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ABSTRACT The impervious surface area (ISA) has become an important parameter in the areas such
as surface runoff, climate change, and socioeconomic analysis. However, using remote sensing data to
accurately map ISA is still difficult due to its complexity in the arid and semi-arid areas with large amounts
of bare soil, sparse vegetation, and a small ISA. In this study, we have selected Ordos city as study area and
examined the spatial pattern and dynamics in the years of 1990, 1995, 2000, 2005, 2010, 2015, and 2019 by
using multiple data sources with a combination method. The results indicate that the ISAs in 2010, 2015, and
2019 were extracted with overall accuracies of 90.6%, 89.2%, and 91.8% with kappa coefficients of 0.79,
0.76, and 0.82, respectively. The ISA extraction results of theUrban Index (UI), NormalizedDifference Built-
Up Index (NDBI), Index-based Built-Up Index (IBI), and Impervious Built-up Index from optical sensors
(IBUIopt) were used for comparison. Meanwhile, a correlation analysis between socioeconomic factors and
the ISA of the typical resource-based city of Ordos was conducted. The spatial pattern and dynamics of the
ISA data in Ordos city are of great significance to the study of socioeconomic and environmental changes
and provide a reference to examine the effect of ISAs in other resource-based cities.

INDEX TERMS Impervious surface area, Landsat, VIIRS-DNB, nighttime light.

I. INTRODUCTION
With the rapid development of global urbanization, over half
of the World’s population (54%) lives in urban areas [1].
The urban population in the world will reach 6.3 billion
and the ratio is projected to 66% of the world’s population
by 2050 [2]. Urbanization is not only related to population
growth but also the economic development [3], [4]. There
are many kinds of research that have demonstrated that the
city developmentmodel can affect the economic development
and ecological environment [5], [6]. Impervious surfaces are
usually defined as man-made features that do not allow water
to penetrate through the ground, e.g., cement roads, build-
ing roofs, and parking lots. Impervious surface area (ISA)
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is not only an indicator of urban development, but also a
key sensitive parameter to monitor environmental quality in
built-up areas [7]. Hence, mapping the ISA in urban areas
is important because it is beneficial to the sustainable city
development.

The arid/semiarid areas cover a large area of the earth’s
land surface, are especially vulnerable as low precipita-
tion and ISA increases. Moreover, these cities tend to have
a high population concentration [8]–[11], where the rapid
development of the economy has accelerated the process
of urbanization and made urban areas expand outward that
resulted in increasing ISA size [12]–[14]. This has a series
of impacts on the ecological environment, such as vegetation
degradation, increased water pollution, and increased energy
consumption [15]–[20]. Therefore, the timely and accurate
understanding of the current situation of urban development
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and its dynamics in arid/semiarid regions is of great
significance.

Due to the limitations of traditional surveying techniques,
remote sensing imagery has been widely used in recent
years, having several advantages such as wide coverage, fast
information acquisition, and spatial consistency [21], [22].
Multiple remote-sensing data sources have been used in ISA
mapping, such as high (from the Ikonos-2, Gaofen-1, and
QuickBird satellites), medium (from the Landsat program),
and coarse spatial resolution images (e.g., Moderate Reso-
lution Imaging Spectroradiometer (MODIS) and nighttime
light (NTL) data) [15], [21], [23]. High spatial resolution
images can achieve better results when used for fine clas-
sification [24], ISA mapping [25]–[27] and urban building
extraction [28], [29]. However, the data acquisition from
these sources comes at a high cost, more time-consumption
and laborious, that makes long-term sequence monitoring not
easily performed [30]. Medium and coarse spatial resolution
images are the most commonly used data sources because of
their easy accessibility and long-time horizon. The spectral
index method based on a single remote sensing data source is
widely used such as, the Urban Index (UI) [31], Normalized
Difference Built-Up Index (NDBI) [32], Index-based Built-
Up Index (IBI) [33], Impervious Built-up Index from optical
sensors (IBUIopt) [34]. However, due to the complex spectral
properties of the features, classification and extraction can-
not be effectively performed using a single remote sensing
data source. Nevertheless, the development of NTL imagery
(e.g., Defense Meteorological Satellite Program Operational
Linescan System (DMSP-OLS) and Visible Infrared Imaging
Radiometer Suite with Day/Night Band (VIIRS-DNB)) has
solved the above problems.

NTL remote sensing records areas with dense human
socioeconomic activity, such as cities, towns, and factories,
on the surface of the earth [35]–[37]. NTL data show a
negative correlation with human activities such as poverty,
while a positive correlation with energy consumption, urban
extent, and gross domestic product (GDP) [38]–[42]. Several
kinds of research on ISA extraction have been implemented
by employing NTL remote sensing imagery. Bagan et al.
used DMSP-OLS data to map ISA distribution at the global
scale [43]. Lawrence et al. and Zhou et al. used the thresh-
olding approach of the NTL data to map large scale ISA
spatial distribution [44], [45]. Due to the blooming effects and
coarse spatial resolution in the NTL data, only using NTL
data to map ISA will inaccurate [21], [22]. Lu et al. [46]
estimated the fractional ISA in southeast China based on
the combination of DMSP OLS and MODIS NDVI (normal-
ized difference vegetation index) data with high accuracy.
Therefore, a lot of studies have shifted towards combination
of multiple remote sensing data sources [15], [47], [48].
Guo et al. proposed a framework based on the combination of
DMSP-OLS and MODIS NDVI data to estimate impervious
areas [47]. Guo et al. developed the modified impervious sur-
face index (MISI) based on the VIIRSDNB and Provb-V data
to map ISA distribution in China [15]. This combination has

been proven effective in increasing ISA mapping accuracy in
urban landscapes. Xue et al. used VIIRS nighttime light data
and Landsat 8 multispectral data to delineate urban bound-
aries with high accuracy [48]. A combination method based
on multiple data sources has proven effective in improving
ISA mapping accuracy in complex urban landscapes [15].
However, this method is rarely used in arid/semi-arid areas,
and the potential of this method has not been explored in
the face of the similarity between ISA spectral characteris-
tics and bare soil with medium and high spatial resolution
images [10].

The reviewed literature on spectral indices leads us to
conclude that these indices have not been comprehensively
addressed the confusion between impervious surface and bare
soil. Moreover, it has been shown that nighttime light data has
great potential for impervious surface extraction. Therefore,
this study aims to develop an effective framework to map the
accurate ISA distribution for arid/semiarid areas derived from
three Landsat sensors (TM, ETM+, OLI-TIRS) and two NTL
sensors (DMSP-OLS, VIIRS-DNB). Ordos city in China is
selected for this research and the spatial pattern and dynamics
were examined in 1990, 1995, 2000, 2005, 2010, 2015, and
2019. The ISA mapping results obtained using the frame-
work in this paper were compared with the results of other
remote sensing indices (UI, NDBI, IBI, and IBUIopt). The
relationship between socioeconomic factors and the ISA is
also conducted. The results of this study provide a framework
for mapping impervious surface areas in arid/semiarid areas.

