IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received January 14, 2021, accepted January 22, 2021, date of publication January 27, 2021, date of current version February 2, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3054948

Improving Software Defect Prediction
by Aggregated Change Metrics

LUCIJA SIKIC"”, PETAR AFRIC", ADRIAN SATJA KURDUA", (Member, IEEE),
AND MARIN SILIC", (Member, IEEE)

Faculty of Electrical Engineering and Computing, University of Zagreb, 10000 Zagreb, Croatia
Corresponding author: Lucija Siki¢ (lucija.sikic @fer.hr)
This work was supported in part by the Croatian Science Foundation through the Reliable Composite Applications Based on

Web Services (HRZZ-IP-01-2018-6423) research project, and in part by the European Regional Development Fund under
Grant KK.01.2.1.01.0111 (OperOSS).

ABSTRACT To ensure the delivery of high quality software, it is necessary to ensure that all of its artifacts
function properly, which is usually done by performing appropriate tests with limited resources. It is therefore
desirable to identify defective artifacts so that they can be corrected before the testing process. So far,
researchers have proposed various predictive models for this purpose. Such models are typically trained
on data representing previous project versions of a software and then used to predict which of the software
artifacts in the new version are likely to be defective. However, the data representing a software project
usually consists of measurable properties of the project or its modules, and leaves out information about
the timeline of the software development process. To fill this gap, we propose a new set of metrics, namely
aggregated change metrics, which are created by aggregating the data of all changes made to the software
between two versions, taking into account the chronological order of the changes. In experiments conducted
on open source projects written in Java, we show that the stability and performance of commonly used
classification models are improved by extending a feature set to include both measurable properties of the
analyzed software and the aggregated change metrics.

INDEX TERMS Classification, feature engineering, process metrics, change metrics, software defect

prediction.

I. INTRODUCTION
Defect-prone software modules can help optimize the alloca-
tion of test resources if they are identified before testing. This
has motivated many researchers to develop models to identify
defective modules and thereby reduce both the time and cost
of software testing.

Depending on the amount and type of information about a
software project, the models for identifying defective mod-
ules can be can be examined in one of the following con-
texts: within-project or cross-project. The Within-Project
Defect Prediction (WPDP) models are created if defect
data are available for some previous modules of the ana-
lyzed software project. These models are mainly trained
on the previous project version and then used to predict
defective modules in the current version, which is called

The associate editor coordinating the review of this manuscript and

approving it for publication was Lefei Zhang

VOLUME 9, 2021

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

cross-version defect prediction. However, if such data are
not available or are insufficient, the Cross-Project Defect
Prediction (CPDP) models can be developed instead by using
knowledge from data collected by compiling known external
projects [1]. In our study, we will consider cross-version
defect prediction models, as many recent studies [2]-[5]
have demonstrated the benefits of developing these particular
models.

For the purpose of developing defect prediction models,
researchers have derived features primarily from product or
code metrics that reflect the static properties of the modules,
rather than from process or change metrics that describe
the process of software development between the versions
analyzed. In fact, process metrics, which is often referred to
as change metrics in the following context, are often used
for just-in-time (JIT) defect prediction, which is fundamen-
tally different from the module defect prediction considered
in this paper because it is used to predict whether a code

19391

https://orcid.org/0000-0002-8011-1055
https://orcid.org/0000-0001-9270-5988
https://orcid.org/0000-0003-2313-0396
https://orcid.org/0000-0002-4896-7689
https://orcid.org/0000-0003-0542-2280

IEEE Access

L. Siki¢ et al.: Improving Software Defect Prediction by Aggregated Change Metrics

change contains defects, rather than a module. But, even
when used for module defect prediction, process metrics are
usually calculated based on the differences between the same
module from two analyzed versions of the project, ignor-
ing information about how exactly the module was changed
during the development steps. There are some previous
studies [6]-[8] that proposed some process metrics derived
from the changes made to a file between two project versions,
but they did not include a chronology of changes in the
definition of the proposed metrics, which could provide a
more complete insight into the defect-proneness of the file.
Under this assumption, and taking into account the significant
results recently achieved in JIT defect prediction [9], [10],
and the fact that combining product and process metrics in
the development of a defect prediction model can improve its
performance [11]-[13], we have developed features for rep-
resenting software modules that use both the chronological
order and the content of module changes. In addition to the
reasons mentioned above, the suspicion that traditional metric
prediction models had reached a performance limit [14], [15]
was another motive for creating the features.

The goal of our study was to evaluate whether and to what
extent the features generated from the information about the
changes of the modules between two versions can be useful to
identify defect-prone software modules of the newer version.
As part of this effort, a set of features has been defined.
It has been modeled after the pattern of existing metrics for
predicting defective changes, and consists of features that
we have called aggregated change metrics because they are
calculated by aggregating the changes made in the devel-
opment process. Unlike the existing process metrics, which
are calculated based on the final differences between the
modules of the two versions analyzed, or which neglect the
sequential order of the changes, or both, the proposed metrics
take into account all changes made to the modules between
these versions, as well as their chronological order, and thus
reflect a complete overview of the development process.

In summary, this work provides the following contributions:

o Implementation of a framework for extracting all
changes to the project modules made between the
selected project versions of seven open source Java
projects, which are commonly used in defect prediction
studies. The framework supports the extraction of rel-
evant data from the projects available on GitHub and
SourceForge.

« A set of fourteen metrics that can be calculated for each
software module using all changes made to the module
between the versions analyzed. We show that the per-
formance of different classifiers is improved when using
features that consist of the proposed metrics and existing
traditionally used software features that are considered
relevant to defect-proneness according to standard fea-
ture selection methods.

The rest of the paper is structured as follows. Section II

describes the background to predicting software defects,
focusing on software metrics, feature selection methods and

19392

classifiers. Section III introduces related work on defect
prediction using process metrics and software development
information. Section IV describes the proposed metrics.
The Section V assesses the impact of using such metrics
alongside traditional metrics on the performance of com-
monly used classifiers and analyzes the results obtained.
Section VI discusses the threats to validity. Conclusions are
drawn in Section VII.

Il. BACKGROUND

In general, the task of predicting defect-prone modules
can be divided into three subtasks: creating or/and collect-
ing a features for describing the software modules, decid-
ing which subset of the features are most relevant to the
defect-proneness of the modules, and choosing a suitable
classifier. The first subtask is based on the available informa-
tion on the software modules and is usually taken separately
from the other two steps. The second subtask is performed
before of within the third subtask, which depends on how
the decision on the features to be used for describing the
module is made. However, regardless of how the subtasks
are performed, it is crucial to extract the features of software
modules that provide insights into the nature of the classifi-
cation problem under consideration.

This section introduces the whole development process
of a defect prediction model. The metrics used for describ-
ing software modules are briefly described in Section II-
A. Section II-B provides a comprehensive overview of the
feature selection methods applicable to modeling the software
defect prediction problem, with emphasis on the most com-
monly used methods. Section II-C presents an overview of the
classifiers that have been developed to identify defect-prone
software modules.

A. FEATURES FOR REPRESENTING SOFTWARE MODULES
Software modules are represented by features that are gen-
erated by qualitative or quantitative description of either
the software or its development process. These features are
derived from the software information, which is usually a col-
lection of product, process, and project metrics that describe
the artifacts of the software [16]. Product metrics describe
the characteristics of the product such as size, complexity,
and performance. Process metrics include the effectiveness of
defect correction during development, the pattern of testing
defect arrival, and the response time of the correction pro-
cess. Project metrics describe project characteristics such as
number of software developers, cost, and schedule.

Previous research on software defect prediction has tended
to focus on product and process quality aspects that are
expected to be strongly correlated with defect-proneness.
Such aspects describe product quality, in-process quality, and
maintenance quality [16]. Product quality refers to intrinsic
product quality, which is usually measured by defect density
rate and mean time to failure, and customer satisfaction,
which can be determined by customer survey data. In-process
quality is measured by evaluating the programming process,

VOLUME 9, 2021

L. Siki¢ et al.: Improving Software Defect Prediction by Aggregated Change Metrics

IEEE Access

which is estimated by analyzing defect arrival patterns. Main-
tenance quality metrics reflect the ability to fix software
defects as quickly as possible and with excellent quality,
which significantly improves customer satisfaction.

In the majority of the studies [2], [3], [17]-[21], product
quality is quantified using manually designed features, e.g.
Halstead metrics [16], the McCabe complexity measure [22],
the Chidamber and Kemerer (CK) metrics [23], [24] and
metrics for object-oriented design (MOOD) [25]. To measure
process quality, researchers typically use the change met-
rics, code churn and developer metrics [5], [9], [26], [27].
In addition, it has been shown that the combination of product
features and process metrics can be beneficial for defect
prediction [11], [28], [29]. In addition, results from several
studies have indicated that the use of some process metrics
instead of some product metrics can be helpful in identifying
the source code that is prone to defects [30], [31].

In addition to or instead of these features, many recent
studies have used features that have been extracted directly
from the source codes of the modules. In general, this process
consists of applying a deep learning algorithm to a representa-
tion of a software source code in the form of an Abstract Syn-
tax Tree (AST) or Control Flow Graph (CFG). Although the
syntactic structure and semantic information of a source code
can be captured by both of these forms, CFG has rarely been
used [32]. This is probably because it shows all paths that can
be traversed during code execution, ignoring the block struc-
ture of the code, which can be advantageous when integrating
it into code features. Much research effort has been done to
extract features from ASTs that represent software modules
using deep neural networks, such as Convolutional Neural
Networks [2], [33], Deep Belief Network [4], Long-Short
Term Memory networks [34], [35], attention-based Recurrent
Neural Network [36], and Transformer model [37].

B. FEATURE SUBSET SELECTION
Like many real-world problems, software defect prediction
is generally modeled as a classification problem. To solve
it successfully, it is preferable to find out which of the fea-
tures describing software modules are relevant to the defect-
proneness of modules. For this purpose, before or within the
development of a classifier, researchers apply some of the
feature subset selection techniques to the given feature set.
In general, feature subset selection methods can be divided
into filters, wrappers, embedded, and hybrid methods [38].
The decision on which method to use is usually made based
on to whether the classifier is given or not. In the case the
classifier is not given, feature subset selection method is
selected independently of the classifier; otherwise, the feature
subset is selected based on the performance of the given
classifier.

1) SELECTING FEATURE SUBSET AND CLASSIFIER
INDEPENDENTLY

Before selecting a classifier suitable for the software defect
prediction problem, it is recommended to perform some of

VOLUME 9, 2021

the appropriate feature subset selection methods to discover
the optimal subset of features and to remove the features that
are not relevant to the target concept. Similarly, it is recom-
mended to remove or reduce the multicollinearity from the
existing feature set [39] to ultimately increase the legitimacy
and predictive power of the classifier [40]. For this purpose,
filter methods are usually applied.

Filter subset selection methods can reduce the runtime of
classifier learning and lead to a more general concept [41].
Two categories of these methods can be distinguished: uni-
variate and multivariate methods. In univariate feature filters,
individual features are ranked by their scores on various
statistical tests for their correlation to the target variable.
Pearson’s correlation coefficient or Spearman’s rank corre-
lation coefficient is usually used for this purpose. In multi-
variate feature filters the entire subset of features is evaluated
according to certain criteria. For this purpose, Variable Infla-
tion Factor (VIF) [42] and the Condition Number (CN)
method [19], [43] are widely used in software defect predic-
tion. However, recent research has shown that subsets of met-
rics generated by commonly used feature selection methods
are often inconsistent and correlated, and should be avoided
when interpreting defect models [45], [46]. In such cases,
they suggest the use of an approach called AutoSpearman as
an alternative to other feature selection methods because it
achieved the highest consistency of subsets of metrics among
training samples and attenuated correlated metrics in their
experiment.

2) FEATURE SUBSET SELECTION AS PART OF

BUILDING A CLASSIFIER

Feature subset selection can be done as part of the construc-
tion of a classifier. In this setting, it is applied to improve the
performance of given classifier. Depending on whether it is
performed before or during the training of the classifier, it can
be done with wrappers or embedded methods.

Wrappers evaluate feature subsets based on the perfor-
mance of the chosen classifier. In previous work on soft-
ware defect prediction, features were typically selected as
classifiers with Support Vector Machine (SVM) [47], [48],
C4.5 [49], [50], Random Forest [51] and Artificial Neural
Network (ANN) [52]. The embedded methods do not separate
learning from the feature selection part, but perform feature
selection as part of the model building process. Previously,
regularization [53] and BlogReg algorithm [54] were used
as embedded feature selection methods to find features that
affect defect prediction in software modules.

Apart from these two groups, feature subset selection can
be performed by some hybrid methods. Such methods usually
consist of the filter method, which is used to obtain mul-
tiple candidate subsets, and the wrapper, which is used to
find the best of the candidate subsets. Such a combination
can improve the classification accuracy of pure filter meth-
ods and also reduce the processing time of pure wrappers.
In the past, various hybrid techniques have been presented to
select features for software defect prediction. Some of these

19393

IEEE Access

L. Siki¢ et al.: Improving Software Defect Prediction by Aggregated Change Metrics

techniques are automatic hybrid search [55], hybrid selection
method combining different feature sorting techniques [56],
and cluster-based hybrid filter-wrapper feature selection [57].

C. SOFTWARE DEFECTS CLASSIFIERS

Finding a suitable classifier depends on the type and size of
the features selected in the step described in Section II-A.
In general, when software modules are represented by a rel-
atively small number of hand-crafted features, these features
are used to develop simpler classifiers in terms of a number
of parameters, while in the case of a large number of fea-
tures, which are usually extracted by neural networks, more
complex classifiers have been developed. In both cases, the
classifiers are trained using either search-based approaches,
statistical methods or machine learning algorithms.

Because of their superior ability to deal with noisy data,
their better tolerance of missing data, and their ability to
search globally with less probability of returning the locally
optimal solution, search-based approaches are considered to
be well suited for software engineering problems [58], espe-
cially for the area of software defect prediction [59]. In fact,
the applicability of these approaches to predicting software
defects has been evaluated over the last decade, while most
studies have focused on Artificial Imnmune Recognition Sys-
tems [60], [61], Ant Colony Optimization [62], [63], and
Genetic Programming [64], [65].

