IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received December 1, 2020, accepted January 23, 2021, date of publication January 27, 2021, date of current version February 5, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3054879

Zero-Centered Fixed-Point Quantization With
Iterative Retraining for Deep Convolutional
Neural Network-Based Object Detectors

SUNGRAE KIM AND HYUN KIM™, (Member, IEEE)

Department of Electrical and Information Engineering, Seoul National University of Science and Technology, Seoul 01811, South Korea
Research Center for Electrical and Information Technology, Seoul National University of Science and Technology, Seoul 01811, South Korea

Corresponding author: Hyun Kim (hyunkim @seoultech.ac.kr)

This work was supported in part by the Institute of Information & Communications Technology Planning & Evaluation (IITP) Grant
funded by the Korean Government (MSIT) (Development of Al Deep-Learning Processor and Module for 2,000 TFLOPS Server) under
Grant 2020-0-01305, and in part by the Basic Science Research Program through the National Research Foundation of Korea (NRF)
funded by the Ministry of Education under Grant NRF-2019R1A6A1A03032119.

ABSTRACT In the field of object detection, deep learning has greatly improved accuracy compared to
previous algorithms and has been used widely in recent years. However, object detection using deep learning
requires many hardware (HW) resources due to the huge computations for high performance, making it
very difficult to run real-time on embedded platforms. Therefore, various compression methods have been
studied to solve this problem. In particular, quantization methods greatly reduce the computational burden
of deep learning by reducing the number of bits used for weights and activation functions in deep learning.
However, most of these existing studies targeted only object classification and cannot be applied to object
detection. Furthermore, most of the existing quantization studies are based on floating-point operations,
which requires additional effort when implementing HW accelerators. This paper proposes an HW-friendly
fixed-point-based quantization method that can also be applied to object detection. In the proposed method,
the center of the weight distribution is adjusted to zero by subtracting the mean of weight parameters before
quantization, and the retraining process is iteratively applied to minimize the accuracy drop caused by
quantization. Furthermore, while applying the proposed method to object detection, performance degradation
is minimized by considering the minimum and maximum values of weight parameters of deep learning
networks. When applying the proposed quantization method to representative one-stage object detectors, You
Only Look Once v3 and v4 (YOLOvV3 and YOLOv4), detection accuracy similar to the original networks
(i.e., YOLOv3 and YOLOv4) with a single-precision floating-point format (32-bit) is maintained despite
expressing weights with only about 20% of the bits compared to a single-precision floating-point format in
COCO dataset.

INDEX TERMS Convolutional neural network, deep neural network, fixed-point quantization, network

compression, object detector, YOLOvV3, YOLOV4.

I. INTRODUCTION

In recent years, with the development of the Graphics
Processing Unit (GPU), there has been tremendous devel-
opment in the field of deep neural networks (DNNs).
Because convolutional neural networks (CNNs) are used
in the field of computer vision, the accuracy of object
detection and classification increases dramatically [1]-[4].
However, because a DNN uses many layers, a large number

The associate editor coordinating the review of this manuscript and

approving it for publication was Jun Li

20828

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

of parameters are required, which significantly increases
computational complexity [5]-[7]. In particular, for DNN-
based object detection, classification, and localization are
performed simultaneously, which requires vast computa-
tion [8]-[11]. Recently, the use of embedded platforms,
such as autonomous vehicles and mobile devices has also
increased dramatically. Because embedded platforms operate
on battery-generated power and consist of limited hardware
(HW) resources, embedded platform-based object detectors
require low-power, light-weight, and fast network architec-
tures while maintaining object detection accuracy.

VOLUME 9, 2021

https://orcid.org/0000-0002-7962-657X
https://orcid.org/0000-0003-3716-671X

S. Kim, H. Kim: Zero-Centered Fixed-Point Quantization With lterative Retraining for Deep CNN-Based Object Detectors

IEEE Access

To satisfy these requirements, various network compres-
sion studies, such as approximate computing, data quantiza-
tion, and pruning, have been actively conducted [12]-[31].
Pruning methods reduce the number of parameters by remov-
ing unnecessary weights, filters, and layers, resulting in a
less-complex network. In contrast, data quantization meth-
ods benefit from memory access time, inference time, and
power consumption in the accumulation and multiplication
of parameters by reducing the number of bits for parameters
in the networks. Quantization methods have been actively
researched because they have a lower decrease in accuracy
than other compression methods and do not change the net-
work structure, only reducing the bits that are allocated to
the weight and activation parameters. For the weight quan-
tization techniques that have been most actively studied,
the value of the weight is expressed in a single-precision
floating-point format (i.e., 32-bit), and the number of weight
parameter types used in the network is reduced through
quantization [21]-[23].

There are two major problems with these conventional
weight quantization methods. First, performance declines
significantly when existing techniques are applied to object
detection because they only focus on object classification.
Second, existing quantization methods still include floating-
point operations, so there is no significant advantage in terms
of processing speed or power consumption in HW implemen-
tation. In HW architectures, floating-point arithmetic requires
much more energy consumption for addition and multiplica-
tion operations than fixed-point arithmetic [24]. Moreover,
in recent years, many studies have been conducted to accel-
erate CNNs through system-on-chip (SoC) design or field
programmable gate array (FPGA) implementation for mobile
devices. For such implementations, it is necessary to change
the weights to an HW-friendly fixed-point format rather than
a floating-point format [24].

This paper proposes a fixed-point-based quantization
method appropriate for HW implementation (e.g., SoC design
and FPGA implementation) that can be applied to object
detection to overcome the shortcomings of existing studies.
The proposed scheme quantizes the weights of each layer
with optimally quantized bits using the grid search technique
while increasing the quantization ratio gradually during the
iterative retraining process. In particular, in the process of
quantization, by subtracting the mean of weight parameters
from all weight parameters in each layer, the weights are
distributed around zero, thereby compensating for the perfor-
mance degradation caused by the fixed-point representation.
The proposed quantization technique enables computation
suitable for the HW structure and, thus, supporting fast
operation while significantly reducing computational com-
plexity and power consumption in embedded platforms.
Moreover, to maintain a light-weight effect while minimizing
performance degradation even in DNN-based object detec-
tors, we propose an adaptive quantization method consid-
ering the minimum and maximum weights of each layer.
Consequently, the proposed method outperforms existing

VOLUME 9, 2021

methods in both object classification and detection in terms of
the trade-off between accuracy and computational complex-
ity. Experimental results show that the proposed method with
high compatibility achieves excellent performance not only
in image classification networks but also in various object
detectors. Especially, when applying it to the representative
one-stage object detector, You Only Look Once v3 and v4
(YOLOV3 and YOLOv4) [10], [11], while maintaining the
advantage of fixed-point-based quantization suitable for HW
implementation, the proposed quantization method achieves
approximately 80% weight parameter reduction with a neg-
ligible decrease in the mean average precision (mAP). The
main contributions of this paper are summarized as follows:

o 1) HW-friendly fixed-point quantization: Fixed-point
quantization accompanied by the zero-centered weight
distribution and the iterative retraining scheme not only
minimizes performance degradation caused by quanti-
zation, but also maximizes the light-weight effect of
quantization in hardware implementation.

e 2) Mixed precision design for object detectors: The
adaptive quantization technique based on the bit alloca-
tion method that considers the weight distribution within
each layer minimizes performance degradation even in
object detectors.

o 3) Quantization with high compatibility: The proposed
technique can be easily applied to various object detec-
tors including YOLOv3 [10] and YOLOvV4 [11].