II. STUDY AREA AND DATASETS
A. STUDY AREA
Ordos is a typical resource-based city located in semi-arid
area [49], [50]. It is selected as the study area for this research,
that includes two experiments. First experiment demonstrates
to the accurate extraction of ISA from 30 m spatial resolution
images to analyze the ISA spatial patterns and examine the
ISA dynamics in Ordos over the 30 years from 1990 to 2019.
Secondly, this research aims to explore the potential relation-
ship between the ISA of a typical resource-based city (Ordos)
and its socioeconomic circumstances via correlation analysis.
Ordos is a prefecture-level city located in the southwest of
the Inner Mongolia Autonomous Region (Figure 1), which is
around 340 km in the north-south, 400 km in the east-west
direction. It has an area of 86,900 km2 and elevation between
792 m and 1777 m. Its terrain is low in the northeast and high
in the southwest. The hilly and gully areas in the east and
the wavy plateau areas in the west covers around 30% and
24% of the total land area, respectively.Moreover, the Kubuqi
desert and Maowusu sandy land in the middle and the Yellow
River area in the north account for around 40% and 6% of
the total land area respectively [51]. Ordos has a temper-
ate continental climate with an average annual temperature
between 6.7-8.4 ◦C, an annual sunshine duration between
2881-3221.6 h, average annual relative humidity between
43-49%, average annual precipitation between 252-670 mm,
and annual evaporation ranging from 2000-3000 mm [52].
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FIGURE 1. The study area location: (a) Inner Mongolia in northern China, (b) Ordos in the southwest of Inner Mongolia, and
(c) a detailed map of Ordos.

B. DATASETS
The datasets employed in this study are shown in the Table 1,
including NTL (DMSP-OLS in 1990, 1995, 2000, 2005 and
2010, and VIIRS-DNB in 2015 and 2019), Landsat multi-
spectral data (Landsat-TM (ThematicMapper) in 1990, 1995,
2000, and 2010, Landsat-ETM+ (Enhanced TM) in 2005,
and Landsat-OLI (Operational Land Imager) in 2015 and
2019), and high-spatial resolution imagery from Google
Earth are used to collect validation samples.

In addition to the remote sensing data, the socioeconomic
data (http://tj.nmg.gov.cn/ndsj/index.html) are also selected.
These datasets include: National Economy (i.e., total GDP
(TGDP), GDP in secondary industry (GDPS), GDP in ter-
tiary industry (GDPT), per-capita GDP (PGDP)), Population
(i.e., registered population (RGP), resident population (RSP),
urban population (UP), rural population (RP)), Income
(i.e., local government revenue (LGR), resident saving
deposits (RSD), per-capita net income of peasants and herds-
men (PNI), per-capita disposable income of urban residents
(PDI)), Product and Investment (i.e., coal production (CP),
investment in fixed assets (IFA), power generation (PG)).

III. METHODS
The framework of mapping the ISA distribution using multi-
source remotely sensed data is shown in Figure 2. There are
three major steps: (1) extraction of the initial ISA data from
the NTL data for the selected city, (2) refinement of the initial
ISA to make detailed ISA distribution using Landsat images
through the removal of non-ISA areas, and (3) accuracy

analysis of the ISA estimation and examination of the ISA
spatial patterns and dynamics from 1990–2019.

A. EXTRACTION OF THE INITIAL ISA DATA FROM
THE NTL DATA
1) PREPROCESSING OF THE NTL DATA
Both the VIIRS-DNB and DMSP-OLS with geographic
systems re-projected into the ACEA coordinate system in
order to make the demonstration more convenient. The time-
series VIIRS-DNB data was resampledwith nearest-neighbor
resampling algorithm to a cell size of 500 × 500 m and the
time-series DMSP-OLS data to a cell size of 1 × 1 km.
Since the DMSP-OLS NTL images are not calibrated

for on-orbit radiation, they cannot be directly used for
research. In this study, the DMSP-OLS data was corrected
using the invariant region method [53]. Jixi city, Heilongjiang
was selected as the invariant region area, and the NTL data of
Jixi city taken by F16 satellites in 2005 was used as the frame
of reference [54]. The formula to establish the calibration
model expressed as (1):

DN_correct i = C0 × DN 2
i + C1 × DN i + C2 (1)

whereDN i andDN_correct i are the digital number values of
the ith pixel before and after correction while C0, C1, and C2
are the regression coefficient constant terms for the quadratic
polynomial. The parameter values of the quadratic polyno-
mial regression correction model of the image to be corrected
and the reference image are reported in the Table 2. Using the
corresponding quadratic polynomial model equations, each
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TABLE 1. The multitemporal and high spatial resolution datasets.

TABLE 2. Parameters of the quadratic polynomial regression model.

DMSP-OLS night light image that is required to be corrected
in the study area.

In addition, we used the annual correction model proposed
by Liu et al. to make full use of the night light information
obtained by different satellites in the same year [55]. The
model can be expressed as (2):

DN i =

{
0, DN a

i = 0 or DN b
i = 0(

DN a
i + DN

b
i

) /
2, otherwise

(2)

where DN a
i and DN b

i are the digital number values of the
ith pixel obtained by two different satellites after mutual

correction, and DN i represents the digital number value of
the ith pixel after correction.

2) THE NORMALIZED NTL DATA
The majority of the VIIRS-DNB data values were less than
70 nWcm−2sr−1, so we set 70 as the maximum threshold for
this data source in this research, in other words, pixel values
that are more than 70 were assigned as 70 [49]. Meanwhile,
the DMSP-OLS data have a small range of 0–63. The VIIRS-
DNB data and DMSP-OLS data is normalized as (3):

NTLnor =
NTL − NTLmin

NTLmax − NTLmin
(3)

where NTLnor is the normalized DMSP-OLS (VIIRS-DNB)
image while NTLmax and NTLmin represent the maximum
andminimum values in the VIIRS-DNB imagery and DMSP-
OLS imagery respectively. In addition, it should be noted that
we have adopted the method of [22] as the VIIRS-DNB data
processing method for March–April 2019.

For the VIIRS-DNB imagery, we used the IISI to get the
initial ISA which can improve ISA mapping performance
in arid/semiarid regions [10]. The IISI can be calculated
using (4):

IISI = log2(1+
√
DNBnor ) (4)
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FIGURE 2. Framework for mapping the fractional ISA dynamics in Ordos.

where DNBnor represents normalized VIIRS-DNB data
which can obtained from (3). This logarithm model and coef-
ficient can keep the value between 0 and 1.