Previous approaches to predicting software defects treated
the classification problem as an empirical experiment
and tried to predict defect-prone modules by apply-
ing some statistical approaches to data representing past
experience [66], [67]. In more recent studies, however,
machine learning has been used instead of statistical
approaches to predict defective software modules. This is
probably due to the fact that machine learning algorithms are
distribution-free and more robust than statistical approaches
because they rely less on assumptions about the data, such
as normality and/or linearity [68], which may not necessarily
be true for defect prediction data sets. Nevertheless, machine
learning algorithms are widely used in predicting software
defects and have proven to be very successful in this area of
research. In particular, the logistic regression classifier has
proven to be particularly suitable for identifying defect-prone
software modules that are based either on hand-crafted fea-
tures [47], [69] or on features that have been extracted using
neural networks [2], [4], [34], [36]. In addition, Naive Bayes
[70], [71] and Bayesian Net [3], [28], [72] proved success-
ful in identifying defect-prone software modules. Significant
results in predicting software defects have also been achieved
using the Decision Tree technique, such as C.45 [73],
J48 [74], [75] and Random Forest [19], [19], [20], as a
classifier. Similarly, a Support Vector Machine classifier has
proven to be suitable for the task of predicting defective
modules [21], [76]. Furthermore, a number of studies have
successfully used Artificial Neural Networks to solve this
task [17], [18], [52], [64]. However, the most significant

19394

classification results are obtained when neural networks are
used for feature extraction rather than classification.

Ill. RELATED WORK

We present the current state of research regarding the predic-
tion of defect modules in developing projects using process
metrics in Section III-A. However, since the proposed met-
rics are calculated from the accumulated historical data of
software development, in Section III-B we review the most
relevant existing proposals for using this type of data not only
to predict defective software modules, but also to improve the
overall software quality.

A. TYPES OF PROCESS METRICS

Many studies have so far focused on process metrics rather
than product or code metrics when developing models to
predict cross-version defects. In this context, they have pro-
posed different process metrics that can be divided into the
following three types: developer metrics, code change metrics
and development process metrics [77].

When used to describe a software module, developer met-
rics are extracted for the developers who contribute to that
specific software. Generally, these metrics are used to quan-
tify the developers experience with the software projects or
the details of their commit activity. However, although some
studies emphasize that using developer metrics to describe
software modules has negligible impact on the success of the
defect prediction process [30], [78], others claim that some of
these metrics can be useful for identifying defective software
modules [79]-[81]. A more explicit contradiction is observed
between studies that refer to the relationship between the
developer’s experience and the defective module [82], [83].
Nevertheless, some of the developer-related metrics, such as a
number of developers who modified the software module [5],
[29], [78], [84], and a number of developer commits that
changed the module source code [79], [85], are commonly
used to predict software defects.

Changes made to source code during software develop-
ment can be quantified in the form of code change metrics
based on data collected throughout the software lifecycle
across successive versions. Such metrics have proven useful
for identifying defect-prone modules [7], [86], especially
code churn measures [30], [81], change bursts [11], [87],
and code deltas [29], [30], [88]. In most studies of soft-
ware defect prediction, the code change metrics represent-
ing the module of a project are calculated using differences
between the source code of two successive versions of the
module [6], [89], [90], but it can also be calculated taking into
account changes from the several continuous versions of the
module [8], [86], [87], [91].

Development process metrics describe the evolution of
a software project. Many of these metrics have been
shown to be related to defect-proneness, specifically the
number of revisions [5], [30], [92] and the number of
refactorings [6], [7] of a particular software module during
development of the version of the project to which the module

VOLUME 9, 2021

L. Siki¢ et al.: Improving Software Defect Prediction by Aggregated Change Metrics

IEEE Access

belongs. Similarly, a frequency of changes [93], a number of
historical defects [5], [29], a number of repaired defects [6],
and a code change complexity [94] can be indicators for a
defective software module.

For the purposes of this paper, we extracted the follow-
ing process metrics to represent the software module of the
analyzed project: the number of commits that included the
module, the number of developers that modified the module,
the geometric mean of the experience of all developers that
modified the module, the number of lines that were added
to the module, and the number of lines that were deleted
from the module. All of these metrics come from previous
research and have proven to be good indicators of software
defects [6], [7], [92].

B. HISTORICAL SEQUENCES OF SOFTWARE METRICS

In the following, the most important research work on how the
inclusion of historical information on software metrics can
be used to evaluate software quality and identify defective
software modules is presented.

Moser et al. [7] have made a significant contribution to the
development of process metrics using the commit history of a
project. In the experiment conducted with the three successive
versions from the Eclipse project data set, they have shown
that the performance of defect prediction models improves
when they are built using process metrics instead of or in
conjunction with code metrics. From the set of seventeen
process metrics they defined, the following metrics have been
emerged as features with the highest predictive power for
defect-proneness: a maximum or average number of files
committed together, a number of revisions of a file, a number
of times a file has been refactored and a number of times a
file has been involved in bug-fixing.

A similar research on the same data set was conducted by
Choudhary et al. [6], where they defined and extracted twenty
new code and change metrics. The extracted metrics are based
on a number of lines of code for commits, a number of lines
of code a developer has worked on, a time difference between
commits to a module, and so on. Based on the experiment,
in which they measured the impact of both the existing change
metrics defined by Moser et al. [7] and the extracted metrics
on software defect prediction, the extracted metrics provide
additional power for defect predictors.

In their work [8], Rhmann et al. used a set of code change
metrics describing modules of the Android project to cre-
ate commonly used models for predicting software defects.
The set consists of the following metrics: added, deleted,
or changed lines of code, maximum number of these three
values for all commits, and total, maximum, and average
code churn for a software module considering all its versions.
Depending on the results obtained, using commit data from
more than one previous project version can improve the per-
formance of the models created.

Liu et al. [91] have recently pointed out that the exist-
ing models for predicting software defects are created using
software metrics that describe only the information between

VOLUME 9, 2021

two adjacent project versions. Assuming that information
about how software modules change during project develop-
ment is important for defect prediction, they have developed
a new predictor that instead uses features created by com-
bining module metrics from multiple consecutive versions.
In experiments they used data from PROMISE projects,
whose modules are described using code and process metrics.

Gradisnik et al. [24] have shown that the performance of
software maintenance prediction can be improved by using a
history of changes in software metrics over time rather than
relying on measurements of individual versions of a software
product. Their study focused on CK metric changes between
subsequent versions of the analyzed open source projects,
taken from the Maven Repository.'

In an experiment conducted on twelve evolving Java
projects from the publicly available data set, Madeyski and
Jureczko [5] examined which of the following process met-
rics are correlated with the number of defects in a software
module: a number of revisions, a number of distinct commit-
ters, a number of modified lines, and a number of defects in
a previous version. According to the results obtained, despite
the fact that a number of defects and a number of defects in
the previous version are strongly correlated with the number
of defects in a module, a number of distinct committers and
a number of modified lines have proven to be the most useful
metrics in terms of defect prediction models.

Using the same data set, Jiang et al. [77] investigated
which process metrics are significantly important for altering
defects. In their study, the following process metrics were
considered: a number of revisions, a number of distinct com-
mitters, a number of modified lines, a degree of code modifi-
cation, and an average number of modified lines. Based on the
results of the study, they concluded that a number of distinct
committers and a number of revisions play an important role
in changing the defect state.

As can be seen from the current state of research on the
inclusion of historical information in the defect prediction of
evolving projects, there is still work to be done that focuses on
extracting process metrics from a commit history to predict
software modules. This is also supported by the fact that,
taking into account all of the above-mentioned studies that
deal exclusively with the prediction of defect-prone software
modules using the commit history, only in the study [5]
conducted by Madeyski and Jureczko was more than one
project used in the experiment.

Since recent research [24], [77] has shown that the quality
of a software module can be estimated based on the commit
history of a project, we decided to extract more process met-
rics and analyze their impact on the performance of software
defect predictors. The proposed metrics of the same name
are proposed by Madeyski and Jureczko [5], but they are
not designed to identify defect-prone modules, but to detect
defective commits, and therefore differ in their formulas.
However, since such a set of metrics has often been selected

1 https://mvnrepository.com/

19395

IEEE Access

L. Siki¢ et al.: Improving Software Defect Prediction by Aggregated Change Metrics

by experts in previous research [27], we have decided to adapt
it to describe software modules, not commits. While there
were some process metrics in earlier research [6], [7] that
were derived from a project’s commit history, these metrics
do not take into account a chronology of commits and changes
across commits, which we strongly believe should be used to
create features that better describe the project’s development
process. Also, to the best of our knowledge, this is the first set
of metrics representing software modules from the PROMISE
data which takes into account any commit that changes the
module between two adjacent project versions.

IV. PROPOSED SET OF METRICS

In this section we describe a process of collecting and cal-
culating metrics that can improve the performance of pre-
dictive models for identifying defect-prone software modules
or components. The process consists of two steps: collecting
change history of software modules and calculating aggre-
gated change metrics. In the first stage, which is described
in Section I'V-A, the software project’s development history
data are extracted in numerical form. The data so extracted are
then used to calculate the proposed metrics for each module
in the project, which is described in Section IV-B.

A. COLLECTING CHANGE HISTORY OF SOFTWARE
PROJECT

The replacement of a traditionally used static code metric by
the process metric for creating defect prediction models has
gained increasing popularity in the recent past [5]. This is not
surprising, considering that in several recent studies [7], [12],
[92], [95] defect prediction models based on process metrics
have performed better than static code metrics. However,
unlike product metrics, which are widely and publicly avail-
able or have good tool support, process metrics are sometimes
difficult to collect [5].

Process metrics reflect the history of project development,
which provides additional information that can be used to
improve the prediction of software defects. Such information
is usually extracted using a Version Control System (VCS),
such as CVS, SVN, or GIT, that stores details of every change
made to the project’s source code.

In most cases, both process and product metrics have
version-duration. They are usually extracted at the class level
from two adjacent versions of the analyzed project, and
thus reflect only the final differences between the versions.
More comprehensive information about the development and
quality of the project can be provided by calculating such
metrics for each commit made between the analyzed ver-
sions. Such information is generally used by just-in-time
prediction models, which exploit the properties of a commit
to predict whether it will introduce a defect. We believe,
however, that it can also be used to create the models for
identifying defect-prone modules that are introduced between
two versions.

However, since there was no explicit commit history,
we had to extract all the necessary commits from GitHub

19396

and SourceForge. There is Commit Guru [96], a web appli-
cation that extracts the commits from a GitHub project and
calculates change metrics defined by Kamei et al. [10] for
each commit. Unfortunately, it does not meet our needs for
two reasons. First, the jEdit project we analyze in this paper
does not exist on GitHub, so we cannot extract its commit
history using Commit Guru. Second, we need to capture all
changes in the source code that have been committed between
specific versions of the project: not on a specific branch, but
on all existing branches. These obstacles have motivated us to
develop the proposed framework, which can be easily adapted
to collect the commit history of projects other than those
analyzed in this paper. Since very few of the existing studies
have contributed to defect prediction in the form of a universal
approach that allows new metrics to be extracted from the
existing commit history regardless of the project, we consider
the framework to be an important research contribution.

B. CALCULATING AGGREGATED CHANGE METRICS

Unlike previous work on predicting defective software mod-
ules, where process metrics were calculated either based on
either the final differences between the analyzed versions or
using all commits between the versions without considering
the chronological order of these commits, or both, we inte-
grated both the content and the chronological order of all
commits made to the source code between the two project
versions into the proposed metrics. We believe that such
defined metrics provide a more nuanced picture of both the
development process and the quality of the software than
existing process metrics. With this in mind, we have defined a
set of fourteen metrics that can be derived from existing, com-
monly used class-level change metrics [10], whose notation
we have adopted by adding an arrow representing a timeline
to indicate that our metrics take into account a chronology
of commits. The proposed metrics, which we have referred
to as aggregated change metrics, indicating how they are
calculated, are described below.

1) AGGREGATED NUMBER OF SUBSYSTEMS (/Vﬁ)

The metric ﬁg is an average number of different subsystems
that are modified before each commit that changed the file.
It can be calculated for a file F' by using (1), where ss; repre-
sents a number of different subsystems that were modified in
all commits before the commit k, and where Cr represents
the number of commits that changed the file between the
analyzed project versions.

— 1 Cr
NS = C_F];ssk (D

2) AGGREGATED NUMBER OF DIRECTORIES(ND)

The Aggregated Number of Directories is an average number
of different directories that have been modified before each
commit that changed the file. If dy denotes a number of
different directories that were changed in all commits before
the commit &, and if Cr represents the number of commits

VOLUME 9, 2021

L. Siki¢ et al.: Improving Software Defect Prediction by Aggregated Change Metrics

IEEE Access

that changed the file between the analyzed project versions,
the metric ND can be calculated for a file F with (2).

—> 1
ND = rem de 2)

3) AGGREGATED NUMBER OF FILES (I_II):)

The Aggregated Number of Files refers to an average number
of different directories that were modified along with the file
before each commit that modified that particular file. For a
file F, it can be calculated using (3), where f; refers to a
number of different files that were changed along with the file
in all commits before the commit k and where Cr represents
the number of commits that changed the file between the
analyzed project versions.

NE= Y f 3)

4) AGGREGATED ENTROPY (ﬁ\l?l')

As a change metric, entropy represents a distribution of mod-
ified code in a commit. To define it for an individual file F,
we have aggregated the entropy values for each commit that
changes the file between the analyzed project versions. In par-
ticular, if the file F has been changﬁl Cr commits between
the analyzed versions, the metric ENT can be calculated for
a file F' using the recursive formula (4) up to n = Cf, where
Jk,i denotes a portion of the commit & that modifies the file f;
(with Z:’ Jk,i = 1 for each commit k that modifies n files).

n
—_—>
ENT(F, 1) =) fi.ilog,fi.i

i=1

1 n
ENT(F.m) = S(ENT@.n— D+ Y fuilogafus))

i=1

5) AGGREGATED LINES ADDED (LA)

The metric 17% is calculated by averaging the aggregated
averages of the number of lines of code added to the file
according to the formula (5), where lay represents a number
of lines of code added to the file in the commit k. For a file
F that was charggd in Cr commits, the metric value is equal
to the value of LA(F, Cr).