The rest of the paper is organized as follows. Section II
provides background on the quantization and object detec-
tion. Section III describes the proposed quantization method.
In Section IV, the proposed method is verified through the
experimental results and compared with previous studies.
Finally, Section V concludes the paper.

Il. BACKGROUND

This section describes the related studies, the basic principle
of the quantization method, and the YOLO algorithms that
will be the target application of the proposed quantization
method.

A. RELATED WORKS

Several studies applying quantization to CNNs have been
conducted because of their advantages of robustness against
performance degradation, ease of applying the concept of
approximate computing, and lack of needing to change the
network structure [21]-[26].

Most recent quantization studies [21]-[23] have focused
on INT quantization with integer parameters and floating-
point scale factors to prevent an accuracy decrease in
networks that perform image -classification. Especially,
Jung et al. [21] found that a reduction in accuracy does not
occur when using only four bits for both weight and activation
parameters, even for the ImageNet dataset [32]. However,
as mentioned previously, these studies on INT quantiza-
tion [21]-[23] accompany floating-point operations, and con-
sequently still have single-precision floating-point format

20829

IEEE Access

S. Kim, H. Kim: Zero-Centered Fixed-Point Quantization With lterative Retraining for Deep CNN-Based Object Detectors

weights and activations. Therefore, the actual HW resource
saving and speed-up in these studies are less than fixed-point
quantization with the fixed-point scale factor. Nevertheless,
in the field of computer vision, research in this direction has
been actively conducted because it is most important to min-
imize performance degradation. However, in an embedded
platform or HW accelerator environment, it is much more
efficient to change the weight or activation parameters only to
a fixed-point format, and therefore, quantization with a fixed-
point format is still an important research topic concerning
practicality and HW efficiency. Furthermore, as deep learning
becomes more actively used in mobile application, the impor-
tance of practicality is expected to increase.

Accordingly, fixed-point format-based quantization stud-
ies have been conducted. Enderich et al. [25] change the dis-
tribution of weights multimodally on a fixed-point format but
did not use a method to remove bias of the weight distribution,
making it difficult to use in networks where the distribution
of weights is not located on a zero basis. Lin et al. [26]
use the signal-to-quantization-noise ratio (SQNR) to ensure
that the error resulting from the fixed-point quantization is
minimized and mathematically assign the bits to each layer
for the fixed-point quantization. However, mathematically
minimizing errors does not necessarily lead to an accuracy
reduction. In particular, these fixed-point-based quantization
studies have the advantage of easy HW implementation, but
it is difficult to minimize performance degradation, so these
studies have been conducted with the goal of applying to
relatively simple image classification. Consequently, when
they are applied to object detection, there is a problem that
performance degradation is extremely significant.

B. PARAMETER QUANTIZATION

Quantization is a compression method to reduce large sets of
parameters, such as input data, weights, and activation maps,
generally represented by 32-bit floating-point, to a smaller
discrete set of it with specific number of bits. By reducing the
bits for the parameters in CNNs, which are composed mostly
of convolution layers, it is possible to significantly reduce the
network capacity and the amount of computation and power
in HW design [6]. However, excessive quantization leads
to an accuracy degradation in object classification/detection
due to distortion of input data and deformation of learning
parameters. Therefore, the number of bits to be reduced
should be determined by considering the trade-off between
the reduction in computational complexity and distortion of
accuracy.

Quantization methods can be divided in two main ways,
depending on the number representation. The first is to
quantize an existing 32-bit floating-point number to a low-
bit floating-point number (e.g., half-precision floating-point
number), and the second is to quantize an existing 32-bit
floating-point number to a low-bit fixed-point (e.g., INTS).
Fig. 1 shows the 8-bit representation of floating-point and
fixed-point quantization. The floating-point number has both
exponent bits and mantissa bits that represent the degree of

20830

scale and resolution, respectively. Therefore, the floating-
point quantization can represent a relatively wide range,
and the quantization step-size does not need to be uni-
form. However, in the low-bit representation of 8bit or less,
the number representation is more disadvantageous than the
fixed-point number. On the other hand, the fixed-point quan-
tization has a uniform quantization step-size and a relatively
limited range of representations because several parameters
have a shared exponent (i.e., scale factor). However, since
there are more bits allocated to mantissa, fixed-point quan-
tization may have better solution than floating-point quan-
tization in the low-bit representation. In addition, it should
be noted that floating-point arithmetic costs approximately
9.1 times more energy for addition and 1.2 times more
energy for multiplication than fixed-point arithmetic in HW
architectures [24].

sign exponent mantissa

variableT i1|0|1|0|0|0|1|

T T Tefol T+ T"]

Floating point

variable2

shared exponent nn
Fixed point

variable1 .0|1|1|0|1|0|1|

variable2 .0|1|°|°|°|0|1|

FIGURE 1. Representation of floating-point and fixed-point numbers.

Fixed-point quantization can also be classified into two
types according to a scale factor. In case of integer (INT)
quantization with fixed-point parameters and floating-point
scale factors, the number of quantized bits with integer
representation determines the number of candidates for
weight or activation parameters, but the actual weight or acti-
vation values are represented as single-precision floating-
point number because each candidate is multiplied by 32-bit
floating-point scale factors. Therefore, there is no significant
advantage in speed-up and power saving on HW design.
On the other hand, when quantizing both parameters and scale
factor to a fixed-point number as shown in Fig. 1, the ben-
efits of quantization can be maximized although a slight
performance drop may occur. Moreover, in this method, the
multiplication of 2" (i.e., shared exponent) can be replaced
by shifting operation, which results in a lot of benefits in
HW design. Specifically, when the shared exponent is 2"
and quantization is carried out with m bit, the fixed-point
quantization points may be expressed as k x 2", where the
value k is as follows:

2m—2 2m—2
— < <
2 T T 2
Fig. 2 illustrates the distribution of the number of weights.

Fig. 2(a) representing the distribution of the number of pre-
trained weights is changed as Fig. 2(b) and Fig. 2(c) when

(k € integer). @))

VOLUME 9, 2021

IEEE Access

S. Kim, H. Kim: Zero-Centered Fixed-Point Quantization With lterative Retraining for Deep CNN-Based Object Detectors
number of number of number of
weights weights weights
s,
2 2m—4
o2 z ? 103

-2" 2m _2

n

| 2

.4
|| |I I|

weights @ a1 aym_y Gym_y - —2"0 2" weights

weights

(@) (b) ()

FIGURE 2. Distribution of the number of weights. (a) Normal

(i.e., Pre-trained) weights. (b) m-bit quantized weights based on
floating-point representation. (c) m -bit quantized weights based on
fixed-point representation.

quantized to m-bit floating-point format and m-bit fixed-
point format, respectively. Fig. 2(c) shows that the fixed-
point quantization has 2™-1 quantization points distributed
around zero at uniform quantization steps according to (1).
This results in the advantage of reducing HW complexity
by making the distribution of quantization points symmet-
ric [27], but this also makes it difficult to avoid performance
degradation.