3) USING THE THRESHOLD ALGORITHM TO EXTRACT
THE INITIAL ISA DATA
Based on the findings in previous research on the ISA map-
ping, the NTL data (VIIRS-DNB & DMSP-OLS) contains
moonlight, gas flares, fires, clouds and background noise.
All these interfering factors should be excluded in urban ISA
mapping [22], [47]. Guo et al. used a threshold of 0.01 on
normalized VIIRS-DNB data to extract ISAs in arid and
semi-arid regions and achieved good results [10].Meanwhile,
Xu et al., Kuang et al., and Zhou et al. removed the back-
ground noise in DMSP-OLS by applying the threshold-
ing algorithm [3], [45], [55]. In this study, the value of
0.01 as the minimum threshold is used for extracting the
initial ISA from normalized NTL imagery, which effectively
ruled out non-ISA pixels (e.g., water, soil, vegetation, and
desert).

B. REFINEMENT OF THE INITIAL ISA DATA USING
LANDSAT IMAGES
Three types of Landsat images are used in this research.
Landsat-TM imagery covers seven bands, including one ther-
mal infrared bandwith 120m spatial resolution and six reflec-
tive bands with 30 m spatial resolution [56]. Landsat-ETM+
imagery covers eight bands, including one thermal infrared
band with 60 m spatial resolution, six reflective bands with
30 m spatial resolution, and one panchromatic band with
15 m spatial resolution [57]. Landsat-OLI imagery covers
11 bands, there are two thermal infrared bands with 100 m
spatial resolution, eight reflective bands with 30 m spatial
resolution, and the last one is panchromatic band with higher
spatial resolution (15m) [22], [58]. Reflective bands with
30 m spatial resolution are mainly used in this research. The
time-series Landsat (TM, ETM+, and OLI) data for 1990,
1995, 2000, 2005, 2010, 2015, and 2019 with 30 m spa-
tial resolution are all re-projected into the ACEA projection
from the Universal Transverse Mercator (UTC) coordinate
system.
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As illustrated in Figure 2, ISA data was extracted from
Landsat imagery using threshold and cluster analysis. The
major procedures include (1) calculating NDVI and MNDWI
to remove vegetation and water, (2) extracting spectral infor-
mation and performing cluster analysis, (3) merging all the
clusters until the last two kinds (ISA and non-ISA) and con-
duct accuracy assessment for ISA.

The results of previous research indicate that NDVI
is most frequently used to distinguish vegetation from
non-vegetation, while MNDWI can separate water from
non-water land cover [22]. In this study, threshold value
of 0.3 is used on NDVI to separate the vegetation information
(i.e., the pixel was considered as vegetation when its NDVI
value is greater than 0.3). Accordingly, threshold value
of 0.1 is used on MNDWI data to exclude water information
(i.e., the pixel is considered as water with its MNDWI value
greater than 0.1).

After removing the water and vegetation areas in the
initially produced Landsat images, the rest of pixels are
mainly bare soil and ISA. Then the ISODATA algorithm is
used to classify the rest pixels. In this research, we set the
clusters as 100. The clusters are finally merged into ISA
and non-ISA according to their spectral characteristics and
visual interpretation results in Google Earth high-resolution
imagery [21], [22], [47].

C. ACCURACY ANALYSIS OF THE ISA ESTIMATES AND
EXAMINATION OF THE ISA SPATIAL PATTERNS
AND DYNAMICS
The ISAs for 2010, 2015, and 2019 were evaluated using
reference data from high spatial resolution images in the
Google Earth. A random sampling method was employed
to select the validation samples. 1200 samples comprising
800 non-ISA and 400 ISA were selected for each year.
Traditionally, an error matrix is used to evaluate classification
accuracy [59]. From the error matrix, overall, producer,
and user accuracy, as well as the kappa coefficient, are
often selected to evaluate pixel-level classification accuracy
[59], [60]. ISAs for 1990, 1995, 2000 and 2005 were not eval-
uated because of the lack of high spatial resolution images.
However, it can be assumed as the ISAmapping accuracy was
similar because of the robust ISA mapping procedure used
in this research. Finally, examination of the ISAs in 1990,
1995, 2000, 2005, 2010, 2015, and 2019, as well as the
spatial dynamics for 1990–2019 in Ordos was successfully
conducted.

D. SPECTRAL INDICES
To determine the effectiveness of the method used in this
paper for mapping ISA, several other spectral indices such
as MNDWI, NDVI, SAVI, UI, NDBI, IBI, and IBUIopt were
employed to conduct a comparative analysis. The MNDWI
is a well-known index for rapid mapping the distribution of
water bodies. The NDVI and SAVI are spectral indices for
accurate mapping the distribution of vegetation areas. The
UI, NDBI, IBI, and IBUIopt are indices for quick mapping

the distribution of built-up areas. The formulas for the indices
are as fellow:

MNDWI =
ρGreen − ρSwir1

ρGreen + ρSwir1
(5)

NDVI =
ρNir − ρRed

ρNir + ρRed
(6)

SAVI =
(ρNir − ρRed ) ∗ (1+ l)

(ρNir + ρRed + l)
(7)

UI =
ρSwir2 − ρNir

ρSwir2 + ρNir
(8)

NDBI =
ρSwir1 − ρNir

ρSwir1 + ρNir
(9)

IBI =
NDBI − (SAVI +MNDWI )

/
2

NDBI + (SAVI +MNDWI )
/
2

(10)

IBUIopt = NDBI − SAVI −MNDWI (11)

whereρGreen, ρRed , ρNir , ρSwir1, and ρSwir2 are the sur-
face reflectance values of the green, red, near-infrared, first
shortwave infrared, and second shortwave infrared bands
respectively. l is a constant whose value depends on the soil
properties (l = 0.5 in this study).

TABLE 3. Accuracy assessment results of ISA estimates.

IV. RESULTS
A. ACCURACY ASSESSMENT OF THE ISA ESTIMATES
The results of the accuracy assessment using these metrics
for the ISA estimates are summarized in the Table 3. Using
the validation samples for the corresponding years of 2010,
2015, and 2019, the ISAs are accurately extractedwith overall
accuracies of 90.6%, 89.2%, and 91.8% with kappa coeffi-
cients of 0.79, 0.76, and 0.82 respectively. The ISA map-
ping performance in 2019 is higher than those in 2010 and
2015 which were major reasons of the expansion of the ISA
and sufficient high-resolution images for the classification.
Compared to the ISA results in southern China, the accuracy
in this study was slightly lower because of the similar spectral
signatures of the ISA and bare soil [47]. Although accuracy
assessments of the ISA results for 1990, 1995, 2000, and
2005 were not conducted, the visual interpretation of these
results with corresponding Landsat images confirmed their
accuracy.
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FIGURE 3. Spatial distribution of the ISA in the Ordos region in 2019. (a) ISA spatial distribution in Ordos ((a1) Dalate
banner, (a2) Zhungeer banner, (a3) Yijinhuoluo banner, (a4) Dongsheng district) and (b) the size and (c) percentage of
the ISA in each county in 2019.