LAF. 1) = la;
— 1/—
LA(F, n) = E(LA(F, n—1)+ za,,) (5)

6) AGGREGATED LINES DELETED (ﬁ)))

For a file F modified in Cr commits, the metric Aggregated
Lines Deleted can be calculated with the formula (6) up to
n = Cr, where ld; represents a number of lines of code that
were deleted from the file in the commit k.

H

ILD(F, 1) = Id,

—> 1/—

LD(F. n) = z(LD(F, n—1)+ ldn) 6)

VOLUME 9, 2021

7) AGGREGATED LINES BEFORE (ﬁ')

The metric I?l)“ reflects a custom average of the number of
lines of code in the file before a particular commit for each
commit that changes a file. If Cr denotes the number of
commits that include the file F, and if /#; represents a number
of lines of code in the file before the commit &, it can be
calculated using the recursive formula (7) up ton = Cr.

—
N, 1) = Iy

— 1/~

CTF . n) = 5(LT(F, n—1)+ lt,,))

8) AGGREGATED BUG FIX (FIX)

For a commit k, a metric Bug Fix bfy takes the value 1 if it is
a defect-fix, and O otherwise. To calculate it for an individual
file F in Cr commits, we suggest using the formula (8) up
ton = Crf.

—
FIX(F, 1) = bfy

— 1 /—

FIX(F,n) = E(FIX(F, n—1)+ bfn) ®)

However, to calculate bfy. for a commit k, it should be defined
when a commit is considered a fix and when it is not. The cat-
egorization of this type depends on the way commit messages
are written, so it can be defined in different, but probably
similar, ways. Nevertheless, for the purposes of this paper,
we have defined defect-fix commits as those whose message
contains at least one word consisting of one of the following
root words: ‘“‘defect”, “fix”, “proper”, “work”, ‘“‘issue”,
“closed”, “problem”.

9) AGGREGATED NUMBER OF DEVELOPERS (NDEV)

The Aggregated Number of Developers is an average num-
ber of different developers who modified a file before each
commit that changed the file. If ndevy represents a number
of different developers who modified the file in all commits
before the commit k, and if Cr represents the number of
commits that modified the file between the analyzed project
versions, the metric NDEV can be calculated for a file F
using (9).

Cr
N 1
NDEV = o 1; ndevy 9)

l%AGGREGATED TIME INTERVAL BETWEEN COMMITS
(AGE)

For a file F modified in Cr commits, the metric AGE can be
calculated with the formula (10) up to n = Cr, where agey

represents a number of days that have elapsed between the
(k — 1Dth and kth commit.

—
AGE(F, 1) = 0

— 1 /—

AGE(F, n) = E(AGE(F,n _ 1)+agen> (10)

19397

IEEE Access

L. Siki¢ et al.: Improving Software Defect Prediction by Aggregated Change Metrics

11) AGGREGATED NUMBER OF UNIQUE CHANGES (N—>UC)
The metric m is an average number of different commits
made before each commit that changed the file, with the
commits differing in a set of files that they change. It can
be calculated for a file F by using (11), where nucy denotes
a number of different commits in all commits before the
commit k and where CF represents a total number of commits
that have changed the file F between the project versions
analyzed.

o &r
=C—Z nuc (11)

12) AGGREGATED EXPERIENCE (ﬁs)2

When calculated for a developer and a commit k, Experience
refers to the number of commits the developer made before
the commit k. To calculate it for an individual file F', we have
define EXP(F, k) for each commit £ of Cr commits that
changed the file F between the analyzed project versions as
the average of expr ., which is the average experience of all
developers who modified the file F' before the commit &, and
EXP(F, k—1). More specifically, the Aggregated Experience
can be calculated using (12).

—
EXP(F, 1) = 0
EXP(F, n) = 1<EXP(F n— 1)+ &prn ,,) (12)

13) AGGREGATED RECENT EXPERIENCE (FXP)

2 Fora developer and a commiit &, 1:5(_1)’ represents the recent
experience of the developer before the commit k. If cy is the
current year, fy is the year of the developer’s first commit,
and cy is the number of commits made by the developer in
the year y, it can be calculated using (13).

REXP = Z = y+1 (13)

Using the average recent experience of all the developers
that have changed the file F before the commit &, referred
to as 7expr r, a total number of commits that changed the
file F, referred to as Cr, then the metric Aggregated Recent
Experience can be calculated using the recursive formula (14)
upton = Cf.

—
REXP(F, 1) = 0

1
REXP(F. n) = (REXP(F n— 1)+ Fexpr. n) (14)

14) AGGREGATED EXPERIENCE ON THE

SUBSYSTEM (SEXP)>

If it is calculated for one developer and a commit k, Devel-
oper’s Experience on the Subsystem is the number of com-
mits the developer made before the commit k and changing

2Only commits within the analyzed versions of the project were taken into
account when calculating developer metrics.

19398

the file(s) belonging to that subsystem. For a file F', a number
of commits that change that file Cr, and the average experi-
ence on the file’s subsystem of all developers who changed
the file F' before the commit k, reffered to as sexpr f it can
be calculated with (15) up to n = Cf.

—_—
SEXP(F, 1) = 0
1
SEXP(F, n) = (SEXP(F n— 1)+ 5expr n) (15)

The aggregated change metrics for a file in the nth project
version are computed by aggregating process metrics that
describe commits that changed the file between the nth and
(n + 1)th versions of the project. In other words, to represent
the file from the current project version using the proposed
metrics, it is necessary to collect all the commits between
the current version and the previous version of the file and
then aggregate each of the proposed process metrics extracted
from each of the collected commits. Accordingly, to compute
the proposed metrics for source files from the software ver-
sion considered as the training set, it is necessary to extract
all the commits made between that version and the previous
version. That is, when a model is trained on source files from
the nth project version to identify defective source files from
the (n + 1)th project version, the aggregated change metrics
for source files from the nth project version were calculated
using data from all commits made between the (n — 1)th and
the nth project versions.

The aggregation itself can be described with Figure 1,
which illustrates a sequence of commits made between the
nth and (n + 1)th versions of a project whose files are
represented by a series of squares file_1, file_2, ...,
file_j. For example, considering only commits that are
shown in the Figure 1, and with a white square representing
a file that has not been changed within a commit that points
to it, only a set of change metrics for the commit commit_2
will not be used to calculate the aggregated change metrics
forthe file_3.

As can be seen from the formulas (1)-(13), (14) and (15),
the aggregation process can be carried out in two ways,
depending on what a specific metric measures. First,
an aggregated change metric can be calculated by averaging
values representing sizes of a set that is updated after each
commit, as in the formulas (1)-(3), (9), and (11). In this way,
we integrate the chronological order of commits implicitly
by tracking the amounts of changes across commits. Sec-
ond, it can be calculated by using a recursive function that
calculates the average of its value for the previous com-
mit and the change metric for the current commit. Such
function is used in the formulas (4)-(8), (10), (12), (14)
and (15).

In this first setting, the amounts of unique changes related
to a change metric are tracked across the analyzed commits
by updating a set that represents the change metric. By cal-
culating an average of the tracked amounts, we obtain a
value that gives a clearer insight into the file development
process than the final size of the set representing the analyzed

VOLUME 9, 2021

L. Siki¢ et al.: Improving Software Defect Prediction by Aggregated Change Metrics

IEEE Access

change_metrics; change_metrics;

1 1

file 1

file 2

commit;. commit,

file 3

file 3 . D

nth version

. <
<

change_metricsy_; change_metricsy

1 1

commity ;. commi ty

(n+l) th version

FIGURE 1. Process of collecting process metrics from commits made
between two successive versions of the project. The aggregated change
metrics are calculated using the process metrics values from all k
commits.

metric. For example, assume that a file was changed by three
developers in ten commits between two versions, so that
the first seven commits were made by the same developer,
the eighth and ninth by the second developer, and the last
by the third developer. In this case, the value of the process
metric NDEV is 3, since it represents the total number of
developers who modified the file between versions. On the
other hand, the value of the aggregated change metric NDEV
is 1.4, because the values of the accumulated number of
developers across commits are represented by the sequence
1,1,1,1,1,1, 1, 2,2, 3. In this particular case, the majority
of commits are performed by only one developer, and since
the value of 1.4 is closer to the value of 1 than to the value of 3,
it can be concluded that the aggregated change metric NDEV
describes the development of the file more adequately than
the process metric NDEV.

The second setting uses a recursive formula to aggregate
change metrics that are not represented by the size of some
set, which is the case in the first setting. Some previous
studies [6]-[8], [77] have defined some process metrics as
an average, minimum or maximum of values for some metric
over commits. However, they ignore the chronological order
of the commits, which we believe should be considered. For
example, assume that a file was changed in four commits,
with the second commit made two days after the first com-
mit, the third commit made forty-eight days after the second
commit, and the fourth com_rgi_t) made one day after the third
commit. Then the value of AGE, which is 0.5(0.5(1 + 45) +
9) = 16, is closer to the exact number of days that have
passed between the third and fourth commits, which is 9, than
an average value (avg{l, 45, 9} = 18.33), a maximum value
(max{1, 45, 9} = 45), or a minimum value (min{1, 45, 9} =
1) of the values for the metric AGE in the analyzed
commits.

VOLUME 9, 2021

V. EVALUATION
In this section, we conducted two experiments to evaluate
the effectiveness of using the proposed aggregated change
metrics as features for representing source code of software
modules. In the first experiment we analyzed the quality
of the proposed metrics. In particular, we examined which
of the proposed metrics show a strong correlation with the
defect label. Since the proposed metrics are used together
with the traditional features in the development of prediction
models in the second experiment, the correlation coefficients
between the traditional features and the defect label are also
calculated. As part of the first experiment, we have also
investigated whether multicollinearity is present in the set
of features that are most strongly correlated with the defect
label. In the second experiment, we investigated whether and
to what extent the performance of commonly used classifiers
can be improved by using the proposed metrics together
with the traditional features to detect defect-prone source
code. Furthermore, since the predictive power of some of
the commonly used classifiers can be impaired if there is
multicollinearity between the features, the features describing
the project modules used in the experiments are tested for
multicollinearity before a model is trained.

In particular, our study addresses the following research
questions (RQ):

RQ1: Which subset of the aggregated change metrics is the
most correlated with the defect-proneness?

RQ2: Can the use of aggregated change metrics as features
improve the performance of commonly used classi-
fiers?

We have developed Python scripts to download source
code files and extract the information to calculate aggregated
change metrics from these files. In case features are selected
independently from the classifier, both traditional and pro-
posed metrics used as features have been evaluated using
methods from the Python libraries pandas and statsmodels.
In contrast, features where selection is part of the creation
of the classifier are selected using scikit-learn implementa-
tions of selection methods. Regardless of how the features
were selected, the classification models were created using
scikit-learn modules. All experiments were run on a NVIDIA
GeForce Titan Xp GPU with RAM of 12 GB. The data sets
used and the experimental results are available at GitLab.

Section V-A describes the experimental setup and
Section V-B defines evaluation measures used in the exper-
iments. In Sections V-C and V-D we answer the research
questions.

A. EXPERIMENTAL SETUP

To conduct the experiments, we collected historical data
for projects from the commonly used PROMISE data set.
Using the existing features describing modules from these
projects and the proposed metrics, we developed defect pre-
diction models and measured their performance to investigate

3 https://gitlab.com/LSikic/sdp-using-acm

19399

IEEE Access

L. Siki¢ et al.: Improving Software Defect Prediction by Aggregated Change Metrics

TABLE 1. Description of 20 traditional features and 5 process metrics.

Traditional features
Symbol Name Description
WMC Weighted Methods per Class The number of methods in the class
DIT Depth of The number of steps from the class node
Inheritance Tree to the root of the inheritance tree
NOC Number of Children The number of immediate descendants of the class
CBO Cogphng Between The number of classes to which it is coupled and vice versa
Object classes
RFC Response for Sum of the number of methods called within the class’ methods
a Class and the number of the class’ methods
LCOM Lack of Cohesion Number of pairs of methods that do not share
in Methods a reference to an instance variable
Lack of Cohesion If m is the number of methods, a the number of attributes
LCOM3 | in Methods in the class and p(a) the number accessing an attribute, then
(different formula from LCOM) | LCOM3 = (% > Fula;) —m)/(1—m)
NPM Number of Public Methods The number of all the methods in a class declared as being public
DAM Data Access Ratio of the number of private (protected) attributes
Metric to the total number of attributes
MOA Measure of The number of data declarations (class fields)
Aggregation whose types are user defined classes
MFA Measure of Number of methods inherited by a class increased by
Function Abstraction a number of methods accessible by member methods of the class
Cohesion among Sum of the number of different types of method parameters in
CAM Methods of every method divided by a product of the number of different
a Class method parameter types in the whole class and the number of methods
IC Inheritance Coupling The number of parent classes to which a given class is coupled
CBM Coupling between Total number of new/redefined methods
Methods to which all inherited methods are coupled
AMC Average Method Complexity The number of Java byte codes
CA Afferent Couplings How many other classes use the specific class
CE Efferent Coupling How many other classes are used by the specific class
MAXcc Maximum Maximum McCabe’s cyclomatic complexity values
McCabe of methods in the same class
AVGce Average Average McCabe’s cyclomatic complexity values
McCabe of methods in the same class
LOC Lines of Code Measures the volume of the code
Process metrics
Symbol Name Description
ADD Lines Added The added lines in class normalized by total number of added and deleted lines
DEL Lines Deleted The added lines in class normalized by total number of added and deleted lines
ADEV Number of Developers The of developers who changed the class
COMM Number of Commits The number of commits made to the class
GEXP Developers’ experience The geometric mean of the experiences of all the developers that changed the class

the usefulness of the proposed metrics. In the following,
we describe the data set used and the process of developing
the models.