C. YOLO NETWORKS

The YOLO algorithm [33], the most representative one-stage
detection algorithm, enables fast object detection by divid-
ing the image into multiple grids and analyzing information
about each grid, in contrast to the region proposal method
of two-stage detectors. In particular, the feature map of the
detection layer is designed to output bbox coordinates, object-
ness scores, and class scores to enable detection of multiple
objects with a single inference. Because of this network struc-
ture (i.e., the processing with grid units), YOLO had problems
with low detection accuracy, although the detection process-
ing speed is very fast compared to conventional methods. The
YOLOV?2 algorithm [34] proposed to solve these problems by
improving detection accuracy by adding batch normalization
to all convolution layers, an anchor box, multi-scale training,
and fine-grained features while maintaining operating speed
by changing the filter sizes of the existing YOLO to 1 x 1
and 3 x 3 filters. However, there is still the problem of low
detection performance for small and dense objects.

To address the shortcomings of YOLOvV2, as depicted
in Fig. 3(a), the most recently proposed YOLOv3 [10] adds
a residual skip connection to manage vanishing gradient
problems in deep networks. Furthermore, for detecting small
objects, up-sampling and concatenation techniques that pre-
serve fine-grained features are applied, and detection layers at
three different scales are added according to the feature map
size using a similar way approach as the feature pyramid net-
work [35]. In other words, YOLOV3 is a fully-convolutional
network composed of only 1 x 1 and 3 x 3 size convolution
filters and illustrates outstanding accuracy for objects of var-
ious sizes while maintaining a high processing speed similar
to YOLO [33] and YOLOV2 [34].

In order to develop a more efficient and powerful object
detection model, as depicted in Fig. 3(b), YOLOv4 [11]

VOLUME 9, 2021

@ Addition

® Concatenation

-+ Further layers

ﬂ Convolution layer
’ Detection layer

ﬂ Up-sample layer

@ Addition
® Concatenation

- Further layers

ﬂ Up-sample layer

FIGURE 3. The network architecture. (a) YOLOv3. (b) YOLOv4.

applies the existing algorithms in two ways. One is the
“Bag-of-Freebies”, which includes training strategies and
pre-processing methods, and the other is the ‘‘Bag-of-
Specials”, which includes architecture-related plugin mod-
ules and post-processing methods. Moreover, by selecting
CSPDarknet53 as the backbone and utilizing the SPP block,
it is possible to significantly improve the detection accuracy
for relatively small objects at a fast-operating speed.

Given these advantages, YOLOvV3 [10] and YOLOvV4 [11]
are widely used in domains where both accuracy and speed
are important. In particular, it is widely used in embed-
ded platforms, where many recent studies have been con-
ducted [13]. However, even this one-stage object detector is
constructed by stacking many layers with high complexity,
so the network size is still large, and significant computation
is required. Consequently, it is still challenging to support
such a network for real-time operations in an embedded
platform environment, so various compression techniques are
required.

Ill. PROPOSED METHODS

A. OVERVIEW OF THE PROPOSED FIXED-POINT
QUANTIZATION

The entire flowchart and algorithm of the proposed quan-
tization method are depicted in Fig. 4 and Algorithm 1,

20831

IEEE Access

S. Kim, H. Kim: Zero-Centered Fixed-Point Quantization With lterative Retraining for Deep CNN-Based Object Detectors

&

pretrained weights : summation arithmetic
© : convolutional arithmetic

zero-centered ® : multiplication arithmetic

weights

|
increase - .
q rate quantization retraining

‘ quantized weights

input ‘

data

FIGURE 4. Flowchart of the proposed quantization.

result A ‘Gf‘ result B

result

Algorithm 1 Quantized Convolution Algorithm

Input: pretrained weights(W), input data(x)
Parameter: 1, num_weights, q_rate, m, n, k, max, min
QOutput: result

1: Let u =0, g_rate =0, result_A =0, result_B =0
2: while q_rate !=1do

3 increase q_rate

4 while num_weights do

5: if (W > max) max =W

6 if (W < min) min=W

7 nw=pn+W

8 end while

9: n = log, ((max-min)/2"-2)
10: © = u/num_weights
11: while num_weights do
12: Wy =W—pu
13: if (k-q_rate/2)*2" < Wb < (k + q_rate/2)*2"
14: Wbq = Quan(Wb)
15: end while

16: retraining

17: end while

18: result_ A = u* > x

19: while num_weights do

20: result_B = result_B + Wbq - x
21: end while

22: result = result_A + result_B

23: return result

respectively. As shown in Fig. 4, the proposed method
processes the pretrained weights by dividing them into
two parts: zero-centered weights and mean of weights (u).
Zero-centered weights are calculated by subtracting u from
the pretrained weights. 1 does not need to apply the quan-
tization process, and the convolutional operation of p and
input data can be replaced by simple multiplication because
it has only one value in a certain group of weights. On the
other hand, zero-centered weights are quantized and retrained
iteratively, gradually increasing the quantization rate until the
q_rate becomes 1. The well-quantized weights through this
iterative process undergo a convolution operation with input
data. After that, those two parts are added to get a better
approximate result of the original calculation.

20832

For a more detailed explanation, Algorithm 1 illustrates an
algorithm for the fixed-point quantization of weight parame-
ters to m bits in a filter unit. Variables m, n, k in the algorithm
are described in Section II-B, and num_weights is the total
number of weight parameters in the filter. The u is the mean
of the weight parameters in the filter, and min and max
are the minimum and maximum weight values in the filter,
respectively. In this paper, the existing convolution operation
is divided into two operations, and finally, these two results
from each operation are accumulated to calculate the final
result. The final result is denoted as result, and the results
of each of the two operations are denoted as result A and
result_B, respectively. g_rate is the ratio of weights which are
being quantized in this step and has a value between 0 and 1.
If the g_rateis 1, all parameters are quantized, and if it is 0, all
parameters are not quantized. * is a multiplication operation,
and - is a convolutional operation. Quan() is a quantization
function that performs deterministic quantization based on
the parameters, min, max, m, n, and k, mentioned above.