VOLUME 9, 2021 19665



W. Guo et al.: Mapping Impervious Surface Distribution and Dynamics

B. EXAMINATION OF THE ISA SPATIAL PATTERNS AND
DYNAMIC CHANGES
The ISA of Ordos is 529.71 km2 in 2019, accounts for 0.61%
of the entire area. We found that the ISA is mainly located
in the north-eastern part of Ordos (380.7 km2 accounting
70.22% of the total ISA) (Figure 3). The Zhungeer banner
has the largest ISA of 110.8 km2 (20.43% of the total ISA)
followed by the Dongsheng district, the Yijinhuoluo ban-
ner, and the Dalate banner with 106.5, 90.3, and 73.2 km2

(19.64%, 16.65%, and 13.50% of the total ISA), respectively.
The highest ISA in Zhungeer Banner is related to the fact
that the area is rich in coal resources. It has 23% of the city’s
population living in that areas, has a large number of indus-
trial enterprises and the highest GDP of Ordos city. Likewise,
Dongsheng District has significant mineral resources and was
elected as one of the top 100 industrial counties in China
in 2018 and 2019.

The south-western region of Ordos (Etuoke banner,
Wushen banner, Etuokeqian banner, and Hangjin banner)
accounted for 29.78% of the total ISA. The ISA in the Etuoke
banner is 70.1 km2 (12.92% of the total ISA), followed by
Wushen banner, Etuokeqian banner, and Hangjin banner with
53.4, 22.0, and 15.9 km2 (9.85%, 4.06%, and 2.94% of the
total ISA), respectively.

The ISA in the Ordos region expanded rapidly from
1990–2019. As shown in Figure 4a, from 1990–2000, the ISA
concentrated in a small area and tended to expand outwards
(e.g., Dongsheng district and Yijinhuoluo banner). From
2000–2010, the ISA in Yijinhuoluo banner expanded to the
northeast and the ISA in Dongsheng district expanded to the
southwest. From 2010–2015, the ISA in the entire Ordos
region expanded significantly. The ISA of the Zhungeer
banner, the Dongsheng district, the Yijinhuoluo banner, and
the Dalate banner expanded from the county center to the
surrounding area due to large numbers of road networks and
buildings built in the Dongsheng district and the Yijinhuoluo
banner. For the period from 2015–2019, the ISA in the
Zhungeer banner continued to extend in the surrounding area,
while the ISA of the Dongsheng district and Dalate banner
extended to the northeast. However, the ISA in Yijinhuoluo
banner did not increase significantly.

The ISA increased 90.76 times from 5.76 km2 to
529.71 km2, showing exponential growth (y =

2.5164e0.7625x) with R2 of 0.9835 (Figure 4b). For
1990–1995, 1995–2000, and 2000–2005, the ISA increases
in Ordos are less than 50 km2 (8.70, 6.89, and 16.69 km2,
respectively). From 2005–2010, 2010–2015, and 2015–2019,
the ISA increased substantially by 65.81 (1.73-fold), 217.72
(2.10-fold), and 208.14 km2 (9.99-fold), respectively.
The Western Development Strategy was deployed

in 2001 and accelerated in 2006. The ISA in Ordos increases
tremendously from 2010-2019. During the period 2010-2015,
the ISA increased the most in Ordos, mainly due to economic
policies. GDP in Ordos increased by 158.29 billion yuan
during this period with the best coal benefits and increased
government investment in buildings and factories. A series

of policies were implemented by the government to improve
infrastructure conditions in 2010 such as the construction of
the airport in Yijinhuoluo Banner (Figure 3a3 & Figure 4a3).
The substantial increase in ISA in Ordos from 2015-2019 is
related to the policy of the ‘‘13th Five-Year Plan for Western
Development’’ implemented by the Inner Mongolia in 2017,
which involves the construction of major railway and road
transportation projects.

C. COMPARATIVE ANALYSIS WITH OTHER INDICES
Taking the Dongsheng district and Yijinhuoluo banner as
examples, the UI, NDBI, IBI, and IBUIopt images are
obtained using the equations (5)-(11). Figure 5 shows
extracted ISA using the five methods. As it can be seen, bare
soil and arid land surfaces are the main interference sources
of the five algorithms. Especially in arid and semi-arid areas
using remote sensing data to map ISA accurately is difficult
due to the complexity of large amounts of bare soil.

As shown in Figure 5, the UI algorithm can extract ISA
using spectral information, but confounds a large amount
of bare soil information in the results while not removing
the water bodies effectively. The ISA extraction results of
the NDBI algorithm confound the bare soil information but
outperform the extraction results of the UI algorithm. In addi-
tion, the NDBI algorithm does not remove the water bodies
and extraction of the built-up area requires a water body
mask. The SAVI index can be applied to the IBI algorithm
to make full use of the vegetation and soil information,
masking some of the bare soil. The ISA extraction results
of the IBI algorithm still have residual bare soil and water
bodies, especially the high albedo impervious surface with
low extraction accuracy. Compared to the UI, NDBI and IBI
algorithm, the ISA extraction results of the IBUIopt algorithm
have a higher accuracy, especially in densely built-up urban
areas. However, the extraction results are still confused with
wasteland and dry bare soil. None of the above four algo-
rithms can extract roads effectively such as discontinuous
roads and the roads are confused with the surrounding bare
soil and vegetation. Comparative experiments in two regions
show that the method in this paper can mask water bodies
and vegetation effectively as well as removes a large amount
of bare soil information. The extraction of ISA in arid and
semi-arid areas is more effective when using the method in
this paper than the other four methods mentioned above.

D. CORRELATION ANALYSIS BETWEEN THE ISA AND
SOCIOECONOMIC FACTORS
From 1990–2019, the ISA of Ordos, a typical resource-based
city, expanded significantly. In previous research, socioe-
conomic factors have often been used as the internal driv-
ing force for urban development [1]. In this research, we
selected 15 socioeconomic factors including the national
economy, population, income, and production and invest-
ment.We found that the ISA in the typical resource-based city
of Ordos has strong correlations with socioeconomic factors
(PGDP, LGR, and CP) from 1990–2019 (Figure 6).
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FIGURE 4. Spatial patterns of ISA expansion from 1990 to 2019 in the Ordos region. (a) ISA expansion in Ordos
((a1) Dalate banner, (a2) Zhungeer banner, (a3) Yijinhuoluo banner, and (a4) Dongsheng district) and ISA area (b) yearly
increase from 1990 to 2019 and (c) five-yearly growth and growth rate.
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FIGURE 5. Extraction of Impervious surface area using each type of index/remote sensing data transformation.

The area of the ISA in the Ordos region has a positive
correlation (R > 0.92) with the national economy at the sig-
nificance level of 0.01 (Figure 6a). For the national economy,

the area of ISA has positive correlations with TGDP
(R = 0.949), GDPS (R = 0.925), GDPT (R = 0.936), and
PGDP (R = 0.942). The ISA also has a positive correlation
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FIGURE 6. The relationships between the ISA and socioeconomic factors. (a) National economy, (b) population, (c) income, and (d) production and
investment. GDP, gross domestic product.