1) PROMISE DATA SET

The data set used for this research consists of projects devel-
oped with the Java programming language. The set consists
of projects collected from PROMISE,* a publicly accessible
repository of research data for software defect prediction,
which has been widely used in previous studies [2]-[4], [51],
[72]. It contains information about classes from various Java
Apache project versions. Specifically, each project version is
represented by a list of the classes it consists of, and each
class is described by 20 traditional features, such as Lines
of Code (LOC) and Weighted Methods per Class (WMC),
and the defect label. In addition, we have calculated five
process metrics, which are used in previous research [92],

4https:// github.com/opensciences/opensciences.github.io

19400

from the commit history data extracted for the purpose of
the research. As with the state-of-the-art approaches [2], [4],
[34], we used seven projects from PROMISE in the exper-
iments. Detailed information about the projects used can be
found in Tables 2 and 1. Table 2 shows the number of files and
the defect rate for each version of the projects, while Table 1
includes a description of the traditional features and process
metrics used to describe the project modules.

Data collection for the aggregated change metrics was car-
ried out using a framework developed for this research. Using
the framework, we downloaded the relevant versions of the
project repositories, which are available on the software plat-
forms GitHub and SourceForge. From the downloaded data,
we extracted the commits between project versions, which
were then processed and used to calculate fourteen aggre-
gated change metrics.

To evaluate the proposed metrics, we followed the standard
approach and extracted features used to develop a classi-
fier from two consecutive versions of each project, with the

VOLUME 9, 2021

L. Siki¢ et al.: Improving Software Defect Prediction by Aggregated Change Metrics

IEEE Access

TABLE 2. PROMISE data set description.

[Project Version #Files Defect rate [%] |

camel 1.4 872 16.63
1.6 965 19.48

jedit 4.0 306 22.60
4.1 312 25.32

lucene 2.0 195 46.67
2.2 247 58.30

poi 2.5 385 64.42
3.0 442 63.57

synapse 1.1 222 27.03
1.2 256 33.59

xalan 2.5 803 48.19
2.6 885 46.44

xerces 1.2 440 16.14
1.3 453 15.23

training set from the older version and the test set from the
newer version of the project. Finally, each class file presented
in the project version that has changed from the previous
version is represented either by a defect label and a feature
vector of length 34, generated by concatenating the tradi-
tional features with the aggregated change metrics, or by a
defect label and a feature vector of length 25, generated by
concatenating the traditional features with process metrics.
Accordingly, we have omitted the files that do not meet these
criteria from the experiments, since the values of the process
metrics cannot be calculated for such files.

Given the great inconsistency of prediction results between
existing software defect prediction models [97], we repeated
our experiment 30 times to verify the results. In this way,
we reduced the likelihood of errors or anomalous perfor-
mance results and obtained a more reliable experiment.

2) SOFTWARE DEFECT PREDICTION MODEL DEVELOPMENT
For completeness, we investigated whether the prediction of
defect-prone software modules can be improved using the
aggregated change metrics, regardless of whether the predic-
tion model is chosen before or after the feature selection step.
We used both approaches in our experiments, which showed
that the proposed metrics add value in both cases.

Under the first approach, features are selected using
AutoSpearman [45], an automated approach to feature selec-
tion that first selects the uncorrelated metrics based on a
Spearman rank correlation test and then selects the uncorre-
lated metrics from the resulting subset of metrics based on a
VIF analysis. In this way, both correlation and multicollinear-
ity are detected and removed from the feature set. Using the
features selected in this way, we have developed an ensemble
model for detecting defect-prone software modules, as such
a model is likely to perform best in defect prediction [97].
The developed model uses soft voting to classify software
modules as defective or not defective, i.e., it identifies a
software module as defective if the sum of the probabilities of
its classifiers that the module is defective is greater than the
sum of the probabilities of its classifiers that the module is not
defective. Using the soft voting setting may result in higher

VOLUME 9, 2021

model performance than using a hard voting system, where
the class that received the most votes from its classifiers
is selected as the ensemble predictor because it gives more
weight to the votes with high confidence [98].

In the second case, i.e., when feature selection is part of
the construction of a classifier, it can be done using wrappers
or embedded methods. In this work, the wrapper method is
based on the AUC score of an ensemble classifier, while
the embedded method uses a random forest performance
for feature selection. To determine whether the individual
performance of some of the most commonly used classifiers
in predicting software defects can be improved by using the
proposed metrics in conjunction with existing traditional fea-
tures, we also used support vector machine, decision tree, and
multi-layer perceptron classifiers as part of the wrapper-based
approach.

For the wrapper method, we used bidirectional feature
elimination. It is similar to the forward feature selection,
which starts from an empty feature set and adds a new fea-
ture in each iteration. To determine which of the remaining
features to select in the current iteration, the classifier is
trained separately for each remaining feature on the set of
previously selected features that will be augmented by that
feature. The feature whose inclusion resulted in the largest
increase in classifier performance is selected. In each epoch
of bidirectional feature elimination, the described selection
is followed by an elimination step. More specifically, after
adding a new feature, the importance of all features from
the current feature set is checked. If the classifier performs
better when trained on the current set without the unimportant
features, these features are removed.

Embedded feature selection with a random forest classifier
is based on the weighted impurity in a tree, a measure of how
much the tree overfits the training data. During the selection
process, the importance of each feature is calculated as a
measure of how much it reduces the weighted impurity in a
tree. The calculated reductions are ranked over all features in
the tree and averaged over all trees in a random forest [99].
Finally, the highest ranked features are selected for training a
classification model.

B. EVALUATION MEASURES

In order to assess whether and to what extent the proposed
metrics are relevant for use in the construction of defect pre-
diction models, in the first experiment we calculated Spear-
man’s correlation coefficient between the defect-proneness of
afile and each feature from the set of proposed and traditional
features. It is a non-parametric measure of the statistical
dependence between the ranks of two variables that makes
no assumptions about the distribution of variable values or
the linearity of the association between variable values.

In this experiment we also investigated whether there is a
correlation between different features. For this purpose we
used either Pearson’s correlation coefficient or Spearman’s
correlation coefficient. In particular, we have calculated the
Pearson’s correlation coefficient between features for whose

19401

IEEE Access

L. Siki¢ et al.: Improving Software Defect Prediction by Aggregated Change Metrics

values it can be concluded by Shapiro-Wilk’s test with
95% certainty that both are normally distributed; otherwise,
we have calculated the Spearman’s correlation coefficient.

To evaluate the performance of the model for predict-
ing software defects based on a specific set of features,
researchers typically use Precision, Recall, F1 score and Area
Under the ROC Curve (AUC). However, given the lack of
standardized metrics and the existence of a class imbalance
in the data set used in this research, we have reported AUC,
as suggested by Jiang et al. [100]. It has a lower variance, i.e.
it is more static than any of the above metrics, and is therefore
highly preferable for the evaluation of defect prediction mod-
els. In addition, we have calculated the Matthews Correlation
Coefficient (MCC) because it is least affected by imbalanced
data [101] and gives a more informative and truthful score
when evaluating binary classifications than F1 score [102].
Furthermore, we have reported the F1 score together with
AUC and MCC in Section V-D, since this measure has been
reported in many previous studies (e.g. [2], [4]).

The AUC is based on the area under the ROC (Receiver
Operating Characteristic) and can be used to evaluate how
well the developed model can distinguish between defect
class and non-defect class. A model whose predictions are
completely wrong has an AUC of 0, while a model whose
predictions are completely correct has an AUC of 1.

The F1 score is the harmonic mean of precision and recall.
It is a widely used measure of the accuracy of the test, with
values between 0 for the worst accuracy and 1 for the best
accuracy.

The MCC is a correlation coefficient between the observed
and predicted classifications. Its value ranges from —1 to 1,
with a value of 1 representing a perfect prediction, O as no
better than a random prediction, and —1 as the worst possible
prediction.

C. WHICH SUBSET OF THE AGGREGATED CHANGE
METRICS IS THE MOST RELEVANT

TO THE DEFECT LABEL? (RQ1)

In this experiment we investigate which of the proposed
metrics are relevant for use in the construction of defect
prediction models by measuring the Spearman’s correlation
coefficient on the training set consisting of concatenated data
from each PROMISE project.

The correlation coefficient, hereinafter referred to as p,
is calculated between each metric from the set of fourteen
proposed metrics and the defect label. The strength of the
correlation was estimated according to the absolute value of
the correlation |p|, as suggested by Evans [103], as follows:
very weak if 0.0 < |p| < 0.19, weak if 0.2 < |p| < 0.39,
moderate if 0.4 < |p| < 0.59, strongif 0.6 < |p| < 0.79, and
very strong if 0.8 < |p| < 1.0. In order to ensure the credibil-
ity of our results, we have assessed the statistical significance
of each calculated coefficient at the level of 0.05 and have
only considered those with a p-value of less than 5%. In this
way, we are 95% confident that only significant correlations
are reported. In order to compare the proposed metrics and

19402

the traditional features in terms of correlation with defect-
proneness, we calculated the correlation between traditional
features and process metrics and the defect label as well. The
calculated coefficients are shown in Table 3.

TABLE 3. The correlation coefficient (o) between traditional features (TF)
and defect label, between aggregated change metrics (ACM) and defect
label, and between process metrics (PM) and defect label on the projects
from PROMISE data set.

LTF [p] [ACM [p | [PM_[p |
NPM 0.26 ﬁ 0.36 COMM | 0.18
LOC 0.26 NE 0.25 DEL 0.14
WMC 0.26 ﬁ 0.23 ADEV 0.13
RFC 0.23 IT) 0.23 ADD -0.14
LCOM 0.22 ND 0.22 GEXP -0.15
CBM 0.20 m 0.21

MAXcc | 0.15 NUC 0.18

AMC 0.14 NDEV | 0.14

IC 0.14 LA 0.07

MOA 0.10 FIX -0.06

CE 0.08 SEXP | -0.09

AVGcc 0.07 EXP -0.13

DIT 0.07 REXP | -0-17

CBO 0.07 ENT -0.21

CA 0.05

CAM -0.13

Based on the results on the PROMISE data set presented
in Table 3, we can be 95% certain that there is a positive corre-
lation between the defect-proneness and nine of the thirteen
aggregated change metrics n_l)arked as ACM. At p = 0.36,
we found that the metric (LT) is the most correlated with
a defect label when all three sets of metrics are considered.
In terms of correlation, this metric has outperformed the sec-
ond ranked metric, which is the traditional feature NPM,
by 0.1. Furthermore, there is a weak_)correlation between a
file defect-proneness and the metric_l)\IF. Si_)milar results were
obtained wi_tl)l p = 0.23 by metrics NS and LD,_)with p =022
by metric ND, and with p = 0.21 by metric AGE. Moreover,
the results show the metrics reflecting aggregated numbers
of subsystems and directories that are changed along with
the file, the accumulated number of lines of code deleted
from the file, and the aggregated time interval between the
commits are weakly correlated with the defect-pﬂfness of
the file. Finally, with the exception of the metric ENT, which
was found to be weakly but negatively correlated with a file’s
defect label, other aggregated change metrics were found to
be very weakly correlated with the defect label.

A narrower range of degrees of strength of correlation
was observed between the traditional features, marked as TF
in Table 3, and the defect label as for between the aggregated
change metrics and the defect label. As can be seen from
Table 3, fifteen traditional features proved to be positively
correlated with the file defect-proneness. Looking only at
these features, metrics NPM, LOC, and WMC (p = 0.26)
proved to be the features that are most correlated with a
defect label of a file. Moreover, magnitudes of the correlation
coefficient p of 0.23 and 0.22 indicate the existence of a
weak correlation between the defect label and the traditional

VOLUME 9, 2021

L. Siki¢ et al.: Improving Software Defect Prediction by Aggregated Change Metrics

IEEE Access

features RFC and LCOM, in the order given. A weak correla-
tion was also found between the feature CBM and the file
defect-proneness. In addition, a very weak correlation was
found between each of the rest of the traditional features and
the defect-proneness of the file. With a range of correlation
coefficient values between -0.15 and 0.18, process metrics,
marked as PM in Table 3, have been shown to be very weakly
correlated to the file’s defect label.

Some of the commonly used classifiers are sensitive to
multicollinearity between features, which means that their
performance could be harmed if there is a correlation between
the features. To investigate the existence of a correlation
between features describing software modules, which will
help us to select a suitable value for a parameter of the
algorithm used in the second experiment, we calculated the
correlation coefficient between traditional features, process
metrics, and proposed metrics that proved to be at least
weakly correlated with the defect label. More specifically,
according to the criteria mentioned in Section V-B, the cor-
relation coefficient is calculated for each pair from a set of
features whose correlation, either positive or negative, with
the defect label is assessed by p greater than 0.2. As shown
in Table 3, the set consists of the traditional features NPM,
LOC, WMC RFC LCOM an_d) CMB ﬂi the proposed
metrics LT NF NS LD ND AGE, and ENT. The obtained
coefficients’ values are represented in a form of the table
in Figure 2.

1.00
-

LT

NPM] 0.75

Loc {1/
WMC 0.91 0.7 0.50

NE-0.32 0 0 -0.06

.1 0.64 0.67 0.83 0.81 LLiNil:]

N3 035 0 o -0.05[¥3¥-0.08 -0.00

LB'°-°4 0.11 0.13 0.13 0.16 0 0.21

-—0.25
LCOM-0.38 0.42 -0.09 -0.09 0.06

ND0.34 0 0 -0.09 -0.09) 0.11 -0.1
-0.50

AGE 0.38 0.29 0.26 0.3 0.25 0.29 0.27 0.12 0.27 0.21

CBM-0.18 0.23 0.18 0.23 0.2 0.27 0.17 0 0.13 0.13 0.21 -0.75

ENT-0.16 0 0.12 0.09o.17ﬁ-o.3zo.os-a.z4-o.zz
. . e . ; . ; - -1.00

2 = = - = - —
LT NPM LOC WMC NF RFC NS LD LCOM ND AGE CBM ENT

FIGURE 2. The correlation coefficients between features whose
correlation coefficient relating the defect label was greater than 0.2.

As can be seen from the result in Figure 2, a very | high
correlatlon is measured between the proposed metr_l)cs NF and
ND (p = 0.95), between the proposed metﬂ)cs NS and ND
(p = 0.93), between the proposed metrics NF and NS (p =
0.91), and between the traditional features WMC and NPM
(p = 0.91). Such high correlation values between pairs from

VOLUME 9, 2021

— —> — . .

a set {NF, ND, NS} are expected because an increase in the
aggregated number of modified subsystems presupposes an
increase in the aggregated number of modified directories,
whose increase requires an increase in the aggregated number
of modified files. A slightly lower values, yet still classified as
’very strong’, are detected between traditional features LOC
and RFC (0.83), and between RFC ani)WMC (0.81).