The proposed method iteratively performs the quantization
and retraining process by increasing the quantization rate
gradually (line 3 of Algorithm 1) with sufficiently pre-trained
weight parameters, until the g_rate becomes 1 (i.e., repeat
the while statement from line 2 to line 17 of Algorithm 1).
It should be noted that the degree of the q_rate increase is
determined empirically depending on networks, and always
has a value between O and 1. For the quantization process,
by limiting the range of the weight distribution based on
the max and min values within the filter (lines 5 and 6 of
Algorithm 1), the step-size of the fixed-point quantization
(i.e., 2") can be as sophisticated as possible (line 9 of Algo-
rithm 1). Furthermore, by calculating the average of the
weight parameters in the filter and subtracting this average
from the weight parameters, it is possible to maximize the
utilization of the characteristics of fixed-point-based quan-
tization that performs quantization around zero (lines 7, 10,
and 12 of Algorithm 1). Through this zero-centered process,
detailed in Section III-B, weight parameters that are not
distributed around zero can also be quantized with a small loss
to suit the characteristics of the fixed-point-based method.
After the zero-centered scheme, a quantization and retrain-
ing process is required. As depicted in Fig. 2(c), in fixed-
point quantization, the quantized values are fixed to k x 2"
(k and n are an integer), but not all weight parameters
before quantization exist around 2. In other words, they can
be located in ambiguous points between adjacent quantized
points. If these ambiguous values are quantized to inappropri-
ate values, they cause a large reduction in accuracy and have
a dominant impact on the performance of DNNs. Therefore,
in this paper, only the weight parameters which are definitely
close to quantized points (i.e., k x 2") are quantized first to
k x 2" and then retrained (lines 13 and 14 in Algorithm 1).
After that, by gradually increasing the g_rate to expand
the quantization range, this process is repeated until all
weight parameters are quantized with the appropriate values.
(i.e., g_rate == 1). Section III-C describes the iterative

VOLUME 9, 2021

S. Kim, H. Kim: Zero-Centered Fixed-Point Quantization With lterative Retraining for Deep CNN-Based Object Detectors

IEEE Access

retraining in detail. After the quantization and retraining pro-
cess, the proposed fast convolutional operation is performed
with those quantized weight parameters (from line 18 to
line 22 of Algorithm 1).

B. FAST CONVOLUTIONAL ARITHMETIC WITH THE
ZERO-CENTERED WEIGHT DISTRIBUTION

As explained in Section II-B, when fixed-point quantiza-
tion is performed, all weight parameters are converted to
an integer k multiple of 2" (i.e., k x 2"), which means
the quantization step-size is uniformly determined as 2",
and the center of these quantized values is located at zero.
Furthermore, the step-size varies significantly according to
networks or filters and, depending on this value, overflow
may occur and the resolution of data may decrease. In other
words, the determination of the step-size strongly influences
performance, so it is difficult to apply a quantization pro-
cess suitable for the characteristics of each network or filter
without considering this step-size. In this paper, to optimize
the step-size of fixed-point quantization, the maximum and
minimum values of each filter are considered, and within this
range (i.e., from the minimum value to the maximum value),
the step-size is determined by dividing the range uniformly
according to the specific target bit. As a result, the range
is limited to ensure that the step-size is as sophisticated as
possible. With an optimal step-size, it is possible to perform
the quantization process more accurately, which minimizes
the loss of the weight parameters.

Fig. 5 illustrates the medians of maximum and minimum
weight parameters for each layer when training the VGG-7
network with Cifar-10 dataset [35] and the YOLOv3/v4 net-
works with COCO dataset [36]. As depicted in Fig. 5,
the weight parameters of each layer are not always distributed
around zero, and this trend is more apparent in the object
detection (i.e., YOLOv3 and YOLOV4) than the image clas-
sification (i.e., VGG-7). In YOLOV3, as the layer deepens,
the degree that the median deviates from zero tends to become
more severe. In the near-end layer, the median of the mini-
mum and maximum values is nearly 0.3 in YOLOV3, which is
15 times larger than 0.021 in VGG-7. Moreover, some layers
(i.e., beginning and ending layers) in YOLOv4 have a higher
median absolute value compared to YOLOv3. Nevertheless,
if a fixed point-based technique that always sets the center
to zero and quantizes parameters is applied to networks with
such a non-zero centered weight distribution, the error due
to the quantization becomes magnified. Especially, for the
YOLOV3 and YOLOV4 networks, where most of the weight
parameters are not distributed around zero, it is challenging
to apply the existing fixed-point quantization, which leads
to serious performance degradation. To address this issue,
this paper uses a zero-centered effect that moves the center
of the weight distribution to zero by finding the mean value
of the weight parameters and subtracting the mean value
from each weight parameter. Consequently, it is possible to
minimize the quantization error that occurs when fixed-point
quantization is applied.

VOLUME 9, 2021

Median Value
0.015

0.005

1 2 3 4 5 7
layers
-0.005
-0.01
-0.015
-0.02
-0.025
(2)
0.15 Median Value
0.1
I I I I Iayel
0 ' i., II.. .0 I l“ o 'I" Il |'I' i .I II-I l
-0.05
-0.1
0.15
-0.2
0.25
-0.3
(®)
Median Value
0.6
04
) ‘ | ‘ ‘ |
o ||I||| ||I||||| EARA tunsatl | fihs fo,. || ||.||| ..|.
| | I | | I layers
-0.2
-04
-0.6
()

FIGURE 5. The median of maximum weights and minimum weights.
(a) VGG-7 in Cifar10 dataset. (b) YOLOv3 in COCO dataset. (c) YOLOv4 in
COCO dataset.

However, the zero-centered technique of the weight param-
eters accompanies changes in the convolutional arithmetic
process. As depicted in Fig. 4, even if the zero-centered
weight parameters are quantized, when performing the con-
volution operations with inputs, the subtracted mean value
should be included in the convolution operation. This is
because the average (w) is artificially subtracted, and a pro-
cess of adding it again appropriately before the convolution

20833

IEEE Access

S. Kim, H. Kim: Zero-Centered Fixed-Point Quantization With lterative Retraining for Deep CNN-Based Object Detectors

operations is required to obtain the final correct result. This
process can be expressed as follows:

DWex = Wyt p)-x) @

=> W) -x+p) x 3)

~ Y QuanWy) - x+p) x4

The parameters, Wb, Quan(), and u, also can be seen
in Algorithm 1. The first term in (2) illustrates the gen-
eral convolution operations. W and x are the weights and
input data, respectively, and the convolution operation can be
expressed as W-x. If Wb is the value obtained by subtracting
the average of the weight parameters in the filter (1) from W,
(2) is established because it simply divides the W into Wb
and p. Because p is not affected by sigma (}°), (3) is also
established. Then, as depicted in (4), only Wb in the first term
of (3) can be quantized by the proposed method with specific
bits and the convolution operation of the quantized Wb and
the input is performed. Next, by adding the multiplication
result of the sum of input data x and the p (i.e., u)_x) to
this approximated value (i.e., > Quan(Wb)), the same final
convolution result as when W is directly quantized can be
obtained. This process is illustrated in Fig. 6.

<normal>
. CONV
weights - - Wq - result (@)
<proposed> CONV
- Wbq - result A result
weights
MUL

-y - result B (b)

FIGURE 6. Flow of CONV arithmetic operation. (a) Original method.
(b) Proposed method.

Because the Quan(Wb) in (4) is expressed with the
quantized bits rather than original 32 bits, the convolution
operation with this approximated value is much faster and
operates at much lower power than the conventional con-
volution operation with a 32-bit floating-point format. This
advantage is more prominent in HW accelerator designs.
It should be noted that the second term of (4) consists of
simple summations and a single multiplication rather than
a complex convolution operation, so it is much simpler to
calculate the result. Accordingly, this paper removes bias of
the weight distribution to compensate for the shortcomings
of fixed-point quantization, which must proceed around zero,
and recovers them with only a small amount of computation
(i.e., the combination of simple summations and one multi-
plication), such that its usage has been extended to include
weight parameters of all networks where the weight distribu-
tion is not zero-centered.