(R > 0.950) with income at the significance level of
0.01 (Figure 6c). It has positive correlations with LGR
(R = 0.978), RSD (R = 0.954), PDI (R = 0.960), and
PNI (R = 0.972). The ISA also has a positive correlation
(R > 0.88) with IFA, CP, and PG at the significance level
of 0.01 (Figure 6d). As shown in Figure 6b, the ISA has
positive correlations (R > 0.80) with the RGP, RSP, and UP
at the significance level of 0.05. In addition, it has a negative
correlation (R = -0.772) with the RP at the significance level
of 0.05.

Through the correlation analysis, we found that the ISA
expansion was positively correlated with an increase in the
national economy (e.g., GDP), income (e.g., LGR, PNI,

and PDI), production (e.g., PG), and investment (e.g., IFA).
For the population factors, the ISA has expanded with the
increases in the RGP, RSP, and UP. In other words, socioe-
conomic development of the Ordos region accelerated urban
development and ISA expansion.

In addition, we found that the ISA of the typical resource-
based city of Ordos is more strongly correlated with eco-
nomic factors than population factors. At the significance
level of 0.05, the correlations between the ISA and the popu-
lation factors are all less than 0.87 and the average correlation
of the four population indicators is 0.813. However, at a
significance level of 0.001, most of the economic indica-
tors are greater than 0.92 (except for coal production) and
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FIGURE 7. Comparison of the initial and refined ISA estimates for 2019. (A) NTL data and (B) Landsat imagery with 30 m spatial
resolution. (1) Dalate banner, (2) Zhungeer banner, (3) Yijinhuoluo banner, and (4) Dongsheng district.

the average of these indicators is 0.946. The total GDP of
Ordos in 1990 was only 1.49 billion yuan and it reached
515.33 billion yuan in 2019, an increase of 344.9 times.
From 1990-2019, ISA grew from 5.8 km2 to 529.7 km2,
an increase of 90.3 times. However, due to the large base
of population, the rate of population growth is slow. From
1990-2019, the growth rate of RGP, RSP, and UP are 0.36,
0.73 and 6.12 times respectively. Although there was a huge
increase in the urban population, the greatest growth occurred

between 2005-2010 when the urban population increased by
almost half a million. Whereas, the rest of the period falling
into the slow growth category. The rapid growth of the urban
population during this period may also be related to the good
coal benefits of 2005-2010 that increased the demand of a
large number of jobs. In addition, socio-economic growth is
reflected in the construction of factories, airports and roads
directly, so that changes in ISA are more strongly correlated
with economic factors than with population factors.
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V. DISCUSSION
Multiple remote sensing data sources have been used in
ISA mapping, such as high (e.g., IKONOS, GaoFen, and
QuickBird), medium (e.g., Landsat), and coarse (e.g., Modis
and NTL data) spatial resolution images [15], [21], [23].
At regional and the global scales, MODIS imagery with
250 m spatial resolution and NTL data (e.g., DMSP-OLS
with 1 km spatial resolution and VIIRS-DNB with 500 m
spatial resolution) have been used in ISA mapping [22], [47],
although high spatial resolution images are better for dis-
tinguishing features and can be used instead [25]–[27].
However, this data acquisition comes at a high acquisi-
tion cost, high data processing workload, and the long-term
sequence monitoring cannot be performed [30]. Whereas,
Landsat images are collected for long-term sequence moni-
toring and are freely available.

Using only Landsat or NTL images makes the ISA map-
ping of arid and semi-arid areas inaccurate because of confus-
ing the ISA with bare soil and coarse spatial resolution [15].
Therefore, we propose the combined use of NTL and Land-
sat data for the ISA mapping. This approach first takes
advantage of the NTL data which can remove most of the
non-ISA and focuses on the initial ISA in city areas, espe-
cially, in removing the soil and sand information from suburb
aeras in arid/semiarid region. Moreover, Landsat imagery can
effectively distinguish ISA from vegetation andwater areas in
the urban landscape. As shown in Figure 7, the approach used
in this study is valuable for ISA mapping and dynamic anal-
ysis in arid/semiarid regions. Accurate ISA mapping makes
subsequent socioeconomic correlation analysis scientific and
reliable, especially for Ordos city which is located in semiarid
region and rely on resources to flourish.

There is uncertainty when mapping ISAs due to the imma-
turity of the technology and limitations in the remote sensing
data. In this study, the ISA mapping is achieved using a
threshold method for the NTL data (DMSP-OLS and VIIRS-
DNB) to obtain the range of the initial ISA and remove
the noise from the suburb area such as soil and sand. The
selection of the threshold value is very important, if it is too
small, it may increase the workload of processing the Landsat
images, and if it is too large, the effective ISA region will
be reduced due to the loss of regions with low ISA density.
In this research, considering that Ordos located in semiarid
area, we referred to a previous study and selected a suitable
threshold value to process the NTL data [15]. To refine the
ISA, NDVI and MNDWI were used to eliminate vegetation
andwater areas in produced Landsat images by setting thresh-
olds. However, due to various climatic conditions and biomes,
unique NDVI and MNDWI thresholds are not suitable for
the entire area. To obtain the ISA from Landsat accurately,
further cluster analysis needs to be conducted. At present, lit-
tle research has been conducted to accurately extract ISAs in
arid/semi-arid regions, we encourage researchers to explore
the integration of temperature data with multi-source remote
sensing data to map ISAs.

VI. CONCLUSION
A combination of NTL data (DMSP-OLS and VIIRS-DNB)
and Landsat imagery is proved to be effective for ISA map-
ping in arid and semiarid regions. The Ordos city in China
is a resource-based city located in semiarid, the results indi-
cate that the ISAs in 2010, 2015, and 2019 were extracted
with overall accuracies of 90.6%, 89.2%, 91.8% and with
kappa coefficients of 0.79, 0.76, and 0.82 respectively. The
ISA in Ordos is mainly distributed in the northeast (70.22%
in 2019), with the area in Zhungeer banner being the largest
(110.8 km2; 20.43% of the entire ISA), and only 29.78%
was distributed in the southwest. From 2010–2015 and
2015–2019, the increase in the ISA in Ordos exceeded
200 km2, of which the largest growth rate from 2010–2015
was 2.10-fold higher. Compared to the UI, NDBI, IBI and
IBI algorithm, the ISA extraction results in arid and semi-
arid areas is more effective when using the method in this
paper. The correlation between 15 socioeconomic factors and
the ISA was greater than 0.8 at the significance level of 0.05.
Based on our finding, it can be concluded that the correlation
between the economy of this typical resource-based city and
ISA development was greater than that with the population.
This method can be used to quickly update ISA datasets
for arid and semiarid regions. At the same time, the spatial
patterns and dynamic change of the ISA data for Ordos city
are of great significance where it can aid in understanding
socioeconomic and environmental changes and also provides
a reference for the ISA analysis of other resource-based cities
located in arid/semiarid areas.

