose two values shown in the y-axis
represent the number of genes participated in the pathway
(referring to the dots in orange), and the negative of the base-
10 logarithm of the corresponding p-value (referring to the
dots in blue), respectively. The two panels show that the
pathway involving the most genes and the most significant
pathway is the cell cycle.

The cell cycle refers to the whole process that a cell under-
goes from the beginning of one division to the end of the
next division, which is divided into two stages: interphase
and division. The interphase is further divided into three
stages, namely, the prophase of DNA synthesis (G1 phase),
the stage of DNA synthesis (S phase), and the anaphase of
DNA synthesis (G2 phase). A conclusion can be drawn from
Fig. 5 that the abnormal cell cycle is an important factor in
the occurrence and development of LUAD.

C. OVERALL SURVIVAL ANALYSIS AND DISEASE-FREE
SURVIVAL ANALYSIS
The overall survival and disease-free survival are the main
efficacy indicators to determine the prognosis of the tumor.
After checking the overall survival and disease-free survival
of the 10 overlapped genes, only three genes (PLK1, CCNB1,
and CDK1) show statistical differences.

As shown in Fig. 6, the x-axis represents time and the
y-axis represents percent survival. The red lines repre-
sent that the LUAD patients are with high expression of
the corresponding gene, and the blue lines represent that
the patients are with low expression of the corresponding
gene. Fig. 6(a)-(c) demonstrate the overall survival of PLK1,
CCNB1, and CDK1, respectively. Overall survival is defined
as the time from randomization to death from any cause
(the last follow-up time is for patients who are lost to
follow-up; those who are still alive at the end of the study

are the end of follow-up). Fig. 6 (d)-(f) demonstrate the
disease-free survival of PLK1, CCNB1, and CDK1, respec-
tively. Disease-free survival period denotes the time interval
from randomization to the first tumor recurrence or metasta-
sis or death of a subject for any reason. The results show that
for the three genes, the survival rates with high expression
are lower than those with low expression in both the overall
survival period and disease-free survival. Therefore, PLK1,
CCNB1, and CDK1 have the potentials to be significant
biomarkers, prognostic indicators, or potential drug targets.

D. PATHOLOGICAL STAGE ANALYSIS
AND CORRELATION ANALYSIS
The tumor pathological stages of PLK1, CCNB1, and
CDK1 are analyzed with results shown in Fig. 7. There are
significant differences in all results. The x-axis is the patho-
logical stage grade of LUAD, and the y-axis is the relative
expression of the corresponding gene. As is shown in the
figure, the relative expression of the three genes is increased
as the increasing pathological stage grade of LUAD. Clinical
data shows that the higher the pathological stage grade of
LUAD, the lower the cure rate. This confirms our previous
conclusion that these three genes may play an important role
in the occurrence and development of LUAD.

The correlation among PLK1, CCNB1, and CDK1 is ana-
lyzed in pairs, with results shown in Fig. 8. Normal samples
and LUAD samples in the TCGA database and normal sam-
ples in the GETx database are selected, shown as black dots
in the figure. The R values are 0.86 for PLK1 and CCNB1,
0.8 for CDK1 and CCNB1, 0.78 for CDK1 and PLK1, all of
which are high values of correlation. Since the three genes are
well-known genes in the cell cycle, it can be speculated that
the three genes may cooperate to promote the occurrence and
development of LUAD by regulating the cell cycle of LUAD
cells.

V. DISCUSSION
Lung adenocarcinoma (LUAD), the most common subtype of
lung cancer, with its high incidence rate and high mortality
rate, is a serious threat to human health [3], [4]. The occur-
rence and development of LUAD, from atypical adenoma-
tous hyperplasia to adenocarcinoma in situ, to micro-invasive
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FIGURE 5. GO and KEGG pathway enrichment analyses of the top 20 hub genes and the most significant community.

adenocarcinoma, and then to squamous infiltrating adeno-
carcinoma [53], is a complex biological process. Many
molecules play important roles in this process, but the exact

mechanism is still unclear. Previous studies have shown that
epidermal growth factor receptor (EGFR) is highly correlated
with targeted therapy for LUAD [18]–[20], and its mutation
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FIGURE 6. Overall survival analyses and disease-free survival analysis of PLK1, CCNB1, and CDK1.

FIGURE 7. Pathological stage analyses of PLK1, CCNB1, and CDK1.

rate decreases with the decrease of differentiation degree of
non-small cell lung cancer [2]. The main mutations of EGFR
are deletion mutation in frame No. 19 and L858R mutation
in frame No. 21 [21], [22]. At present, EFGR tyrosine kinase
inhibitors such as gefitinib and erlotinib have a fair anti-tumor
effect in the treatment of LUAD, and further reveals the
potential values of targeting key molecules in the tumorigen-
esis and development of LUAD.