20834

C. ITERATIVE RETRAINING SCHEME INCREASING
QUANTIZATION RATE

As depicted in Fig. 2 (c), the quantization points of the
fixed-point quantization are k x 2" (k and n are an integer).
Therefore, if the weights near k x 2" are quantized to
k x2" no significant loss occurs. However, ambiguous values
between adjacent quantized points present a challenge in
determining which quantization point to quantize, and the
effect of this decision on the final performance on DNNs
is severe. Furthermore, during the retraining process, the
values of weight parameters are fine-tuned. Based on these
two observations, in this paper, the values near the quantized
points are first quantized to the corresponding close quantized
point and the retraining is performed because values near the
quantized points are more likely to have negligible accuracy
loss after quantization and less likely to be changed due to
retraining. Because it is impossible to apply this concept
after only one instance of retraining, the quantization and
retraining process is iteratively performed by increasing the
quantization rate.

number of number of number of
weights weights a- 2" weights
AN | @ EREEN
_gn 0 n _n ' 0 ' on ! _on n
weights weights weights

(a) quantization rate = 0 (b) quantization rate = & (c) quantization rate = 1

FIGURE 7. Distribution of weight parameters according to each
quantization rate.

Fig. 7 illustrates the iterative retraining process when the
quantization rate is 0, v, and 1, respectively, in the case where
the weights exist around zero. As depicted in Fig. 7(a), when
the distribution of the weights is given, the value of n is
determined through the maximum and minimum values of
the weight parameters in a filter (line 9 of Algorithm 1). The
values near multiples of 2", such as —2", 0, and 2", do not
cause a large loss even when quantized with these values.
Therefore, as depicted in Fig. 7(b), the quantization process is
applied only to the weight parameters within the range that is
fixed according to the quantization rate (i.e., close to —2",
0, 2"), and the rest of the weight parameters marked with
red circles in Fig. 7(b) are retained (line 13 of Algorithm 1).
Then, all of these weight parameters are retrained. During
this retraining process, the ambiguous weight parameters
(i.e., the red circled parameters in Fig. 7(b)) can be fine-tuned
and closer to one of the values to be quantized. By fine-tuning
these ambiguous values and gradually expanding the range of
quantization according to the increase in the quantization rate,
iterative quantization and retraining techniques can compute
the final result, as depicted in Fig. 7(c).

VOLUME 9, 2021

S. Kim, H. Kim: Zero-Centered Fixed-Point Quantization With lterative Retraining for Deep CNN-Based Object Detectors

IEEE Access

TABLE 1. The portion of the ambiguous weight parameters in VGG-7,
YOLOv3, and YOLOv4 networks.

Method Non-retrained network Retrained network
VGG-7 (Cifar-10) 23.33 8.73
Portion (%) YOLOv3 (COCO) 22.95 18.01
YOLOv4 (COCO) 20.06 14.65

Table 1 illustrates how the portion of ambiguous weight
parameters between the adjacent quantized points decreases
when the retraining process is performed with a quantization
rate of 0.8 in the VGG-7 network, YOLOvV3 network, and
YOLOvV4 network. If the quantization rate is 0.8, weight
parameters corresponding to (k + 0.4) - 2" < W < (k +
0.6) - 2" are excluded from quantization, and the values of
these weight parameters are changed during the retraining
process. In Table 1, the second column illustrates the portion
of the weight parameters that are excluded from quantiza-
tion before the retraining, and the third column presents the
portion of the weight parameters that are excluded from
quantization after the retraining. The results illustrate that
the portion of the ambiguous weight parameters is signifi-
cantly reduced during retraining from 23.33%, 22.95%, and
20.06% to 8.73%, 18.01%, and 14.65% in VGG-7, YOLOV3,
and YOLOV4, respectively, implying that iterative retrain-
ing can more divide the ambiguous values more distinctly,
thereby minimizing the estimation loss that occurs during
quantization.

D. APPLICATION TO THE OBJECT DETECTOR WITH

THE BIT ALLOCATION METHOD

In applying to the object detectors, YOLOv3 and YOLOv4,
the proposed quantization method is much more effective
because the weight parameters of YOLOv3 and YOLOv4 are
much more prone to not being distributed around zero,
as mentioned in Section III-B, although the weight distribu-
tion varies depending on datasets. Moreover, YOLOvV3 and
YOLOv4 have many layers, as depicted in Fig. 3, so there are
many weight parameters that have ambiguous values between
adjacent quantized points, and inadequate quantization of
these parameters directly leads to a degradation in perfor-
mance. Consequently, in object detectors, it is essential to
shift the center of the weight distribution to zero by subtract-
ing the mean of weight parameters and reduce the proportion
of weight parameters with ambiguous values through iterative
retraining.

Furthermore, DNN models that perform object detection,
including YOLO, have a significant depth of layers, and each
layer has a different role, so the minimum number of bits
required to express the weight parameters is different for
each layer. In specific layers, even if the number of bits used
to express the weight parameters is significantly reduced,
the mAP value is not significantly changed. In addition, even
in a specific layer, when the number of bits to be allocated for
weight parameters is reduced, the mAP increases similar to

VOLUME 9, 2021

the effect of preventing overfitting. Based on this observation,
the optimized bits allocated to each layer in YOLOV3 and
YOLOV4 are adaptively determined using the grid search
method. For grid search, quantization is performed on a given
bit for the weight parameters in the entire network model and
mAP is measured by lowering the number of bits assigned to
the weight parameters in each layer. Accordingly, the network
is configured bit-adaptively by determining the number of
bits that produces the maximum mAP in each layer.

The number of bits
|
6

1 4 7 1013 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73

The number of convolution layer

(@

The number of bits

8
7
6
5
4

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 83 91 94 97 100103106109

The number of convolution layer

(®)

FIGURE 8. Number of bits used in each convolutional layer. (a) YOLOv3.
(b) YOLOvA4.

Fig. 8 presents the number of bits achieving the highest
mAP for each layer in YOLOv3 and YOLOvA4. In Fig. 8(a),
to acquire these results, all weight parameters in YOLOV3 are
quantized to 8 bits that do not affect performance degradation,
and then the mAP is measured by changing the allocated
weight bits of the specific layer while maintaining the weight
bits of other layers at a fixed 8 bits. The results show that
several layers can be quantized up to 4 bits. Finally, the bits
determined according to the previously described method are
allocated to each layer in YOLOV3. In Fig. 8(b), the optimal
quantized bit for each layer in YOLOv4 is also measured
in a similar way. The figure shows that YOLOv4 tends to
have a high proportion of lower bit (i.e., 4 bits) layers that

20835

IEEE Access

S. Kim, H. Kim: Zero-Centered Fixed-Point Quantization With lterative Retraining for Deep CNN-Based Object Detectors

lead to optimal mAPs in the middle of the network, and the
front and end layers tend to require relatively higher bits
(i-e., 8 bits) to produce optimal mAPs. In both YOLOv3 and
YOLOV4 networks, after optimizing the bits for each layer,
an optimally-quantized object detector with minimal perfor-
mance degradation can be configured using the techniques
presented in the previous subsections.