APPENDIX A
SPECIFIC INFORMATION ON THE LANDSAT DATA
USED IN THIS STUDY

ACKNOWLEDGMENT
The authors would like to thank the Editor-in-Chief, the Asso-
ciate Editor, and the reviewers for their valuable comments.

VOLUME 9, 2021 19671



W. Guo et al.: Mapping Impervious Surface Distribution and Dynamics

REFERENCES
[1] C. Yang, B. Yu, Z. Chen, W. Song, Y. Zhou, X. Li, and J. Wu, ‘‘A Spatial-

Socioeconomic urban development status curve from NPP-VIIRS night-
time light data,’’ Remote Sens., vol. 11, no. 20, pp. 2398–2419, Oct. 2019.

[2] J. Li, C. Li, F. Zhu, C. Song, and J. Wu, ‘‘Spatiotemporal pattern of
urbanization in Shanghai, China between 1989 and 2005,’’ Landscape
Ecol., vol. 28, no. 8, pp. 1545–1565, Oct. 2013.

[3] P. Xu, P. Jin, Y. Yang, and Q. Wang, ‘‘Evaluating urbanization and spatial-
temporal pattern using the DMSP/OLS nighttime light data: A case study
in Zhejiang Province,’’ Math. Probl. Eng., vol. 2016, no. 16, pp. 1–8,
Jan. 2016.

[4] B. Yu, S. Shu, H. Liu, W. Song, J. Wu, L. Wang, and Z. Chen, ‘‘Object-
based spatial cluster analysis of urban landscape pattern using nighttime
light satellite images: A case study of China,’’ Int. J. Geograph. Inf. Sci.,
vol. 28, no. 11, pp. 2328–2355, 2014.

[5] W. Chen, R. Zheng, S. Zhang, H. Zeng, T. Zuo, C. Xia, Z. Yang, and J. He,
‘‘Cancer incidence and mortality in China in 2013: An analysis based on
urbanization level,’’ Chin. J. Cancer Res., vol. 29, no. 1, pp. 1–10, 2017.

[6] B. Chen, Z. Nie, Z. Chen, and B. Xu, ‘‘Quantitative estimation of 21st-
century urban greenspace changes in Chinese populous cities,’’ Sci. Total
Environ., vol. 609, no. 31, pp. 956–965, Dec. 2017.

[7] T. Chen, A. Sun, and R. Niu, ‘‘Effect of land cover fractions on changes
in surface urban heat islands using Landsat time-series images,’’ Int. J.
Environ. Res. Public Health., vol. 16, no. 6, p. 971, Mar. 2019.

[8] J. Wu, ‘‘Urban sustainability: An inevitable goal of landscape research,’’
Landscape Ecol., vol. 25, no. 1, pp. 1–4, Dec. 2009.

[9] Y. Zhang, D. Yang, X. Zhang,W. Dong, and X. Zhang, ‘‘Regional structure
and spatial morphology characteristics of oasis urban agglomeration in
arid area—A case of urban agglomeration in northern slope of Tianshan
mountains, northwest China,’’ Chin. Geographical Sci., vol. 19, no. 4,
pp. 341–348, Dec. 2009.

[10] W. Guo, Y. Zhang, and L. Gao, ‘‘Using VIIRS-DNB and Landsat data for
impervious surface areamapping in an arid/semiarid region,’’Remote Sens.
Lett., vol. 9, no. 6, pp. 587–596, Jun. 2018.

[11] C. Zhang, D. Lu, X. Chen, Y. Zhang, B. Maisupova, and Y. Tao, ‘‘The
spatiotemporal patterns of vegetation coverage and biomass of the temper-
ate deserts in central asia and their relationships with climate controls,’’
Remote Sens. Environ., vol. 175, pp. 271–281, Mar. 2016.

[12] B.Wu, B. Yu, S. Yao, Q.Wu, Z. Chen, and J.Wu, ‘‘A surface network based
method for studying urban hierarchies by night time light remote sensing
data,’’ Int. J. Geogr. Inf. Sci., vol. 33, no. 7, pp. 1377–1398, Apr. 2019.

[13] L. Ma, J. Wu, W. Li, J. Peng, and H. Liu, ‘‘Evaluating saturation correction
methods for DMSP/OLS nighttime light data: A case study from China’s
cities,’’ Remote Sens., vol. 6, no. 10, pp. 9853–9872, Oct. 2014.

[14] Q. Zheng, J. Deng, R. Jiang, K. Wang, X. Xue, Y. Lin, Z. Huang, Z. Shen,
J. Li, A. R. Shahtahmassebi, ‘‘Monitoring and assessing ‘ghost cities’ in
Northeast China from the view of nighttime light remote sensing data,’’
Habitat Int., vol. 70, no. 1, pp. 34–42, Oct. 2017.

[15] W. Guo, G. Li, W. Ni, Y. Zhang, and D. Lu, ‘‘Exploring improvement
of impervious surface estimation at national scale through integration of
nighttime light and proba-V data,’’ GISci. Remote Sens., vol. 55, no. 5,
pp. 699–717, Feb. 2018.

[16] L. Tong, S. Hu, and A. E. Frazier, ‘‘Mixed accuracy of nighttime lights
(NTL)-based urban land identification using thresholds: Evidence from
a hierarchical analysis in Wuhan metropolis, China,’’ Appl. Geography,
vol. 98, pp. 201–214, Sep. 2018.

[17] C. Zeng, A. Zhang, L. Liu, and Y. Liu, ‘‘Administrative restructuring
and land-use intensity—A spatial explicit perspective,’’ Land Use Policy,
vol. 67, pp. 190–199, Sep. 2017.

[18] V. Srinivasan, K. C. Seto, R. Emerson, and S. M. Gorelick, ‘‘The impact
of urbanization on water vulnerability: A coupled human–environment
system approach for Chennai, India,’’ Global Environ. Change, vol. 23,
no. 1, pp. 229–239, Feb. 2013.

[19] L. Li and D. Lu, ‘‘Mapping population density distribution at multiple
scales in Zhejiang province using Landsat thematic mapper and census
data,’’ Int. J. Remote Sens., vol. 37, no. 18, pp. 4243–4260, May 2016.

[20] C. L. Arnold and C. J. Gibbons, ‘‘Impervious surface coverage: The
emergence of a key environmental indicator,’’ J. Amer. Planning Assoc.,
vol. 62, no. 2, pp. 243–258, Jun. 1996.

[21] D. Lu, G. Li, W. Kuang, and E. Moran, ‘‘Methods to extract impervious
surface areas from satellite images,’’ Int. J. Digit. Earth, vol. 7, no. 2,
pp. 37–41, Feb. 2014.