Surgical resection of cancer tissue is the preferred treat-
ment way of LUAD [38]. However, due to the clinical char-
acteristics such as rapid progress, strong invasion, and high

lethality, most patients rely on comprehensive treatments
when diagnosed, including chemotherapy, radiochemother-
apy, and molecular targeted therapy. Therefore, it is an urgent
need to find potential markers to develop an efficient diagno-
sis and treatment of LUAD. With the rapid development of
microarray technology, it has been proved to be an effective
method to identify new biomarkers in complex diseases.

In our research, two mRNA microarray datasets are
obtained and analyzed differentially expressed genes (DEGs)
between LUAD samples and normal samples by strictly
controlling the screening conditions, and identified a total
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FIGURE 8. Correlation analyses of PLK1, CCNB1, and CDK1.

of 213 up-regulated genes and 463 down-regulated genes.
Then, the protein-protein interaction (PPI) network of DEGs
is constructed using the STRING database, which contains
676 nodes and 5099 edges. The hub genes of the PPI network
of DEGs are screened, among which the top 20 hub genes
are selected for further analysis. The result of enrichment
analysis shows that hub genes are mainly concentrated in the
cell cycle. Then the most significant community is obtained
by community analysis of the PPI network of DEGs and the
enrichment analysis on the community is carried out. Results
show that genes in the most significant community are also
mainly concentrated in the cell cycle. It is noticed that both
the top 20 hub genes and the most significant community
seem to be closely related to the cell cycle. Interestingly, 10 of
the top 20 hub genes also appeared in the most significant
community. These 10 genes are polo-like kinase 1 (PLK1),
cyclin B1 (CCNB1), cyclin-dependent kinase 1 (CDK1),
aurora kinase A (AURKA), cell division cycle 6 (CDC6),
kinesin family member 11 (KIF11), a marker of prolifera-
tion Ki-67 (MKI67), forkhead box M1 (FOXM1), cyclin A2
(CCNA2), and cell division cycle 20 (CDC20), most of which
play an important role in the cell cycle. Survival analyses
are taken to these 10 genes by Gene Expression Profiling
Interactive Analysis (GEPIA) database, and it is shown that
only PLK1, CCNB1, and CDK1 are statistically different
in disease-free survival and overall survival, indicating that
they are connected with tumor prognosis. To explore whether
PLK1, CCNB1, and CDK1 are related to the pathological
stage of LUAD, pathological stage analyses are taken to
them. The three genes show a statistical difference in tumor
pathological stage, whose relative expression is increased as
the increase of the pathological stage grade of LUAD. This
indicates that PLK1, CCNB1, CDK1 play essential roles in
the occurrence and development of LUAD. More interest-
ingly, PLK1, CCNB1, and CDK1 are indispensably involved
in the cell cycle. The correlation among PLK1, CCNB1, and
CDK1 is analyzed pairwise, with results shown the R values
are 0.86 for PLK1 and CCNB1, 0.8 for CDK1 and CCNB1,

0.78 for CDK1 and PLK1, all of which are high values of
correlation. All kinds of evidence prove that PLK1, CCNB1,
and CDK1 are key genes in LUAD, which possibly promote
the occurrence and development of LUAD by regulating the
cell cycle of LUAD cells.

With the understanding of the cell cycle, more and more
attention has been paid to the relationship between cell cycle
disorder and tumors [54]. The cell cycle is the most important
process in cell life activities. Many cell cycle events can
be completed by regulating factors in different phases. The
regulation mechanism is mainly based on PPI, and the main
process is a series of cascade reactions caused by signal trans-
mission. Studies have shown that almost all tumorigenesis
is related to the abnormally stunted growth differentiation
and the apoptosis caused by the disorder of the cell cycle
regulation mechanism [55], [56].

PLK1 belongs to themitotic serine/threonine kinase family
and is highly conserved in eukaryotes. It helps maintain
the stability of the cell genome. Therefore, the change of
PLK1 may lead to an increase in the mutation rate of defec-
tive cells and the development of tumors. The expression
of PLK1 starts at the end of the S stage and reaches its
peak when CCNB1 and cell division cycle 25C (CDC25C)
are phosphorylated, and then cells begin mitosis [57]. The
specific binding of PLK1 Polo box binding domain (PBD)
to CDC25C gives rise to the phosphorylation of CDC25C
and then activates the CDK1 / CCNB1 complex [58],
finally promotes mitosis by phosphorylation and activation
of enzymes related to mitosis [59]. PLK1 is overexpressed
in a variety of such human tumors as nasopharyngeal car-
cinoma [60], ovarian cancer, prostate cancer, gastric cancer,
breast cancer, esophageal cancer [61], leukemia, and lung
cancer [62], and is often used as an indicator of poor prog-
nosis. It has been found that PLK1 plays an important part in
the PDK1/c-Myc pathway, maintaining the growth and differ-
entiation of tumor cells [63], and it is pointed out that inhibit-
ing PLK1 overexpression can curb tumor recurrence and
metastasis [64].
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CCNB1 is one of the important members of the cyclin
family and plays an important regulatory role inG2 /Mphase.
CCNB1 starts to synthesize at the end of S and early G2,
reaches its peak at the M phase, and then decreases rapidly.
As a regulatory subunit, CCNB1 binds to CDK1 to form
the MPF complex, promoting the transition from G2 to M
phase [65], [66], and is input into the nucleus before the
nuclear membrane ruptures. Previous studies have concluded
that CCNB1 is overexpressed in many tumor cells. As is
mentioned above, overexpression of CCNB1 may lead to
dysfunction of MPF phosphorylation regulation, thus leading
to malignant transformation of cells [67], [68].