In summary, the proposed metric LT, are the most posi-
tively correlated with a defect label when features from all
three sets of metrics are considered. This is an expected
result of this experiment, as a larger module contributes more
defects [104]. In addition, the results of the experiment show
that as the number of files, directories, and subsystems modi-
fied within commits containing a file increases, the likelihood
of a defect being introduced into the file increases, which
is supported by existing reseagl [105]. In addition to these
metrics, the proposed metric LD has also been shown to be
positively correlated with the file’s defect-proneness, which
is a reasonable result assuming that changes to a file that
involve deleting a large amount of its code could indicate
that the file is defect-prone. This is also supported by the
fact that the large number of code changes, i.e., code churn,
is related to the file’s defect-proneness [87]. Moreover, exper-
imental results have shown that the likelihoocﬂ a file being
defective increases as the proposed metric AGE increases.
Since the metric AGE places more weight on recent code
changes, this result is consistent with previous research that
concluded that recent changes contribute more defects than
older changes [29]. Finally, the aggregated entropy has been
shown to be weakly negatively correlated with the defect
label of a file, which contradicts the result obtained for
the metric Entropy used to classify commits as defective or
non-defective, indicating that scattered changes are likely to
introduce defects [94]. However, such a result should not
necessarily be expected for the metric ENT, since it does
not consider just one commit, but all commits that modify
a given file. In fact, a small value of aggregated entropy
for a file might indicate not only that the file was modified
within commits that have changed a small number of files,
but also that the proportions of the file that was changed
within commits are relatively large. Since relative code churn
measures are a good indicator gf_gl)efective modules [87], one
might expect a small value of ENT for a file can be expected
to indicate its defectiveness.

According to the results obtained on the seven projects

from the PROMISE data set, the most rel_e)vant aggregated

change metric for the defect label is LT. A significant

correlation with the defect label was also observed between
— = = — —

metrics NF, NS, LD, ND, AGE, and ENT.

D. CAN THE USE OF AGGREGATED CHANGE METRICS
IMPROVE THE PERFORMANCE OF COMMONLY USED
CLASSIFIERS? (RQ2)

To answer this research question, we compared the
performance of a classifier created with traditional features

19403

IEEE Access

L. Siki¢ et al.: Improving Software Defect Prediction by Aggregated Change Metrics

and process metrics with the performance of a classifier cre-
ated with traditional features and aggregated change metrics.
The comparison was performed in two different settings -
when the features are selected independently of the classifier
and when they are selected as part of the classifier build-
ing process using a wrapper or embedded feature selection
method. In the first setting and as part of the wrapper method,
we tested the performance of an ensemble of the following
frequently used classifiers: Random Forrest Classifier (RFC),
classifier based on linear discriminant analysis (LDAC),
multi-layer perceptron classifier (MLPC) with one hidden
layer, and support vector machine classifier (SVMC). The
embedded method was based on the performance of a random
forest classifier. Finally, we performed an additional experi-
ment to investigate whether the classifiers commonly used in
software defect prediction, which are listed in Section V-A2,
could benefit from the use of the proposed metrics.

The hyper-parameters of the ensemble were tuned by a ran-
dom search. To be precise, we tuned gamma and C for SVMC,
solver for LDAC, max_depth and n_estimators
for RFC and hidden_layer_sizes for MLPC by ran-
domly examining the combinations of the values of these
hyper-parameters within a set of ranges typical of each of
them. The values of the other hyper-parameters for each
classifier were set to the default values provided by scikit-
learn. Specifically, for each project in the data set, the opti-
mal hyper-parameters’ values are selected as one of ten
combinations of randomly selected hyper-parameters’ values
that give the ensemble the best performance in terms of
AUC score on the training set over 5-fold cross validation.
The optimal values for max_depth and n_estimators,
the hyper-parameters’ of RFC used within the embedded
feature selection, were obtained in the same way. In addition,
when examining the performance of an individual classi-
fier, we tuned the hyper-parameters for MLPC and SVMC
using the same procedure as for the same models within the
ensemble. Similarly, we found optimal values for the deci-
sion tree classifier’s (DTC) hyper-parameters max_depth,
max_features, and min_samples_leaf. The exact
ranges of values for the hyper-parameters we examined can
be found in GitLab’.

The other parameters of the experimental settings were
chosen taking into account the results from Section V-D
and with the aim of providing the models with sufficient
features that contain information about modules that are
relevant for the defect-proneness. Specifically, in the first
setting the ensemble was built using the features selected by
AutoSpearman with a threshold value of 0.6 for a Spearman
rank test and a threshold value of 10 for a Variance Inflation
Factor analysis. In addition to eliminating highly correlated
features [106], the values were chosen to avoid serious mul-
ticollinearity problems [101]. In the second setting, we have
set the number of features the model selects within both the
wrapper and the embedded method to 20, which is the number
of traditional features. This allows us to test not only whether
the proposed metric can replace the process metrics, but also

19404

whether a classifier selects either some of the process metrics
or some of the aggregated change metrics against some of the
traditional features improve its performance.

The AUC, MCC, and F1 scores achieved by the models
have for each project from the PROMISE data set, and the
mean value of these scores, are listed in Tables 4-6. Each
table compares the performance of a model using features
selected from the set consisting of traditional features and
process metrics (TPM), and the performance of a model
using features selected from the set consisting of traditional
features and proposed aggregated change metrics (TACM).
Table 4 shows results obtained with the ensemble classifier
built on features selected by AutoSpearman, Table 5 shows
results obtained with the ensemble classifier built within the
wrapper method for feature selection, while Table 6 shows
results achieved by the RFC model built within the embedded
method for feature selection.

In order to assess the statistical significance between the
models, we conducted pair-wise tests for all performance
measures. To do this, we firstly tested the normality of the
obtained values of the measures by both models using the
Shapiro-Wilk test with 95% confidence. In the case where
the obtained values of the measures of both models follow
a normal distribution, the statistical significance between
the performance measures was tested with a paired ¢-test.
Otherwise, the paired Wilcoxon test was performed. In both
the 7-test and the Wilcoxon test a p-value of less than 0.05 was
assumed as significant. This means that the values of a perfor-
mance measure obtained by two classifiers analyzed can only
be interpreted as significantly different if the p-value is less
than 0.05, in which case these classifiers can be considered
to be different in terms of the performance. The decision
on the difference of the classifiers with the corresponding
p-value obtained in the test performed is reported in the col-
umn SD (which stands for “Significantly Different”) of the
Tables 4-6, where the value of “T” (True) indicates that the
classifiers are different in terms of the performance analyzed,
while the value of “F” (False) indicates that we cannot be
95% sure their performances are different.

The results presented in Tables 4-6 show that the TACM
model in the embedded setting achieved the best overall
results in all performance measurements for the projects of
the PROMISE data set. Specifically, the RFC built within
the embedded feature selection method using traditional and
proposed features achieved an average AUC value of 63%,
an average MCC value of 0.3 and an F1 score of 54%, i.e.
it outperformed the RFC built using traditional features and
process metrics by 2% for AUC, 4% for F1 and 0.07 for
MCC. As can be seen from the last columns of Table 6,
the difference in the performance of the models in terms of
all evaluation measures can be considered significant for all
projects, except for the poi project, where we cannot be 95%
sure that the models perform equally in terms of AUC and
MCC. Nevertheless, it is particularly important to highlight
the improvement achieved by the model on xerces project,
which suffers most from the problem of class imbalance,

VOLUME 9, 2021

L. Siki¢ et al.: Improving Software Defect Prediction by Aggregated Change Metrics

IEEE Access

TABLE 4. Performance comparison of the ensemble classifier based on
features selected by AutoSpearman from traditional features and process

TABLE 5. Performance comparison of the ensemble classifier within
wrapper feature selection on a set of traditional features and process

metrics (TPM), and from traditional features and proposed aggregated
metrics (TACM) on PROMISE.

metrics (TPM), and on a set of traditional features and proposed
aggregated metrics (TACM) on PROMISE.

AUC
Project TPM TACM SD (p-value)
camel 0.55+0.00 | 0.56 £0.01 || T (< 0.001)
jedit 0.68+0.01 | 0.63+0.01 T (< 0.001)
lucene 0.49 £0.01 | 0.52+0.01 || T(< 0.001)
poi 0.49+0.00 | 0.64 +£0.01 || T(< 0.001)
synapse 0.55+0.01 | 0.55+0.02 || F(0.727)
xalan 0.544+0.01 | 0.60=+0.02 || T (< 0.001)
xerces 0.51+0.00 | 0.514+0.00 || F(0.522)
Average |[0.55+0.00 [0.57£0.01] 5/7]
MCC
Project TPM TACM SD (p-value)
camel 0.23+0.01 | 0.18£0.01 || T(< 0.001)
jedit 0.39+0.02 | 0.37+0.01 T (0.001)
lucene -0.03+£0.02 | 0.06 £0.02 || T (< 0.001)
poi -0.06 £0.01 [0.32+0.01 || T(< 0.001)
synapse 0.16 £0.02 | 0.114+0.05 || T(< 0.001)
xalan 0.11£0.01 | 0.24 £0.02 || T(< 0.001)
xerces 0.10£0.02 | 0.13+0.03 || T(< 0.001)
Average |[0.13+0.02 [0.20 £0.02 | 7/7]
F1

Project TPM TACM SD (p-value)
camel 0.19£0.02 | 0.23+0.02 || T(< 0.001)
jedit 0.58 +0.03 | 0.43+0.03 T (< 0.001)
lucene 0.74+0.01 | 0.75+0.01 T (< 0.001)
poi 0.77+0.00 | 0.79 £0.00 || T (< 0.001)
synapse 0.28 £0.05 | 0.39+£0.04 || T(< 0.001)
xalan 0.34 £0.03 | 0.44 +£0.06 || T (< 0.001)
xerces 0.06 +£0.01 | 0.04 +£0.02 T (< 0.001)

[Average |[0.424+0.02 | 0.44+0.03 | 7/7]

when looking at projects from the PROMISE data set. On this
project, the proposed metrics allowed the model to improve
its performance by 7% for AUC, 0.24 for MCC and 13%
for F1. It follows that the proposed features can be useful in
overcoming the class imbalance that is considered one of the
major problems in predicting software defects [107].

When trained using traditional and proposed features,
the ensemble classifier created within the wrapper method
has a slightly worse results than the RFC developed within the
embedded method using these features. Although the TPM
model outperformed the TACM model in terms of average
F1 score by 1% in this particular setting, the TACM model
did achieve better average AUC and MCC scores by 2% and
0.07. Considering that MCC is a more appropriate perfor-
mance measure for binary classifications than F1 score [102],
the TACM model can be considered a winner in this setting.

When an ensemble is trained on a subset of features
selected by AutoSpearman (Table 4), extending the set of
traditional features with the proposed metrics rather than with
the process metrics improved ensemble performance by 4%
in terms of the average F1 score, 2% in terms of average AUC
score and 0.07 in terms of average MCC score. In conclusion,

VOLUME 9, 2021

AUC
Project TPM TACM SD (p-value)
camel 0.57+0.01 | 0.57 +0.00 || T (0.009)
jedit 0.65+0.01 | 0.67+0.01 || T(< 0.001)
lucene 0.49 £0.01 | 0.54 +0.01 || T(< 0.001)
poi 0.55 £0.01 0.63 +0.01 T (< 0.001)
synapse 0.59 £0.01 | 0.60+0.01 || T(< 0.001)
xalan 0.624+0.01 | 0.63+0.01 || T(0.001)
xerces 0.524+0.01 [0.51+0.00 || T(< 0.001)
Average |[0.57+£0.01 [0.59+0.01 || 7/7]
MCC
Project TPM TACM SD (p-value)
camel 0.27£0.01 | 0.26 £0.01 || T (0.004)
jedit 0.39 £0.01 | 0.47+0.01 || T(< 0.001)
lucene -0.024+0.01 | 0.13£0.02 || T (< 0.001)
poi 0.16 £0.01 | 0.25+0.01 || T (< 0.001)
synapse 0.244+0.01 | 0.33+0.01 || T(< 0.001)
xalan 0.25+0.02 | 0.29+£0.03 || T(< 0.001)
xerces 0.08 £0.02 | 0.16 £0.00 || T (< 0.001)
Average |[0.20£0.01 [0.27 £0.01 | 7/7]
F1

Project TPM TACM SD (p-value)
camel 0.26 +0.02 | 0.25+0.01 T (0.012)
jedit 0.50 £0.02 | 0.53+0.02 || T (< 0.001)
lucene 0.70 £0.01 0.76 + 0.01 T (< 0.001)
poi 0.78 £0.01 | 0.70+0.03 || T(< 0.001)
synapse 0.36 £0.03 | 0.34 £0.02 T (< 0.001)
xalan 0.53+0.02 | 0.51+0.04 || T(0.008)
xerces 0.10+0.02 | 0.06 £ 0.00 T (< 0.001)

[Average |[0.46 £0.02 | 0.45+0.02 || 7/7]

when comparing the results from all three Tables 4-6, it can
be observed that, when considering the projects analyzed,
a filter-based feature selection may prevent the classifiers
from fully exploiting the potential of the features and sub-
sequently achieving better results.

To find out which of the proposed metrics contributed to
this improvement, we extracted the proposed metrics that
were most frequently selected as the 20 most important char-
acteristics according to the RFC model for each of the seven
PROMISE projects. The result is represented by a histogram
in Figure 3.

As can be seen in Figure 3, nine of the aggregated change
metrics were selected by the RFC model from the 20 most
important features for more than half, i.e. for four out of
seven PROMISE projects. It can be concluded that, apart from
those that proved to be_lliglll)y cgr)related with the defect label
in Section V-C (e.g. LT, ND, NS), several other aggregated
change metrics, in particular the metric NDEV, have also
provided the RFC model with valuable information about
the modules, which ultimately helped it to identify defective
modules more successfully than when using traditional fea-
tures and process metrics.

19405

IEEE Access

L. Siki¢ et al.: Improving Software Defect Prediction by Aggregated Change Metrics

TABLE 6. Performance comparison of the random forest classifier within
embedded feature selection on a set of traditional features and process

metrics (TPM), and on a set of traditional features and proposed
aggregated metrics (TACM) on PROMISE.