[22] W. Guo, D. Lu, Y. Wu, and J. Zhang, ‘‘Mapping impervious surface
distribution with integration of SNNP VIIRS-DNB and MODIS NDVI
data,’’ Remote Sens., vol. 7, no. 9, pp. 12459–12477, Sep. 2015.

[23] Q. Weng, ‘‘Remote sensing of impervious surfaces in the urban areas:
Requirements, methods, and trends,’’ Remote Sens. Environ., vol. 117,
no. 8, pp. 34–49, Jun. 2012.

[24] S. Liu, Q. Shi, and L. Zhang, ‘‘Few-shot hyperspectral image
classification with unknown classes using multitask deep learning,’’
IEEE Trans. Geosci. Remote Sens., early access, Sep. 4, 2020, doi:
10.1109/TGRS.2020.3018879.

[25] C. Gomez, M. Mangeas, M. Petit, C. Corbane, P. Hamon, S. Hamon,
A. De Kochko, D. Le Pierres, V. Poncet, and M. Despinoy, ‘‘Use of
high-resolution satellite imagery in an integrated model to predict the
distribution of shade coffee tree hybrid zones,’’ Remote Sens. Environ.,
vol. 114, no. 11, pp. 2731–2744, Nov. 2010.

[26] Y. Wang and D. Lu, ‘‘Mapping Torreya grandis spatial distribution
using high spatial resolution satellite imagery with the expert rules-based
approach,’’ Remote Sens., vol. 9, no. 6, p. 564, Jun. 2017.

[27] S. Reis and K. Taşdemir, ‘‘Identification of hazelnut fields using spectral
and Gabor textural features,’’ ISPRS J. Photogramm. Remote Sens., vol. 66,
no. 5, pp. 652–661, Sep. 2011.

[28] Q. Shi, M. Liu, X. Liu, P. Liu, P. Zhang, J. Yang, and X. Li, ‘‘Domain
adaption for fine-grained urban village extraction from satellite images,’’
IEEEGeosci. Remote Sens. Lett., vol. 17, no. 8, pp. 1430–1434, Aug. 2020.

[29] H. Guo, Q. Shi, B. Du, L. Zhang, D. Wang, and H. Ding, ‘‘Scene-
driven multitask parallel attention network for building extraction in high-
resolution remote sensing images,’’ IEEE Trans. Geosci. Remote Sens.,
pp. 1–20, Aug. 2020.

[30] Z. Xie, Y. Chen, D. Lu, G. Li, and E. Chen, ‘‘Classification of land cover,
forest, and tree species classes with ZiYuan-3 multispectral and stereo
data,’’ Remote Sens., vol. 11, no. 2, pp. 43–61, Dec. 2019.

[31] M. Kawamura, S. Jayamana, and Y. Tsujiko, ‘‘Relation between social and
environmental conditions in Colombo Sri Lanka and the urban index esti-
mated by satellite remote sensing data,’’ Int. Arch. Photogramm. Remote
Sens., vol. 31, pp. 321–326, 1996.

[32] Y. Zha, J. Gao, and S. Ni, ‘‘Use of normalized difference built-up index
in automatically mapping urban areas from TM imagery,’’ Int. J. Remote
Sens., vol. 24, no. 3, pp. 583–594, Jan. 2003.

[33] H. Xu, ‘‘A new index for delineating built-up land features in satellite
imagery,’’ Int. J. Remote Sens., vol. 29, no. 14, pp. 4269–4276, 2008.

[34] S. Sinha, A. Santra, and S. S. Mitra, ‘‘Semi-automated impervious fea-
ture extraction using built-up indices developed from space-borne optical
and SAR remotely sensed sensors,’’ Adv. Space Res., vol. 66, no. 6,
pp. 1372–1385, Sep. 2020.

[35] Q. Zheng, Q.Weng, andK.Wang, ‘‘Developing a new cross-sensor calibra-
tion model for DMSP-OLS and Suomi-NPP VIIRS night-light imageries,’’
ISPRS J. Photogramm., vol. 153, no. 8, pp. 36–47, Oct. 2019.

[36] J. Ou, X. Liu, P. Liu, and X. Liu, ‘‘Evaluation of luojia 1-01 nighttime light
imagery for impervious surface detection: A comparison with NPP-VIIRS
nighttime light data,’’ Int. J. Appl. Earth Observ. Geoinf., vol. 81, pp. 1–12,
Sep. 2019.

[37] C. D. Elvidge, P. Cinzano, D. R. Pettit, J. Arvesen, P. Sutton, C. Small,
R. Nemani, T. Longcore, C. Rich, J. Safran, J. Weeks, and S. Ebener,
‘‘The nightsat mission concept,’’ Int. J. Remote Sens., vol. 28, no. 12,
pp. 2645–2670, Jun. 2007.

[38] B. Yu, K. Shi, Y. Hu, C. Huang, Z. Chen, and J. Wu, ‘‘Poverty evaluation
using NPP-VIIRS nighttime light composite data at the county level in
China,’’ IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 8, no. 3,
pp. 1217–1229, Mar. 2015.

[39] H. Letu, M. Hara, H. Yagi, K. Naoki, G. Tana, F. Nishio, and O. Shuhei,
‘‘Estimating energy consumption from night-time DMPS/OLS imagery
after correcting for saturation effects,’’ Int. J. Remote Sens., vol. 31, no. 16,
pp. 4443–4458, Aug. 2010.

[40] X. Chen and W. D. Nordhaus, ‘‘Using luminosity data as a proxy for eco-
nomic statistics,’’ Proc. Nat. Acad. Sci. USA, vol. 108, no. 21, pp. 94–8589,
May 2011.

[41] C. Small, F. Pozzi, and C. Elvidge, ‘‘Spatial analysis of global urban extent
from DMSP-OLS night lights,’’ Remote Sens. Environ., vol. 96, nos. 3–4,
pp. 277–291, Jun. 2005.

[42] C. D. Elvidge, P. C. Sutton, T. Ghosh, B. T. Tuttle, K. E. Baugh, B. Bhaduri,
and E. Bright, ‘‘A global poverty map derived from satellite data,’’Comput.
Geosci., vol. 35, no. 8, pp. 1652–1660, Aug. 2009.

19672 VOLUME 9, 2021

http://dx.doi.org/10.1109/TGRS.2020.3018879


W. Guo et al.: Mapping Impervious Surface Distribution and Dynamics

[43] H. Bagan, H. Borjigin, and Y. Yamagata, ‘‘Assessing nighttime lights for
mapping the urban areas of 50 cities across the globe,’’ Environ. Planning
B, Urban Analytics City Sci., vol. 46, no. 6, pp. 1097–1114, Jul. 2019.