IV. EXPERIMENTAL RESULTS

A. EXPERIMENTAL ENVIRONMENT

To measure the accuracy and the weight size of each
model, the experiments are performed on the server platform
with Linux OS and GeForce RTX 2080Ti (10.1 CUDA).
To verify the effect of the proposed quantization method on
image classification, the experiments are conducted using the
Cifar-10 dataset in VGG networks. To obtain an additional
complexity reduction effect, the activation function param-
eters are also expressed as 4 bits through a Relu function
by applying the technique in Section III-B. Usually, in HW
implementation, the Relu function is used more widely than
leaky Relu to express more numbers by removing the sign
bit [37]. On the other hand, to verify the effect of the proposed
techniques on object detection, experiments are conducted
using the COCO dataset in the YOLOv3 and YOLOv4 net-
works. Considering the characteristics of object detection,
the activation parameters maintain the full precision of the
original network (i.e., 32-bit) without applying quantization
to minimize performance degradation. The mAP is measured
at .5 IOU (Intersection Over Union).

TABLE 2. Accuracy change by applying the quantization method in
CIFAR-10 dataset with VGG networks.

Method AC?(}Z;’CY gig;r(?% W/A bits
Original network 92.07 - 32/32
B Qi om0k s
o G Quli 7 0n 4
Mersive Revmimne 0170 02 4
Zero-Centered Quantization 91.97 01 4/4

+ Iterative Retraining

B. PERFORMANCE EVALUATION ON

IMAGE CLASSIFICATION

Table 2 illustrates the accuracy results of the existing VGG-7
network (i.e., 32-bit full decision) [2] and the quantized
VGG-7 networks with the various options in the second
column. In the fourth column, the number of bits used
for weight and activation parameters in each network is
presented. If the fixed-point quantization and retraining pro-
cess are applied without both the zero-centered quantiza-
tion technique in Section III-B and the iterative retaining
technique in Section III-C, respectively, a significant accu-
racy degradation of 0.36% occurs. In contrast, if each of the
zero-centered quantization and iterative retraining techniques

20836

is applied, the performance degradations are reduced to
0.33% and 0.28%, respectively. When both techniques are
applied, the performance degradation is 0.1%, which is neg-
ligible despite the reduction of both weight and activation
parameters from 32 to 4 bits. It should be noted that these
results have been achieved only with pure fixed-points,
with no floating-points being used for weight or activation
parameters.

TABLE 3. Comparison results of accuracy drop in CIFAR-10 dataset with
VGG networks.

Accuracy

Method Model drop (%) W/A bits
Proposed method VGG-7 -0.1 4/4
Enderich et al. [25] VGG-7 -0.15 2/32
SYMOG [38] VGG-7 -0.19 2/32
Lin et al. [26] VGG-8 -0.37 4/4
Miyashita et al. [39] VGG-8 -0.31 4/5

Table 3 presents the results of comparing the performance
with the existing fixed-point quantization schemes on image
classification targets. Compared to Enderich et al. [25] and
SYMOG [38], where only the weights are quantized with
a fixed-point format, although the proposed method used
two more bits for the weight parameters, the bits used for
activation parameters are significantly reduced to 1/8, and
the accuracy degradation is also less than both of them.
Compared with the proposed method and Lin et al. [26],
both studies allocate the same number of bits to weight
and activation parameters, and the accuracy of the pro-
posed method is 0.27% higher than that of Lin ef al. [26].
Miyashita et al. [39] used log-scale quantization to replace
multiplication operations with add operations in HW design.
However, despite using 1 bit more for the activation param-
eter than the proposed method, the accuracy drop of
Miyashita et al. [39] is greater by 0.21% than that of the
proposed method.

TABLE 4. mAP comparison results on YOLOv3 using each method in
COCO dataset.

Average
Method mAP W bits
Original YOLOv3[10] 54.64 32
52.60/54.52 8
Quantized YOLOvV3 20.59/53.64 !
(Basic/Proposed) 426175005 6
14.52/46.95 5
0/42.02 4
Proposed YOLOv3 with bit allocation 54.52 6.58

C. PERFORMANCE EVALUATION ON OBJECT DETECTION

Table 4 presents the mAP results of the original YOLOV3 net-
work [10] and the quantized YOLOv3 network with the
various options. In the third column, the average number of
bits used for weight parameters in each network is presented.
If the proposed quantization methods in Sections III-B and C

VOLUME 9, 2021

S. Kim, H. Kim: Zero-Centered Fixed-Point Quantization With lterative Retraining for Deep CNN-Based Object Detectors

IEEE Access

are not applied (i.e., Quantized YOLOv3-Basic), perfor-
mance degradation is extremely severe even if it is quantized
to 8 bits. In contrast, when applying the zero-centered quan-
tization technique in Section III-B and the iterative retraining
technique in Section III-C, the performance degradation is
insignificant at 0.12% until the number of bits allocated
to weight parameters in YOLOV3 is quantized to 8 bits.
However, if the number of bits allocated to weight param-
eters is reduced from 8 to 4 bits, a more significant mAP
decrease occurs, as depicted in the table. Even if the proposed
quantization technique is applied, the quantization to 7 bits
also causes a significantly large mAP decrease, and if the
quantized bits are even fewer, the reduction in accuracy is
so severe that it is difficult to use in a real application.
However, by applying the proposed bit allocation method
in Section III-D, the average number of bits required for
weight parameters can be decreased to an average of 6.58 bits
while maintaining the same mAP with 8-bits quantization.
Reducing the number of bits leads to a decrease in memory
access time, inference time, and power consumption when
designing HW accelerators. In conclusion, when both the
proposed quantization methods and bit-allocation method are
applied, it is possible to maintain performance similar to that
of the original YOLOvV3 with only approximately 20% bits
for expressing the weight parameters in YOLOv3. Similarly,
it should be noted that these results are achieved by represent-
ing the weight parameters in fixed-point format only, without
any floating-point format.

TABLE 5. mAP comparison results on YOLOv4 using each method in
COCO dataset.

Average
Method mAP W bits
Original YOLOv4[11] 64.17 32
62.39/62.9 8
Quantized YOLOv4 28.68/62.42 !
(Basic/Proposed) 30.05/61.32 6
0/58.26 5
0/34.15 4
Proposed YOLOv4 with bit allocation 63.54 5.99

Table 5 presents the mAP results of the original
YOLOV4 network [10] and the quantized YOLOv4 network
with the various options. It should be noted that the structure
of this table is exactly the same as Table 4, but the experimen-
tal results obtained by replacing YOLOvV3 with YOLOv4 are
presented. In YOLOV4, performance degradation due to the
basic quantization is more severe than YOLOV3 in all the
number of quantized bits. However, the proposed method
can considerably mitigate the performance degradation even
if bit allocation is not applied. It should be noted that the
performance difference between the basic quantized model
and the proposed quantized model is getting more signifi-
cant as the allocated quantized bit becomes lower. Finally,
by using the proposed quantization model with adaptive bit
allocation, we can achieve a 0.64% higher mAP than the
proposed 8-bit quantization model, even though the average
number of bits is 2.01 bits less.