TABLE 7. Performance comparison of the SVMC within the wrapper
feature selection on a set of traditional features and process metrics
(TPM), and on a set of traditional features and proposed aggregated
metrics (TACM) on PROMISE.

AUC
Project TPM TACM SD (p-value)
camel 0.57+0.01 | 0.59+£0.01 || T(< 0.001)
jedit 0.69£0.01 | 0.71+0.01 || T(< 0.001)
lucene 0.59 £0.01 | 0.63+0.01 || T(< 0.001)
poi 0.62+0.01 | 0.624+0.01 || F(0.429)
synapse 0.60+0.01 | 0.61+0.01 || T(< 0.001)
xalan 0.69 £0.01 | 0.70+0.00 || T (< 0.001)
xerces 0.50 £0.02 | 0.57 £0.01 || T (< 0.001)
Average |[0.61+0.01 [0.63+0.01 | 6/7
MCC
Project TPM TACM SD (p-value)
camel 0.18 £0.01 | 0.24 £0.01 || T (< 0.001)
jedit 0.40+0.02 | 0.48£0.01 || T(< 0.001)
lucene 0.18 £0.02 | 0.25+0.01 || T (< 0.001)
poi 0.24 £0.02 | 0.24+0.01 || F(0.929)
synapse 0.25+0.01 | 0.26 £0.01 || T (< 0.001)
xalan 0.38+0.02 | 0.41+£0.01 || T(< 0.001)
xerces 0.00 £0.03 | 0.24 £0.02 || T (< 0.001)
Average |[0.23+0.02 | 0.30 +0.01 | 6/7
F1

Project TPM TACM SD (p-value)
camel 0.30£0.01 | 0.33+0.01 || T (< 0.001)
jedit 0.60+0.02 | 0.62+0.01 || T(< 0.001)
lucene 0.68 £0.01 | 0.70£0.01 || T (< 0.001)
poi 0.75+0.01 | 0.75 £0.01 || T (< 0.001)
synapse 0.40+0.01 | 0.45+0.01 || T (< 0.001)
xalan 0.65+0.01 | 0.69+0.01 || T(< 0.001)
xerces 0.13+£0.01 | 0.26 £0.02 || T (< 0.001)
Average |[0.50 £0.01 [0.54+0.01] 7/7]

N w i w o

NUMBER OF PROJECTS

-

> =3 = = =3 > =

= = =
NDEV ENT LA SEXP N: ND L NUC EXP N

FIGURE 3. Number of PROMISE projects for which the proposed metrics
were selected among 20 most relevant features.

Finally, it remains to be seen whether the proposed metrics
can improve the performance of the individual classifiers.
For this purpose, each of the individual classifiers is trained
within the wrapper-based feature selection, using the same
setting as for training an ensemble classifier. We decided to
use the wrapper method because such method was considered
to be well suited for PROMISE projects [50]. The results
are shown in Table 7 for SVMC, in Table 8 for DTC, and

19406

AUC
Project TPM TACM SD (p-value)
camel 0.474+0.02 | 0.583+0.02 || T(< 0.001)
jedit 0.49£0.01 | 0.63+0.06 || T (< 0.001)
lucene 0.48 £0.03 | 0.60+0.02 || T (< 0.001)
poi 0.49 £0.01 | 0.60+0.04 || T(< 0.001)
synapse 0.40 +0.02 | 0.62+0.03 || T(< 0.001)
xalan 0.43+£0.02 | 0.55+0.06 || T (< 0.001)
xerces 0.494+0.02 | 0.59+0.03 || T(< 0.001)
Average |[0.46 £0.02 | 0.59 £0.04 || 7/7]
MCC
Project TPM TACM SD (p-value)
camel -0.134+0.02 | 0.13 +£0.03 || T(< 0.001)
jedit -0.06 +0.06 | 0.32 +£0.12 || T (< 0.001)
lucene -0.05+0.07 | 0.21£0.03 || T (< 0.001)
poi -0.08 £0.02 | 0.23 £0.07 || T (< 0.001)
synapse -0.244+0.05 | 0.27 +£0.08 || T (< 0.001)
xalan -0.274+0.05 | 0.12 £ 0.22 || T (< 0.001)
xerces -0.10+0.08 | 0.22 +£0.02 || T (< 0.001)
Average |[-0.13+0.05 [0.21 £0.08 || 7/7]
F1

Project TPM TACM SD (p-value)
camel 0.34+0.02 | 0.15+£0.09 || T (< 0.001)
jedit 0.49+0.13 | 0.43+0.17 || F(0.159)
lucene 0.71+0.13 | 0.48+0.06 T (< 0.001)
poi 0.76 £0.01 | 0.63+0.19 || T(< 0.001)
synapse 0.39+0.03 | 0.48£0.05 || T(< 0.001)
xalan 0.58+£0.02 | 0.45+0.16 || T(< 0.001)
xerces 0.22 £0.06 | 0.27 +£0.07 || T (0.007)

[Average |[0.50£0.06 | 0.41+0.12 [| 6/7]

in Table 9 for MLPC. The identifiers used in Tables 4-6, i.e.
TPM and TACM, are also used in Tables 7-9.

As shown in Tables 7-9, the DTC achieved the highest
average AUC, MCC and Fl-scores on the PROMISE data
set when trained using traditional features together with the
proposed aggregated change metrics. It outperformed both
SVMC and MLPC trained using the same set of features by
14% and 8% in terms of the average F1 score, 5% and 3% in
terms of the average AUC score, and 0.07 and 0.02 in terms
of the average MCC. The results presented in Table 8 also
show that the DTC improved significantly in all performance
measures for each PROMISE project, except for the F1-score
for lucene project,” when the process metrics are replaced
with the proposed aggregated metrics for its development.
The replacement has resulted in a significant improvement in
average AUC (from 0.52 to 0.64), F1 (from 43% to 55%) and
MCC (from 0.04 to 0.28). As can be seen in the Table 9, such
replacement also proved beneficial for the MLPC model. The

SEven if the DTC within the TACM model has reached a higher F1-score
than the DTC within the TPM model on lucene project, we cannot be 95%
certain that there is a significant difference between the F1-scores obtained
from these two models for lucene project.

VOLUME 9, 2021

L. Siki¢ et al.: Improving Software Defect Prediction by Aggregated Change Metrics

IEEE Access

TABLE 8. Performance comparison of the DTC within the wrapper feature
selection on a set of traditional features and process metrics (TPM), and
on a set of traditional features and proposed aggregated metrics (TACM)

TABLE 9. Performance comparison of the MLPC within the wrapper
feature selection on a set of traditional features and process metrics
(TPM), and on a set of traditional features and proposed aggregated

on PROMISE.

metrics (TACM) on PROMISE.

AUC
Project TPM TACM SD (p-value)
camel 0.56 +0.02 | 0.61 £0.01 || T (< 0.001)
jedit 0.60+0.02 | 0.69 £0.02 || T (< 0.001)
lucene 0.53+0.03 | 0.62 +0.01 T (< 0.001)
poi 0.45+0.06 | 0.68 £0.02 || T (< 0.001)
synapse 0.51£0.03 | 0.61 +£0.02 || T (< 0.001)
xalan 0.56 £0.04 | 0.67 +£0.01 || T (< 0.001)
xerces 0.43 £0.07 | 0.62+0.02 || T(< 0.001)
Average |[0.52+0.04 [0.64£0.02] 7/7]
MCC
Project TPM TACM SD (p-value)
camel 0.09 £0.03 | 0.20+0.02 || T (< 0.001)
jedit 0.20+0.03 | 0.37+0.03 || T(< 0.001)
lucene 0.07+£0.05 | 0.23+0.02 || T(< 0.001)
poi -0.104+0.12 | 0.36 £0.04 || T (< 0.001)
synapse 0.03+0.06 | 0.23 +0.05 || T (< 0.001)
xalan 0.12 £0.07 | 0.35+0.02 || T(< 0.001)
xerces -0.10+0.10 | 0.23 +£0.04 || T (< 0.001)
Average |[0.0440.07 [0.28 £0.03 || 7/7]
F1

Project TPM TACM SD (p-value)
camel 0.34+0.02 | 0.40 £0.02 || T (< 0.001)
jedit 0.51 +£0.04 | 0.61 +£0.02 || T(< 0.001)
lucene 0.61£0.09 | 0.63 +£0.05 || F(0.304)

poi 0.48+0.14 | 0.76 £0.03 || T (< 0.001)
synapse 0.37+0.04 | 0.48 +£0.03 || T (< 0.001)
xalan 0.51 £0.07 | 0.64 +£0.04 || T(< 0.001)
xerces 0.17£0.04 | 0.34 £0.04 || T(< 0.001)
Average |[0.43£0.06 [0.55+0.03 [6/7 |

MLPC within the TACM model performed better than the
MLPC within the TPM model in all performance measure-
ments for each PROMISE project, except for the F1-score for
lucene project. However, for this specific project, the TACM
model has outperformed the MLPC model in terms of MCC
by 0.17. Since the MCC is a more adequate performance
assessor for binary classifiers than the F1-score, the MLPC
within the TACM model can be considered more suitable for
use in lucene project than the MLPC within the TPM model.
Finally, Table 7 shows that despite a lower average F1-score
(by 9%), the performance of SVMC is significantly higher in
terms of an average MCC, i.e. by 0.34, when trained using
the proposed aggregated change metrics instead of process
metrics. A similar improvement is also indicated by a higher
average AUC score (by 13%).

It is worth noting that there have been a small number of
experiments where we cannot claim the performance of the
compared models differed significantly in the projects ana-
lyzed, but considering a much greater number of experiments
where the models differed significantly, we believe this is
sufficient to support our conclusion.

VOLUME 9, 2021

AUC
Project TPM TACM SD (p-value)
camel 0.544+0.02 [0.58+0.01 || T(< 0.001)
jedit 0.544+0.06 [0.68 +£0.02 || T(< 0.001)
lucene 0.50 +0.02 [0.57 +0.02 || T (< 0.001)
poi 0.55 +£0.01 | 0.65+0.03 || T (< 0.001)
synapse 0.46 +0.03 | 0.60 +0.02 || T (< 0.001)
xalan 0.624+0.03 [0.70+0.01 || T(< 0.001)
xerces 0.42+0.02 | 0.51+0.01 || T(< 0.001)
Average |[0.52+0.03 [0.61£0.02 || 7/7]

MCC
Project TPM TACM SD (p-value)
camel 0.11£0.04 | 0.234+0.02 || T(< 0.001)
jedit 0.11£0.13 | 0.40+0.03 || T (< 0.001)
lucene 0.00 £0.05 | 0.17+0.04 || T(< 0.001)
poi 0.124+0.03 | 0.30+0.05 || T (< 0.001)
synapse -0.08 - 0.06 | 0.26 +0.03 || T (< 0.001)
xalan 0.26 £0.07 | 0.42+0.02 || T (< 0.001)
xerces -0.14 +£0.03 | 0.07 £0.04 || T (< 0.001)
Average |[0.05+0.06 [0.26 £0.03 || 7/7 |

F1

Project TPM TACM SD (p-value)
camel 0.19+0.11 | 0.31+£0.03 || T (< 0.001)
jedit 029+0.16 | 0.58 £0.04 || T (< 0.001)
lucene 0.70£0.09 | 0.57+0.19 T (0.002)
poi 0.70+0.11 | 0.71£0.05 || F(0.638)
synapse 0.27+0.04 | 0.40£0.04 || T (< 0.001)
xalan 0.56 £0.06 | 0.65+0.03 || T(< 0.001)
xerces 0.05+0.02 | 0.06 +£0.05 || F(0.564)
Average |[0.39+£0.08 | 0.47 £0.06 || 5/7]

The performance of commonly used classifiers can be
improved by adding aggregated change metrics to the exist-
ing set of traditional features used to train classifiers.

VI. THREATS TO VALIDITY

As with any empirical study, there are threats to valid-
ity that should be discussed. Below we discuss the exter-
nal, internal, construct and conclusion validity of our
study.

A. EXTERNAL VALIDITY

In the context of external validity, it must be examined
whether and to what extent a generalization of the research
results is possible. Since the quality of the experimen-
tal results depends on the data set used, we have cho-
sen to use the data set commonly used in software defect
prediction studies. As such, it should be suitable for devel-
oping and validating models for identifying defect-prone
software modules. Nevertheless, the experiments conducted
in this research can also be performed with a different data
set.

19407

IEEE Access

L. Siki¢ et al.: Improving Software Defect Prediction by Aggregated Change Metrics

B. INTERNAL VALIDITY

To assess the quality of the proposed metrics, it should be
examined whether the performance of the defect prediction
models will be improved when they are developed using these
metrics. For this purpose, we had to decide which classifiers
would be developed in the experiments and which methods
for feature selection would be used. Even though our deci-
sions are made according to the common practice in software
defect prediction and are also justified in this paper, it is
possible that the internal validity of our study is influenced
by the preference of classifiers and feature selection methods.
In order to minimize this possibility, we have decided to use
different but commonly used classifiers and feature selection
methods in this research. In future research, however, more
different classifiers and feature selection methods may be
used within the framework for developing software defect
prediction model used in this research.

C. CONSTRUCT VALIDITY

The evaluation of the proposed metrics depends directly on
the measure used to assess the correlation between these
metrics and the defect label, and on the performance measures
used to assess the performance of the classifiers. To make
the assessment fair, we used the widely used Spearman’s
rank correlation coefficient for the first assessment, while
for the second assessment we reported various performance
measures, including those used in the majority of studies
regarding software defect prediction. Nevertheless, other
appropriate correlation measures and evaluation metrics may
also be used for evaluation purposes.

D. CONCLUSION VALIDITY

In order to assess the validity of the conclusions drawn in
this research, we have ensured statistical significance of our
results by meeting a requirement of the central limit theo-
rem. More specifically, since 30 repetitions of an experiment
according to the central limit theorem are considered suf-
ficient to minimize the statistical bias and variance of the
experimental results, we repeated each experiment 30 times.
However, to make the research results more reliable, we also
performed appropriate significance tests to demonstrate that
the results provided by the models are significantly improved
when they are trained using the proposed metrics instead
of the process metrics. For this purpose, we have used the
paired 7-test and the paired Wilcoxon test, but it is possible to
perform a different statistical test as long as the data meet the
requirements of the test.