[44] W. T. Lawrence, M. L. Imhoff, N. Kerle, and D. Stutzer, ‘‘Quantifying
urban land use and impact on soils in egypt using diurnal satellite imagery
of the Earth surface,’’ Int. J. Remote Sens., vol. 23, no. 19, pp. 3921–3937,
Jan. 2002.

[45] Y. Zhou, S. J. Smith, C. D. Elvidge, K. Zhao, A. Thomson, and M. Imhoff,
‘‘A cluster-basedmethod to map urban area fromDMSP/OLS nightlights,’’
Remote Sens. Environ., vol. 147, pp. 173–185, May 2014.

[46] D. Lu, H. Tian, G. Zhou, and H. Ge, ‘‘Regional mapping of human
settlements in southeastern China with multisensor remotely sensed data,’’
Remote Sens. Environ., vol. 112, no. 9, pp. 3668–3679, Sep. 2008, doi:
10.1016/j.rse.2008.05.009.

[47] W. Guo, D. Lu, and W. Kuang, ‘‘Improving fractional impervious surface
mapping performance through combination of DMSP-OLS and MODIS
NDVI data,’’ Remote Sens., vol. 9, no. 4, p. 375, 2017.

[48] X. Xue, Z. Yu, S. Zhu, Q. Zheng, M. Weston, K. Wang, M. Gan, and
H. Xu, ‘‘Delineating urban boundaries using Landsat 8 multispectral data
and VIIRS nighttime light data,’’ Remote Sens., vol. 10, no. 5, p. 799,
May 2018.

[49] Q. Ma, C. He, and X. Fang, ‘‘A rapid method for quantifying landscape-
scale vegetation disturbances by surface coal mining in arid and semiarid
regions,’’ Landscape Ecol., vol. 33, no. 12, pp. 2061–2070, Oct. 2018.

[50] Y. Yue, M. Li, A.-X. Zhu, X. Ye, R. Mao, J. Wan, and J. Dong, ‘‘Land
degradation monitoring in the ordos plateau of China using an expert
knowledge and BP-ANN-based approach,’’ Sustainable, vol. 8, no. 11,
pp. 67–82, Aug. 2016.

[51] Q. Ma, Y. Long, X. Jia, H. Wang, and Y. Li, ‘‘Vegetation response to
climatic variation and human activities on the ordos plateau from 2000 to
2016,’’ Environ. Earth Sci., vol. 78, no. 24, pp. 125–136, Dec. 2019.

[52] J. Li, S. Zhou, D. Fu, K. Chen, C. Zhang, Z. Sun, and P. Li, ‘‘Characteristics
of desorption gas of lacustrine shale in the ordos basin, China,’’ IOP Conf.
Earth Environ. Sci., vol. 360, no. 2, pp. 32–45, Dec. 2019.

[53] C. D. Elvidge, J. Safran, B. Tuttle, P. Sutton, P. Cinzano, D. Pettit,
J. Arvesen, and C. Small, ‘‘Potential for global mapping of development
via a nightsat mission,’’ GeoJournal, vol. 69, nos. 1–2, pp. 45–53, 2007.

[54] J. Wu, S. He, J. Peng, W. Li, and X. Zhong, ‘‘Intercalibration of DMSP-
OLS night-time light data by the invariant region method,’’ Int. J. Remote
Sens., vol. 34, no. 20, pp. 7356–7368, Oct. 2013.

[55] W. Kuang, J. Liu, Z. Zhang, D. Lu, and B. Xiang, ‘‘Spatiotemporal dynam-
ics of impervious surface areas across China during the early 21st century,’’
Chin. Sci. Bull., vol. 58, no. 14, pp. 1691–1701, May 2013.

[56] B. Haack, N. Bryant, and S. Adams, ‘‘An assessment of Landsat MSS
and TM data for urban and near-urban land-cover digital classification,’’
Remote Sens. Environ., vol. 21, no. 2, pp. 201–213, Mar. 1987.

[57] L. Eklundh, L. Harrie, and A. Kuusk, ‘‘Investigating relationships between
Landsat ETM+ sensor data and leaf area index in a boreal conifer forest,’’
Remote Sens. Environ., vol. 12, no. 8, pp. 239–251, May 2001.

[58] B. Kumari, M. Tayyab, J. Mallick, M. F. Khan, and A. Rahman, ‘‘Satellite-
driven land surface temperature (LST) using Landsat 5, 7 (TM/ETM+
SLC) and Landsat 8 (OLI/TIRS) data and its association with built-up and
green cover over urban Delhi, India,’’ Remote Sens. Earth Syst. Sci., vol. 1,
nos. 3–4, pp. 63–78, Feb. 2018.

[59] P. Hao, L. Wang, Y. Zhan, and Z. Niu, ‘‘Using moderate-resolution
temporal NDVI profiles for high-resolution crop mapping in years of
absent ground reference data: A case study of Bole and Manas Counties
in Xinjiang, China,’’ ISPRS Int. J. Geo-Inf., vol. 5, no. 5, pp. 72–89,
Apr. 2016.

[60] R. G. Congalton, ‘‘A review of assessing the accuracy of classifications of
remotely sensed data,’’ Remote Sens. Environ., vol. 37, no. 1, pp. 35–46,
1991.

WEI GUO received the B.Eng. and M.Eng.
degrees from the Shandong University of Science
and Technology, Qingdao, China, in 2008 and
2011, respectively, and the Ph.D. degree in car-
tography and geographic information system from
Wuhan University, Wuhan, China, in 2015.

He was a Visiting Scholar with Michigan State
University from 2013 to 2015, and worked with
the State Key Laboratory of Remote Sensing Sci-
ence, Chinese Academy of Sciences, China, from

2016 to 2019. He is currently a Senior Lecturer with the College of Geo-
science and Surveying Engineering, China University of Mining and Tech-
nology, Beijing, China. His research interests include urban remote sensing
and ecological environment monitoring.

CHUANWU ZHAO was born in Xinyang, Henan,
China, in 1995. He is currently pursuing the
master’s degree with the School of College of
Geoscience and Surveying Engineering, China
University of Mining and Technology, Beijing,
China. His research interests include landscape
ecology, urban remote sensing, and regional
development.

YUHUAN ZHANG received the Ph.D. degree in
cartography and geographic information system
from the Chinese Academy of Sciences University,
Beijing, China, in 2014.

She is currently a Senior Engineer with theMin-
istry of Ecology and Environment Center for Satel-
lite Application on Ecology and Environment.
Her scientific interests include aerosol retrieval,
in-flight calibration for remote sensing satellite
sensors, and atmospheric remote sensing.

SHANGQING GAO was born in Jiaozuo, Henan,
China, in 1995. She is currently pursuing the
Ph.D. degree with the School of Graduate School
of Education, Beijing Foreign Studies University,
Beijing, China. Her research interests include for-
eign language and literature, translation, interna-
tional education, and sociology.

VOLUME 9, 2021 19673

http://dx.doi.org/10.1016/j.rse.2008.05.009