CDK1 is a member of the serine / threonine-protein kinase
family, and CDK1 has kinase activity only when it binds with
cyclin. Also, it is a key factor in the regulatory network of
cell cycle and gamete meiosis maturation [69]. As mentioned
above, CDK1 plays a key role in cell cycle transition from
G2 to M. Overexpression of CDK1 also leads to cell cycle
disorder, and often causes malignant cell transformation and
tumor formation. It has been reported that CDK1 is over-
expressed in many kinds of tumors, such as colorectal can-
cer [70], lung cancer [71], oral squamous cell carcinoma [72],
etc. High expression of CDK1 often indicates poor prognosis
of patients.

These studies reflect that PLK1, CCNB1, and CDK1 play
significant roles in the occurrence and development of various
types of tumors, including the LUAD we studied, which
further confirm our results. Moreover, it is found that PLK1,
CCNB1, and CDK1, as key genes in LUAD, not only have
a significant difference in overall survival, disease-free sur-
vival, and pathological stage analysis but also have an inalien-
able correlationwith each other, whichmay cast new ideas for
future research. It remains a question that how is the relation-
ship between genes and how they cooperatively promote the
occurrence and development of LUAD.

VI. CONCLUSION
Lung adenocarcinoma (LUAD) has not been conquered yet,
and its target molecules are still unclear. This study aims to
identify differentially expressed genes (DEGs) that are possi-
bly involved in the occurrence and development of LUAD, so.
To achieve this goal, 676 DEGs are identified and 10 overlap-
ping genes are obtained from the most significant community
and the top 20 hub genes. Through survival analysis and
pathological stage analysis, it is found that PLK1, CCNB1,
and CDK1 are key genes in the occurrence and development
of LUAD, and can be used as biomarkers of LUAD. The cor-
relation analysis found that they are very likely to cooperate
to promote the occurrence and development of LUAD, but the
delicate mechanism still needs further research.

Since PLK1, CCNB1 and, CDK1 are all extremely impor-
tant genes in the cell cycle, some important work in the future
deserves attention, e. g., how they interact with each other,
how they promote the occurrence and development of LUAD
by regulating the cell cycle of LUAD cells, and what the
specific mechanism is.

LIST OF ABBREVIATIONS
LUAD Lung adenocarcinoma, a type of lung

cancer.
Gene A specific sequence of nucleotides in

DNA or RNA, usually located on a
chromosome.

Gene group A set of genes that cooperatively take
effect.

Targeted genes Certain abnormally expressed genes
with diagnostic or therapeutic value in
diseases, usually related to the occur-
rence, development, and prognosis of
the disease.

Protein A product encoded by a gene, which
is the basic unit of the structure and
function of an organism.

PPI network Protein-protein interaction network,
the physical contacts between proteins
in the cell, reflecting the relationships
between the corresponding genes.

Cell cycle The series of events happening in a
cell, resulting in the duplication of
DNA and division of cellular materi-
als to produce two child cells.

GEO database A database of Gene Expression
Omnibus.

GSE2514 dataset A dataset that is download from GEO.
GEPIA database A database for cancer big data visual-

ization and cancer big data analysis.
STRING database A database for searching

protein-protein interactions.
TCGA database Currently the largest cancer gene

information database.
GETx database A database that provides gene expres-

sion data of healthy organs.
DEGs Differentially expressed genes,

the genes with differences
in expression between lung
adenocarcinoma samples and normal
samples.

MCODE Molecular COmplex DEtection,
the community detection algorithm.

Survival analysis A method that studies the relationship
between the expression of a certain
gene and the survival time of cancer
patients.

Overall A type of survival analysis that studies
survival analysis the relationship between the expres-

sion of a certain gene and the overall
survival time of cancer patients.

Disease-free A type of survival analysis that studies
survival analysis the relationship between the

expression of a certain gene and the
disease-free survival time of cancer
patients.

26164 VOLUME 9, 2021



M. Gu et al.: Toward Identifying Key Gene Group in the Occurrence and Development of LUAD

Enrichment analysis A bioinformatics method for
obtaining the biological process
and pathway by clustering the
genes based on a priori knowledge
map.

Pathological stage Amethod that analyzes the relation-
analysis ship between the expression of a

certain gene and tumor pathological
stage.

Correlation Amethod that analyzes the relation-
analysis ship between the expressions of two

different genes.
EGFR The abbreviation of the gene ‘‘Epi-

dermal Growth Factor Receptor’’
PLK1 The abbreviation of the gene

‘‘Polo-like kinase 1’’
CCNB1 The abbreviation of the gene

‘‘Cyclin B1’’
CDK1 The abbreviation of the gene

‘‘Cyclin-dependent kinase 1’’
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