VII. CONCLUSION

The need for an effective method to detect potential defects
in software is growing steadily as the number, size and com-
plexity of software systems in today’s world increases. Many
research groups have made considerable efforts to develop
such a method, but the results they have achieved suggest that
there is still room for improvement, especially in extracting

19408

features from the software information which will faithfully
represent its modules.

In this work, we have proposed a set of features that pro-
vide information about the development process of software
modules. In contrast to the existing metrics for representing
a software module, the proposed features take into account
all changes made in the module’s source code, i.e. they are
calculated by aggregating the change metrics extracted from
each change, taking into account the chronological order of
the changes. As such, they provide a more nuanced picture of
the development of the module that has proven to be relevant
for defect-proneness, compared to existing features.

In the experiments conducted on seven frequently used
projects from the data set, we investigated which of the
proposed features are most correlated with defect-proneness.
In addition, we have shown that the performance of defect
prediction models improves in terms of AUC, MCC and
F1 score when they are trained on a combination of traditional
and proposed features rather than on traditional features and
process metrics. Most importantly, however, the proposed
metrics have allowed the models to improve their perfor-
mance on the data that suffer most from the class imbal-
ance, which is identified as problematic in defect prediction
research.

Encouraged by the experimental results obtained in this
paper, we will try to extract more metrics that reflect the
development process of the modules in our future work. Fur-
thermore, we will investigate the applicability of the proposed
metrics in detecting the defect-prone software modules for
source code written in other programming languages.

ACKNOWLEDGMENT
The Titan X Pascal used for this research was donated by
NVIDIA Corporation.

REFERENCES

[1] F. R. Porto, “Cross-project defect prediction with meta-learning,” Ph.D.
dissertation, Instituto de Ciéncias Matemadticas e de Computagdo, Univer-
sidade de Sao Paulo, Sao Paulo, Brazil, 2017.

[2] J. Li, P. He, J. Zhu, and M. R. Lyu, “Software defect prediction via
convolutional neural network,” in Proc. IEEE Int. Conf. Softw. Qual., Rel.
Secur. (QRS), Jul. 2017, pp. 318-328.

[3] A.Okutan and O. T. Yildiz, “Software defect prediction using Bayesian
networks,” Empirical Softw. Eng., vol. 19, no. 1, pp. 154-181, Feb. 2014.

[4] S. Wang, T. Liu, and L. Tan, “Automatically learning semantic features
for defect prediction,” in Proc. 38th Int. Conf. Softw. Eng., May 2016,
pp. 297-308.

[S] L.Madeyski and M. Jureczko, “Which process metrics can significantly
improve defect prediction models? An empirical study,” Softw. Qual. J.,
vol. 23, no. 3, pp. 393-422, Sep. 2015.

[6] G.R.Choudhary, S. Kumar, K. Kumar, A. Mishra, and C. Catal, “Empir-
ical analysis of change metrics for software fault prediction,” Comput.
Electr. Eng., vol. 67, pp. 15-24, Apr. 2018.

[71 R.Moser, W. Pedrycz, and G. Succi, “A comparative analysis of the effi-
ciency of change metrics and static code attributes for defect prediction,”
in Proc. 13th Int. Conf. Softw. Eng. ICSE, 2008, pp. 181-190.

[8] W. Rhmann, B. Pandey, G. Ansari, and D. K. Pandey, “Software fault
prediction based on change metrics using hybrid algorithms: An empirical
study,” J. King Saud Univ. Comput. Inf. Sci., vol. 32, no. 4, pp. 419-424,
May 2020.

VOLUME 9, 2021

L. Siki¢ et al.: Improving Software Defect Prediction by Aggregated Change Metrics

IEEE Access

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]
[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

X. Yang, D. Lo, X. Xia, Y. Zhang, and J. Sun, “Deep learning for just-in-
time defect prediction,” in Proc. IEEE Int. Conf. Softw. Qual., Rel. Secur.,
Aug. 2015, pp. 17-26.

Y. Kamei, E. Shihab, B. Adams, A. E. Hassan, A. Mockus, A. Sinha, and
N. Ubayashi, ““A large-scale empirical study of just-in-time quality assur-
ance,” IEEE Trans. Softw. Eng., vol. 39, no. 6, pp. 757-773, Jun. 2013.
Q. He, B. Shen, and Y. Chen, ‘““Software defect prediction using semi-
supervised learning with change burst information,” in Proc. IEEE 40th
Annu. Comput. Softw. Appl. Conf. (COMPSAC), Jun. 2016, pp. 113-122.
Y. Xia, G. Yan, and H. Zhang, “Analyzing the significance of process
metrics for TT&C software defect prediction,” in Proc. IEEE 5th Int.
Conf. Softw. Eng. Service Sci., Jun. 2014, pp. 77-81.

D. Wahyudin, A. Schatten, D. Winkler, A. M. Tjoa, and S. Biffl, “Defect
prediction using combined product and project metrics-a case study
from the open source ‘apache’ myfaces project family,” in Proc. 34th
Euromicro Conf. Softw. Eng. Adv. Appl., Sep. 2008, pp. 207-215.

T. Menzies, Z. Milton, B. Turhan, B. Cukic, Y. Jiang, and A. Bener,
“Defect prediction from static code features: Current results, limitations,
new approaches,” Automated Softw. Eng., vol. 17, no. 4, pp. 375-407,
Dec. 2010.

T. J. Shippey, “Exploiting abstract syntax trees to locate software
defects,” Ph.D. dissertation, School Comput. Sci., Univ. Hertfordshire,
Hatfield, U.K., 2015.

M. H. Halstead, Elements of Software Science. Haarlem, The Netherlands:
North-Holland, 1977.

C. Manjula and L. Florence, ‘‘Deep neural network based hybrid approach
for software defect prediction using software metrics,” Cluster Comput.,
vol. 22, no. 4, pp. 9847-9863, 2019.

O.F. Arar and K. Ayan, ““Software defect prediction using cost-sensitive
neural network,” Appl. Soft Comput., vol. 33, pp. 263-277, Aug. 2015.
L. Guo, Y. Ma, B. Cukic, and H. Singh, “Robust prediction of fault-
proneness by random forests,” in Proc. 15th Int. Symp. Softw. Rel. Eng.,
Nov. 2004, pp. 417-428.

A. Kaur and R. Malhotra, “Application of random forest in predicting
fault-prone classes,” in Proc. Int. Conf. Adv. Comput. Theory Eng.,
Dec. 2008, pp. 37-43.

K. O. Elish and M. O. Elish, “Predicting defect-prone software mod-
ules using support vector machines,” J. Syst. Softw., vol. 81, no. 5,
pp. 649-660, May 2008.

T. J. McCabe, “A complexity measure,” IEEE Trans. Softw. Eng.,
vol. SE-2, no. 4, pp. 308-320, Dec. 1976.

S. R. Chidamber and C. F. Kemerer, ““A metrics suite for object oriented
design,” IEEE Trans. Softw. Eng., vol. 20, no. 6, pp. 476-493, Jun. 1994.
M. Gradi$nik, T. Berani¢, and S. Karakati¢, “Impact of historical software
metric changes in predicting future maintainability trends in open-source
software development,” Appl. Sci., vol. 10, no. 13, p. 4624, Jul. 2020.
R. Harrison, S. J. Counsell, and R. V. Nithi, ““An evaluation of the MOOD
set of object-oriented software metrics,” IEEE Trans. Softw. Eng., vol. 24,
no. 6, pp. 491-496, Jun. 1998.

S. Kim, H. Zhang, R. Wu, and L. Gong, “Dealing with noise in defect
prediction,” in Proc. 33rd Int. Conf. Softw. Eng. ICSE, May 2011,
pp. 481-490.

L. Qiao and Y. Wang, “Effort-aware and just-in-time defect predic-
tion with neural network,” PLoS ONE, vol. 14, no. 2, Feb. 2019,
Art. no. e0211359.

B. Stanic, “Static code metrics vs. Process metrics for software
fault prediction using Bayesian network learners,” M.S. thesis,
Dept. Softw. Eng., School Innov., Des. Eng., Mailardalen Univ.,
Visterds, Sweden, 2015. [Online]. Available: http://www.diva-portal.org/
smash/record.jsf?pid=diva2%3A874471&dswid=-4377

T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy, “Predicting fault inci-
dence using software change history,” IEEE Trans. Softw. Eng., vol. 26,
no. 7, pp. 653-661, Jul. 2000.

D. Radjenovic, M. Hericko, R. Torkar, and A. Zivkovic’, “Software fault
prediction metrics: A systematic literature review,” Inf. Softw. Technol.,
vol. 55, no. 8, pp. 1397-1418, Aug. 2013.

S. Majumder, P. Mody, and T. Menzies, “‘Revisiting process versus prod-
uct metrics: A large scale analysis,” 2020, arXiv:2008.09569. [Online].
Available: http://arxiv.org/abs/2008.09569

J. Nam, “Survey on software defect prediction,” Dept. Compter Sci. Eng.,
Hong Kong Univ. Sci. Technol., Tech. Rep. 2014.

C. Pan, M. Lu, B. Xu, and H. Gao, “An improved CNN model for within-
project software defect prediction,” Appl. Sci., vol. 9, no. 10, p. 2138,
May 2019.

VOLUME 9, 2021

[34]

[35]

[36]

[37]

[38]

[39]
[40]
[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

H. K. Dam, T. Pham, S. Wee Ng, T. Tran, J. Grundy, A. Ghose, T. Kim,
and C.-J. Kim, “A deep tree-based model for software defect predic-
tion,” 2018, arXiv:1802.00921. [Online]. Available: http://arxiv.org/abs/
1802.00921

H. Liang, Y. Yu, L. Jiang, and Z. Xie, “Seml: A semantic LSTM model
for software defect prediction,” IEEE Access, vol. 7, pp. 83812-83824,
2019.

G. Fan, X. Diao, H. Yu, K. Yang, and L. Chen, “Software defect pre-
diction via attention-based recurrent neural network,” Sci. Program.,
vol. 2019, pp. 1-14, Apr. 2019.

Q. Zhang and B. Wu, “Software defect prediction via transformer,”
in Proc. IEEE 4th Inf. Technol., Netw., Electron. Autom. Control Conf.
(ITNEC), Jun. 2020, pp. 874-879.

N. Hoque, D. K. Bhattacharyya, and J. K. Kalita, “MIFS-ND: A mutual
information-based feature selection method,” Expert Syst. Appl., vol. 41,
no. 14, pp. 6371-6385, Oct. 2014.

S. Kan, Metrics and Models in Software Quality Engineering, 2nd ed.
Reading, MA, USA: Addision-Wesley, 2002.

I. E. Frank and R. Todeschini, The Data Analysis Handbook. Amsterdam,
The Netherlands: Elsevier, 1994.

M. Dash and H. Liu, “Feature selection for classification,” Intell. Data
Anal., vol. 1, nos. 1-4, pp. 131-156, 1997.

R. Shatnawi and W. Li, “The effectiveness of software metrics in iden-
tifying error-prone classes in post-release software evolution process,”
J. Syst. Softw., vol. 81, no. 11, pp. 1868—1882, Nov. 2008.

T. Zimmermann, R. Premraj, and A. Zeller, “Predicting defects for
eclipse,” in Proc. 3rd Int. Workshop Predictor Models Softw. Eng.
(PROMISE, ICSE Workshops), May 2007, p. 9.

L. Guo, Y. Ma, B. Cukic, and H. Singh, “Robust prediction of fault-
proneness by random forests,” in Proc. 15th Int. Symp. Softw. Rel. Eng.,
Nov. 2004, pp. 417-428.

J. Jiarpakdee, C. Tantithamthavorn, and C. Treude, ‘“‘AutoSpearman:
Automatically mitigating correlated metrics for interpreting defect
models,” 2018, arXiv:1806.09791. [Online]. Available: http://arxiv.org/
abs/1806.09791

J. Jiarpakdee, C. Tantithamthavorn, and A. E. Hassan, “The impact of
correlated metrics on the interpretation of defect models,” IEEE Trans.
Softw. Eng., early access, Jan. 10, 2019, doi: 10.1109/TSE.2019.2891758.
T. M. Khoshgoftaar and K. Gao, “‘Feature selection with imbalanced data
for software defect prediction,” in Proc. Int. Conf. Mach. Learn. Appl.,
Dec. 2009, pp. 235-240.

H. Wang, T. M. Khoshgoftaar, K. Gao, and N. Seliya, “Mining data from
multiple software development projects,” in Proc. IEEE Int. Conf. Data
Mining Workshops, Dec. 2009, pp. 551-557.

S.-J. Lee, Z. Xu, T. Li, and Y. Yang, “A novel bagging C4.5 algo-
rithm based on wrapper feature selection for supporting wise clin-
ical decision making,” J. Biomed. Informat., vol. 78, pp. 144-155,
Feb. 2018.

D. Rodriguez, R. Ruiz, J. Cuadrado-Gallego, J. Aguilar-Ruiz, and
M. Garre, “Attribute selection in software engineering datasets for detect-
ing fault modules,” in Proc. 33rd EUROMICRO Conf. Softw. Eng. Adv.
Appl. (EUROMICRO), Aug. 2007, pp. 418-423.

H. Osman, M. Ghafari, and O. Nierstrasz, “The impact of feature
selection on predicting the number of bugs,” 2018, arXiv:1807.04486.
[Online]. Available: http://arxiv.org/abs/1807.04486

I. Gondra, “Applying machine learning to software fault-
proneness prediction,” J. Syst. Softw., vol. 81, no. 2, pp. 186-195,
Feb. 2008.

H. Osman, M. Ghafari, and O. Nierstrasz, ‘“‘Automatic feature selection
by regularization to improve bug prediction accuracy,” in Proc. IEEE
Workshop Mach. Learn. Techn. for Softw. Qual. Eval. (MaLTeSQuE),
Feb. 2017, pp. 27-32.

K. Muthukumaran, A. Rallapalli, and N. L. B. Murthy, “‘Impact of feature
selection techniques on bug prediction models,” in Proc. 8th India Softw.
Eng. Conf., Feb. 2015, pp. 120-129.