VOLUME 9, 2021

TABLE 6. mAP Comparison results on each network in COCO dataset.

Method mAP (%) W bits We(‘ﬁ’];)s‘ze

Original YOLOv3 [10] 54.64 32 237

YOLOV2 [34] 48.1 32 194

Zhang et al. [40] 48.1 16 97
YOLOV3-tiny [10] 33.1 32 33.79
Gaussian YOLOv3-tiny [13] 393 32 33.82
Nayak et al. [41] 28.09 8 30.48
Proposed quantized YOLOv3 54.52 6.58 48.96

FIGURE 9. Detection results of the various object detectors. (a) YOLOv3.
(b) YOLOV2. (c) Quantized YOLOv3 (Basic-6bits). (d) Proposed quantized
YOLOVS3. (e) YOLOvA4. (f) Proposed Quantized YOLOv4.

Table 6 compares the proposed network with other net-
works in terms of accuracy and weight size. Compared
to YOLOV2 network [34] and its quantized model [40],

20837

IEEE Access

S. Kim, H. Kim: Zero-Centered Fixed-Point Quantization With lterative Retraining for Deep CNN-Based Object Detectors

the proposed network achieves 6.42 higher mAP even though
the weight size of the proposed network is approximately
one-quarter and one-half smaller, respectively. Compared
to YOLOv3-tiny [10], Gaussian YOLOv3-tiny [13], and
Nayak et al. [41], the weight size of the proposed network is
approximately one-third larger, but the mAP of the proposed
network is much higher than that of YOLOv3-tiny [10],
Gaussian YOLOv3-tiny [13], and Nayak et al. [41] by 21.42,
15.22, and 26.43, respectively. In particular, through the
comparison result with Gaussian YOLOv3-tiny [13], which
enhances the accuracy of a small-scale network, it can be seen
that effectively reducing the size of a large-scale network is
more efficient than improving the performance of a small-
scale network. Consequently, the proposed network is supe-
rior in terms of the trade-off between accuracy and network
size.

For visual evaluation, Fig. 9 illustrates the detection
results of the various object detectors. In the experiment,
the detection threshold is set to 0.5, which is the default test
threshold of the original YOLO network. In Figs. 9 (a)-(d),
the results of the original YOLOV3 and the proposed net-
work illustrate similar performance except that some small
objects are missing. The proposed network is superior to
the quantized YOLOv3 with the 6-bit basic scheme and
YOLOV2. In particular, in the quantized YOLOv3 with the
6-bit basic scheme and YOLOV2, almost all small objects
are missing, whereas the proposed quantized YOLOv3 iden-
tifies almost all of the same small objects despite reducing
the network size to 1/5 of the original YOLOV3 network.
In Figs. 9(e) and 9(f), the detection results of the original
YOLOV4 and the proposed YOLOv4 model are presented.
The original YOLOv4 and the proposed quantized YOLOv4
network show almost similar detection results except for
one or two small objects. Although the average number
of bits required for each weight parameter in the proposed
YOLOV4 has been reduced to an average of 5.99 bits, the pro-
posed YOLOv4 detects significantly more objects than the
original YOLOV3.

V. CONCLUSION

In this paper, we propose a fixed-point-based quantization
method specialized for embedded platforms to compensate
for the problems of floating-point-based quantization meth-
ods. Furthermore, an adaptive application method that can
expand to the object detection is proposed. When applying
the proposed techniques to YOLOv3 and YOLOv4, the mAP
similar to that of the original network using a single-precision
floating-point format can be achieved using only approx-
imately 20% of the number of bits for weight parame-
ters, while maintaining the advantage of fixed-point-based
quantization suitable for HW implementation. Consequently,
the proposed algorithm can contribute significantly to the
commercialization of deep learning algorithms by advanc-
ing the implementation of object classification/detection HW
accelerators for embedded platforms.

20838

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Proc. Adv. Neural Inf. Pro-
cess. Syst. (NIPS), vol. 1, 2012, pp. 1097-1105.

[2] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” Sep. 2014, arXiv:1409.1556. [Online].
Available: http://arxiv.org/abs/1409.1556

[3] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 770-778.

[4] J.Choi, D. Chun, H. Kim, and H.-J. Lee, “Gaussian YOLOV3: An accurate
and fast object detector using localization uncertainty for autonomous
driving,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV), Oct. 2019,
pp. 502-511.

[S] D. Justus, J. Brennan, S. Bonner, and A. S. McGough, “Predicting the
computational cost of deep learning models,” in Proc. IEEE Int. Conf. Big
Data (Big Data), Dec. 2018, pp. 3873-3882.

[6] D.T. Nguyen, T. N. Nguyen, H. Kim, and H.-J. Lee, “A high-throughput
and power-efficient FPGA implementation of YOLO CNN for object
detection,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 27, no. 8,
pp. 1861-1873, Aug. 2019.

[7]1 D. T. Nguyen, H. Kim, and H.-J. Lee, “Layer-specific optimization for
mixed data flow with mixed precision in FPGA design for CNN-based
object detectors,” IEEE Trans. Circuits Syst. Video Technol., early access,
Aug. 31, 2020, doi: 10.1109/TCSVT.2020.3020569.

[8] R.Girshick, J. Donahue, T. Darrell, and J. Malik, “‘Rich feature hierarchies
for accurate object detection and semantic segmentation,” in Proc. [EEE
Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2014, pp. 580-587.

[91 W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C. Y. Fu, and
A. C.Berg, “SSD: Single shot multibox detector,” in Proc. Eur. Conf.
Comput. Vis. (ECCV), Oct. 2016, pp. 21-37.

[10] J. Redmon and A. Farhadi, “YOLOv3: An
improvement,” 2018, arXiv:1804.02767. [Online].
http://arxiv.org/abs/1804.02767

[11] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “YOLOv4: Opti-
mal speed and accuracy of object detection,” 2020, arXiv:2004.10934.
[Online]. Available: http://arxiv.org/abs/2004.10934

[12] K.Guo, L. Sui,J. Qiu,J. Yu,J. Wang, S. Yao, S. Han, Y. Wang, and H. Yang,
“Angel-eye: A complete design flow for mapping CNN onto embedded
FPGA,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 37,
no. 1, pp. 3547, Jan. 2018.

[13] J. Choi, D. Chun, H.-J. Lee, and H. Kim, ‘“Uncertainty-based object
detector for autonomous driving embedded platforms,” in Proc. 2nd IEEE
Int. Conf. Artif. Intell. Circuits Syst. (AICAS), Aug. 2020, pp. 16-20.

[14] K. Guo, S. Zeng, J. Yu, Y. Wang, and H. Yang, “[DL] A survey of FPGA-
based neural network inference accelerators,” ACM Trans. Reconfigurable
Technol. Syst., vol. 12, no. 1, pp. 1-26, 2019.

[15] Z. Cai, X. He, J. Sun, and N. Vasconcelos, “Deep learning with low pre-
cision by half-wave Gaussian quantization,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 5918-5926.