K. Gao, T. M. Khoshgoftaar, H. Wang, and N. Seliya, “Choosing soft-
ware metrics for defect prediction: An investigation on feature selec-
tion techniques,” Softw., Pract. Exper., vol. 41, no. 5, pp. 579-606,
Apr. 2011.

L. Jia, “A hybrid feature selection method for software defect prediction,”
IOP Conf. Ser., Mater. Sci. Eng., vol. 394, Aug. 2018, Art. no. 032035.
F. Wang, J. Ai, and Z. Zou, “A cluster-based hybrid feature selection
method for defect prediction,” in Proc. IEEE 19th Int. Conf. Softw. Qual.,
Rel. Secur. (QRS), Jul. 2019, pp. 1-9.

19409

http://dx.doi.org/10.1109/TSE.2019.2891758

IEEE Access

L. Siki¢ et al.: Improving Software Defect Prediction by Aggregated Change Metrics

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

19410

M. Harman, “The relationship between search based software engineer-
ing and predictive modeling,” in Proc. 6th Int. Conf. Predictive Models
Softw. Eng. PROMISE, 2010, pp. 1-13.

L. Son, N. Pritam, M. Khari, R. Kumar, P. Phuong, and P. Thong,
“Empirical study of software defect prediction: A systematic mapping,”
Symmetry, vol. 11, no. 2, p. 212, Feb. 2019.

C. Catal and B. Diri, “Software defect prediction using artificial immune
recognition system,” in Proc. 25th Conf. IASTED Int. Multi-Conf., Softw.
Eng., 2007, pp. 285-290.

C. Catal, B. Diri, and B. Ozumut, ““An artificial immune system approach
for fault prediction in object-oriented software,” in Proc. 2nd Int.
Conf. Dependability Comput. Syst. (DepCoS-RELCOMEX), Jun. 2007,
pp. 238-245.

D. Azar and J. Vybihal, “An ant colony optimization algorithm to
improve software quality prediction models: Case of class stability,” Inf.
Softw. Technol., vol. 53, no. 4, pp. 388-393, Apr. 2011.

K. Kumar, D. Jayadev Gyani, and G. Narsimha, “Software defect pre-
diction using ant colony optimization,” Int. J. Appl. Eng. Res., vol. 13,
no. 19, pp. 14291-14297, 2018.

M. Akour and W. Y. Melhem, “Software defect prediction using genetic
programming and neural networks,” Int. J. Open Source Softw. Processes,
vol. 8, no. 4, pp. 32-51, Oct. 2017.

S. S. Rathore and S. Kumar, “Predicting number of faults in software
system using genetic programming,” Procedia Comput. Sci., vol. 62,
pp. 303-311, Jan. 2015.

G. Denaro and M. Pezze, “An empirical evaluation of fault-proneness
models,” in Proc. 24th Int. Conf. Softw. Eng., ICSE, May 2002,
pp. 241-251.

T. M. Khoshgoftaar and N. Seliya, ‘“Tree-based software quality estima-
tion models for fault prediction,” in Proc. 8th IEEE Symp. Softw. Metrics,
Jun. 2002, pp. 203-214.

J. Galindo and P. Tamayo, ‘““Credit risk assessment using statistical and
machine learning: Basic methodology and risk modeling applications,”
Comput. Econ., vol. 15, no. 1, pp. 107-143, 2000.

J. Nam, W. Fu, S. Kim, T. Menzies, and L. Tan, ‘Heterogeneous
defect prediction,” IEEE Trans. Softw. Eng., vol. 44, no. 9, pp. 874-896,
Sep. 2018.

B. Turhan and A. Bener, “Analysis of naive bayes’ assumptions on
software fault data: An empirical study,” Data Knowl. Eng., vol. 68, no. 2,
pp. 278-290, Feb. 2009.

R. T. Asmono, R. S. Wahono, and A. Syukur, “Absolute correlation
weighted naive Bayes for software defect prediction,” J. Softw. Eng.,
vol. 1, no. 1, pp. 3845, 2015.

X. Xuan, D. Lo, X. Xia, and Y. Tian, “Evaluating defect prediction
approaches using a massive set of metrics: An empirical study,” in Proc.
30th Annu. ACM Symp. Appl. Comput., Apr. 2015, pp. 1644-1647.

J. Wang, B. Shen, and Y. Chen, “Compressed C4.5 models for software
defect prediction,” in Proc. 12th Int. Conf. Qual. Softw., Aug. 2012,
pp. 13-16.

T. Lee, J. Nam, D. Han, S. Kim, and H. P. In, “Micro interaction metrics
for defect prediction,” in Proc. 19th ACM SIGSOFT Symp. 13th Eur.
Conf. Found. Softw. Eng. SIGSOFT/FSE, 2011, pp. 311-321.

A. G. Koru and H. Liu, “Building effective defect-prediction
models in practice,” [EEE Softw., vol. 22, no. 6, pp.23-29,
Nov. 2005.

D. Gray, D. Bowes, N. Davey, Y. Sun, and B. Christianson, ‘““Soft-
ware defect prediction using static code metrics underestimates defect-
proneness,” in Proc. Int. Joint Conf. Neural Netw. (IJCNN), Jul. 2010,
pp. 1-7.

L. Jiang, S. Jiang, L. Gong, Y. Dong, and Q. Yu, “Which process
metrics are significantly important to change of defects in evolving
projects: An empirical study,” IEEE Access, vol. 8, pp. 93705-93722,
2020.

T. J. Ostrand, E. J. Weyuker, and R. M. Bell, ‘“Programmer-based
fault prediction,” in Proc. 6th Int. Conf. Predictive Models Softw. Eng.
PROMISE, 2010, pp. 1-10.

S. Matsumoto, Y. Kamei, A. Monden, K.-I. Matsumoto, and
M. Nakamura, “An analysis of developer metrics for fault prediction,”
in Proc. 6th Int. Conf. Predictive Models Softw. Eng. - PROMISE, 2010,
pp. 1-9.

T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell, “A sys-
tematic literature review on fault prediction performance in software
engineering,” IEEE Trans. Softw. Eng., vol. 38, no. 6, pp. 1276-1304,
Nov. 2012.

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

Y. Shin, A. Meneely, L. Williams, and J. A. Osborne, “Evaluating
complexity, code churn, and developer activity metrics as indicators
of software vulnerabilities,” IEEE Trans. Softw. Eng., vol. 37, no. 6,
pp. 772787, Nov. 2011.

J. Eyolfson, L. Tan, and P. Lam, “Do time of day and developer experi-
ence affect commit bugginess,” in Proc. 8th Work. Conf. Mining Softw.
Repositories MSR, 2011, pp. 153-162.

F. Rahman and P. Devanbu, “Ownership, experience and defects: A fine-
grained study of authorship,” in Proc. 33rd Int. Conf. Softw. Eng. ICSE,
2011, pp. 491-500.

R. M. Bell, T. J. Ostrand, and E. J. Weyuker, “The limited impact
of individual developer data on software defect prediction,” Empirical
Softw. Eng., vol. 18, no. 3, pp. 478-505, Jun. 2013.

S. O. Kini and A. Tosun, “Periodic developer metrics in software defect
prediction,” in Proc. IEEE 18th Int. Work. Conf. Source Code Anal.
Manipulation (SCAM), Sep. 2018, pp. 72-81.

R. M. Bell, T. J. Ostrand, and E. J. Weyuker, “Does measuring code
change improve fault prediction?”” in Proc. 7th Int. Conf. Predictive
Models Softw. Eng. Promise, 2011, pp. 1-8.

N. Nagappan, A. Zeller, T. Zimmermann, K. Herzig, and B. Murphy,
“Change bursts as defect predictors,” in Proc. IEEE 21st Int. Symp. Softw.
Rel. Eng., Nov. 2010, pp. 309-318.

S. A. Ajila and R. T. Dumitrescu, ‘“Experimental use of code delta, code
churn, and rate of change to understand software product line evolution,”
J. Syst. Softw., vol. 80, no. 1, pp. 74-91, Jan. 2007.

S. Kim, E. J. Whitehead, and Y. Zhang, “Classifying software changes:
Clean or buggy,” IEEE Trans. Softw. Eng., vol. 34, no. 2, pp. 181-196,
Mar. 2008.

Y. Kastro and A. B. Bener, “A defect prediction method for soft-
ware versioning,” Softw. Qual. J., vol. 16, no. 4, pp.543-562,
Dec. 2008.

Y. Liu, Y. Li, J. Guo, Y. Zhou, and B. Xu, “Connecting software metrics
across versions to predict defects,” in Proc. IEEE 25th Int. Conf. Softw.
Anal., Evol. Reeng. (SANER), Mar. 2018, pp. 232-243.

F. Rahman and P. Devanbu, “How, and why, process metrics are
better,” in Proc. 35th Int. Conf. Softw. Eng. (ICSE), May 2013,
pp. 432-441.

T. Illes-Seifert and B. Paech, “Exploring the relationship of a file’s
history and its fault-proneness: An empirical method and its application to
open source programs,” Inf. Softw. Technol., vol. 52, no. 5, pp. 539-558,
May 2010.

A. E. Hassan, “Predicting faults using the complexity of code changes,”
in Proc. IEEE 31st Int. Conf. Softw. Eng., May 2009, pp. 78-88.

E. Arisholm, L. C. Briand, and E. B. Johannessen, “A systematic and
comprehensive investigation of methods to build and evaluate fault pre-
diction models,” J. Syst. Softw., vol. 83, no. 1, pp. 2-17, Jan. 2010.

C. Rosen, B. Grawi, and E. Shihab, “Commit guru: Analytics and risk
prediction of software commits,” in Proc. 10th Joint Meeting Found.
Softw. Eng., Aug. 2015, pp. 966-969.

D. Bowes, T. Hall, and J. Petri¢, ““Software defect prediction: Do dif-
ferent classifiers find the same defects?” Softw. Qual. J., vol. 26, no. 2,
pp. 525-552, Jun. 2018.

A. Géron, Hands-on Machine Learning With Scikit-Learn, Keras, and
Tensorflow: Concepts, Tools, and Techniques to Build Intelligent Systems.
Newton, MA, USA: O’Reilly Media, 2019.

Q. Huang, C. Fang, S. Mittal, and R. D. Blanton, “Improving diagnosis
efficiency via machine learning,” in Proc. IEEE Int. Test Conf. (ITC),
Oct. 2018, pp. 1-10.

Y. Jiang, J. Lin, B. Cukic, and T. Menzies, ‘‘Variance analysis in software
fault prediction models,” in Proc. 20th Int. Symp. Softw. Rel. Eng.,
Nov. 2009, pp. 99-108.

R. M. O’brien, “A caution regarding rules of thumb for variance inflation
factors,” Qual. Quantity, vol. 41, no. 5, pp. 673-690, Sep. 2007.

J. Akosa, “Predictive accuracy: A misleading performance measure for
highly imbalanced data,” in Proc. SAS Global Forum, vol. 12, 2017,
pp. 2-5.

J. D. Evans, Straightforward Statistics for the Behavioral Sciences.
San Francisco, CA, USA: Thomson Brooks/Cole Publishing Co, 1996.
T. M. Khoshgoftaar, X. Yuan, and E. B. Allen, “Balancing misclassifi-
cation rates in classification-tree models of software quality,” Empirical
Softw. Eng., vol. 5, no. 4, pp. 313-330, 2000.

A. Mockus and D. M. Weiss, “Predicting risk of software changes,” Bell
Labs Tech. J., vol. 5, no. 2, pp. 169-180, Apr. 2000.

VOLUME 9, 2021

L. Siki¢ et al.: Improving Software Defect Prediction by Aggregated Change Metrics

IEEE Access

[106] P. Schober, C. Boer, and L. A. Schwarte, “Correlation coefficients:
Appropriate use and interpretation,” Anesthesia Analgesia, vol. 126,
no. 5, pp. 1763-1768, May 2018.

[107] 1. Arora, V. Tetarwal, and A. Saha, “Open issues in software defect
prediction,” Procedia Comput. Sci., vol. 46, pp. 906-912, Jan. 2015.

VOLUME 9, 2021

LUCA SIKIC received the master’s degree in
computer science from the University of Zagreb,
in 2018. Her Ph.D. project is source code defect
prediction. She has published in Journal of Soft-
ware and Systems. She is currently a Research
Associate with the Consumer Computing Labora-
tory, Faculty of Electrical Engineering and Com-
puting, University of Zagreb.

PETAR AFRIC received the master’s degree in
computer science from the University of Zagreb,
in 2018. His Ph.D. project is source code defect
prediction. He has published in Journal of Soft-
ware and Systems and has presented at the IEEE
International Conference on Software Quality,
Reliability and Security. He is currently a Research
Associate at the Consumer Computing Laboratory,
Faculty of Electrical Engineering and Computing,
University of Zagreb.

ADRIAN SATJA KURDIJA (Member, IEEE)
received the Ph.D. degree in computer science
from the Faculty of Electrical Engineering and
Computing, University of Zagreb, in 2020. His
Ph.D. project deals with service selection and
QoS prediction. He has published in the IEEE
COMMUNICATIONS LETTERS, the European Journal of
Operational Research, the International Journal
of Web and Grid Services, the Knowledge-Based

: Systems, and the IEEE TRANSACTIONS ON SERVICES
CompuTING. He is currently a Research Assistant at the Consumer Computing
Laboratory, Faculty of Electrical Engineering and Computing, University of
Zagreb.

MARIN SILIC (Member, IEEE) received the Ph.D.
degree in computer science from the Faculty of
Electrical Engineering and Computing, Univer-
sity of Zagreb, in 2013. He is currently an Asso-
ciate Professor at the Faculty of Electrical Engi-
neering and Computing, University of Zagreb.
His research interests span machine learning, data
mining, service-oriented computing, and software
engineering. He has published several papers in the
IEEE TrANsAcTIONS ON SERVICES ComPUTING, IEEE
TRANSACTIONS ON DEPANDABLE AND SECURE COMPUTING, Journal of Systems and
Software, and Knowledge-Based Systems. Also, he has published his research
results at the ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering and at the IEEE
International Conference on Software Quality, Reliability and Security.

19411