[16] Y. He, X. Zhang, and J. Sun, “Channel pruning for accelerating very deep
neural networks,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV), Oct. 2017,
pp. 1389-1397.

[17] D. T. Nguyen, N. H. Hung, H. Kim, and H.-J. Lee, “An approximate
memory architecture for energy saving in deep learning applications,”
IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 67, no. 5, pp. 1588-1601,
May 2020.

[18] D.T.Nguyen, H. Kim, H.J. Lee, and I. J. Chang, ‘“An approximate memory
architecture for a reduction of refresh power consumption in deep learning
applications,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), May 2018,
pp. 1-5.

[19] Z. Zhou, W. Zhou, X. Lv, X. Huang, X. Wang, and H. Li, “Pro-
gressive learning of low-precision networks for image classifica-
tion,” [EEE Trans. Multimedia, early access, Apr. 23, 2020, doi:
10.1109/TMM.2020.2990087.

[20] Y. Xu, W. Dai, Y. Qi, J. Zou, and H. Xiong, “Iterative deep neural network
quantization with lipschitz constraint,” IEEE Trans. Multimedia, vol. 22,
no. 7, pp. 1874-1888, Jul. 2020.

[21] S.Jung,C.Son,S.Lee,J.Son,J.J.Han, Y. Kwak, S. J. Hwang, and C. Choi,
“Learning to quantize deep networks by optimizing quantization intervals
with task loss,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2019, pp. 4350-4359.

incremental
Available:

VOLUME 9, 2021

http://dx.doi.org/10.1109/TCSVT.2020.3020569
http://dx.doi.org/10.1109/TMM.2020.2990087

S. Kim, H. Kim: Zero-Centered Fixed-Point Quantization With lterative Retraining for Deep CNN-Based Object Detectors

IEEE Access

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

R. Banner, Y. Nahshan, and D. Soudry, ““Post training 4-bit quantization of
convolutional networks for rapid-deployment,” in Proc. Adv. Neural Inf.
Process. Syst. (NIPS), 2019, pp. 7948-7956.

S. Han, H. Mao, and W. J. Dally, “Deep compression: Com-
pressing deep neural networks with pruning, trained quantization
and Huffman coding,” 2015, arXiv:1510.00149. [Online]. Available:
http://arxiv.org/abs/1510.00149

V. Sze, Y. H. Chen, T. J. Yang, and J. S. Emer, “Efficient processing of
deep neural networks: A tutorial and survey,” Proc. IEEE, vol. 105, no. 12,
pp. 2295-2329, Dec. 2017.

L. Enderich, F. Timm, L. Rosenbaum, and W. Burgard, “Learning mul-
timodal fixed-point weights using gradient descent,” in Proc. 27th Eur.
Symp. Artif. Neural Netw., Comput. Intell. Mach. Learn., 2019, pp. 1-6.
D. Lin, S. Talathi, and S. Annapureddy, “Fixed point quantization of
deep convolutional networks,” in Proc. Int. Conf. Mach. Learn. (ICML),
Jun. 2016, pp. 2849-2858.

J. Faraone, N. Fraser, M. Blott, and P. H. W. Leong, “SYQ: Learning
symmetric quantization for efficient deep neural networks,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., Jun. 2018, pp. 4300-4309.

J.-I. Guo, C.-C. Tsai, J.-L. Zeng, S.-W. Peng, and E.-C. Chang, “Hybrid
fixed-point/binary deep neural network design methodology for low-power
object detection,” IEEE J. Emerg. Sel. Topics Circuits Syst., vol. 10, no. 3,
pp. 388—400, Sep. 2020.

M. Wess, S. M. P. Dinakarrao, and A. Jantsch, ‘“Weighted quantization-
regularization in DNNs for weight memory minimization toward HW
implementation,” [EEE Trans. Comput.-Aided Design Integr. Circuits
Syst., vol. 37, no. 11, pp. 2929-2939, Nov. 2018.

M. Kiyama, Y. Nakahara, M. Amagasaki, and M. Iida, “A quantized neural
network library for proper implementation of hardware emulation,” in
Proc. 7th Int. Symp. Comput. Netw. Workshops (CANDARW), Nov. 2019,
pp. 136-140.

R. Z. Tan, X. Chew, and K. W. Khaw, “Quantized deep residual convolu-
tional neural network for image-based dietary assessment,” IEEE Access,
vol. 8, pp. 111875-111888, 2020.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A large-scale hierarchical image database,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., Jun. 2009, pp. 248-255.

J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once:
Unified, real-time object detection,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2016, pp. 779-788.

J. Redmon and A. Farhadi, ““YOLO9000: Better, faster, stronger,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017,
pp. 7263-7271.

A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images,” Univ. Toronto, Toronto, ON, Canada, Tech. Rep. 4, 2009.
T. Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollar,
and C. L. Zitnick, “Microsoft coco: Common objects in context,” in Proc.
Eur. Conf. Comput. Vis. (ECCV), Sep. 2014, pp. 740-755.

VOLUME 9, 2021

(37]

(38]

(39]

[40]

[41]

L. Lai, N. Suda, and V. Chandra, “Deep convolutional neural network
inference with floating-point weights and fixed-point activations,” 2017,
arXiv:1703.03073. [Online]. Available: http://arxiv.org/abs/1703.03073
L. Enderich, F. Timm, and W. Burgard, “SYMOG: Learning symmetric
mixture of Gaussian modes for improved fixed-point quantization,” Neu-
rocomputing, vol. 416, pp. 310-315, Nov. 2020.

D. Miyashita, E. H. Lee, and B. Murmann, ‘‘Convolutional neural networks
using logarithmic data representation,” 2016, arXiv:1603.01025. [Online].
Available: https://arxiv.org/abs/1603.01025

S.Zhang, J. Cao, Q. Zhang, Q. Zhang, Y. Zhang, and Y. Wang, “An FPGA-
based reconfigurable CNN accelerator for YOLO,” in Proc. IEEE 3rd Int.
Conf. Electron. Technol. (ICET), May 2020, pp. 74-78.

P. Nayak, D. Zhang, and S. Chai, “Bit efficient quantization for
deep neural networks,” 2019, arXiv:1910.04877. [Online]. Available:
http://arxiv.org/abs/1910.04877

SUNGRAE KIM received the B.S. degree in elec-
trical and information engineering from the Seoul
National University of Science and Technology,
Seoul, South Korea, in 2019. His research interests
include SoC design and compression schemes for
deep neural networks.

HYUN KIM (Member, IEEE) received the B.S.,
M.S., and Ph.D. degrees in electrical engineering
and computer science from Seoul National Univer-
sity, Seoul, South Korea, in 2009, 2011, and 2015,
respectively. From 2015 to 2018, he was with the
BK21 Creative Research Engineer Development
for IT, Seoul National University, as a BK Assis-
tant Professor. In 2018, he joined the Department
of Electrical and Information Engineering, Seoul
| National University of Science and Technology,

Seoul, where he is currently working as an Assistant Professor. His research
interests include algorithm, computer architecture, memory, and SoC design
for low-complexity multimedia applications and deep neural networks.

20839

