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ABSTRACT This paper introduces a robust adaptive sliding mode control to solve a finite-time stability of
the uncertain nonlinear systems with multiple inputs and multiple outputs (MIMO). The proposed algorithm
guarantees a strict robustness and fast convergence of the system trajectories to zero in a finite time under
the negative effects of uncertainties and/or external disturbances. The fundamental methodology is based on
an improved modification of the super-twisting sliding technique to alleviate an undesirable influence of the
chattering phenomenon. In addition, a nonlinear adaptive law is constructed to ensure a strict stability of the
control system even without prior awareness of the upper bounds of uncertainties and disturbances. A general
stability of the closed-loop disturbed MIMO nonlinear system is achieved by the Lyapunov theorem. Lastly,
the proposed algorithm is applied to stabilize the typical chaotic behaviors of Duffing – Holmes system and
Lorenz system. The advantages and effectiveness of the proposed method are clearly demonstrated through
the results of numerical simulations compared with other existent methods.

INDEX TERMS Disturbed MIMO system, adaptive control, sliding mode control, finite-time stability,
chaotic system.

I. INTRODUCTION
It is obviously that the undesirable influences of uncertain
parameters and/or exogenous perturbations are unavoidable
in many practical engineering systems, and often provide a
negative performance for tracking control and stabilization
control. For many decades, the robust adaptive control algo-
rithms have been introduced by plenty of researchers for
improving the tracking control performance [1]–[5]. Besides,
the issue of stabilization control is also an attractive topic
describing the convergence of system trajectories to a small
neighborhood of the origin zero. Thus, this problem has been
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widely researched and applied in both practical linear and
nonlinear dynamic systems [6].

The classical sliding mode control (SMC), and advanced
SMCmethods are renowned and advantageous robust control
techniques due to its uncomplex concept, robustness, and
excellent capacity to remove the negative influences of the
matched/unmatched uncertainties and external disturbances
on an engineering system [7]–[11]. The first step of designing
SMC algorithms is to define a linear or nonlinear sliding
surface which is a continuous function of system states or
tracking errors, and following an effective controller is con-
structed in such a way that the system trajectories converge
to the proposed sliding surface [12]. Because of those sim-
ple concept and great efficiency, the SMC technique has
extensively applied to control a nonlinear system with highly
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guaranteeing of a robust stability and asymptotic convergence
of the system state to equilibrium points in a finite time. How-
ever, it is not always possible to achieve the asymptotically
stable with a finite time convergence because performance
of the SMC technique strictly depends on a switching law.
In order to solve this issue, various finite-time stabilization
algorithms have been introduced by using a terminal sliding
mode control [13], disturbance observer and second-order
sliding mode control [14], [15]. However, in these researches,
the singularity phenomenon may occur one the initial states
of the system are inside special zones causing an amplifi-
cation of the control signal [16]. In [17], [18], an extended
SMC integrated with a disturbance observer was developed
for nth order nonlinear systems with unmatched uncertain-
ties to improve the tracking control performance. However,
the control strategies cannot guarantee a robust stability of
the closed-loop systems in a finite time. Furthermore, in these
disturbance observers, the assumptions of an exogenous per-
turbation are only the harmonic signals which are not gen-
eral case because an arbitrary perturbation may influence
on the system at any time during the working process [19].
In addition, the studies only focus on controlling a single
input and single output (SISO) nonlinear system [20]. In order
to solve this problem, a terminal sliding mode control for the
perturbedMIMO linear systemswas introduced in [21]. How-
ever, the convergence performance of state trajectories of the
closed-loop systems is quite slow when the initial states are
distant from the equilibrium points. In [22], a nonlinear slid-
ing function is proposed to improve the tracking performance
for a finite time control of a disturbed MIMO nonlinear
system based on the form of linearmatrix inequalities (LMIs).
However, the upper bound conditions of uncertainties and
exogenous disturbances are strictly required for designing
a control law. In [23], [24], a robust adaptive high-order
SMC for class of perturbed MIMO systems was presented
by using the super twisting technique. In [25], a derivative
and integral terminal SMC for multiple inputs and multiple
outputs system was proposed to improve the finite conver-
gence of the system state to zero. In [26], [10], a stabilization
control and robust adaptive SMC for a nonlinear system
with matched and unmatched uncertainties were introduced
by using a second-order sliding manifold. The technique of
a second-order SMC is also applied to improve the track-
ing performance of a flight control based on the classical
Proportional Integral Derivative (PID) sliding surface [27].
However, the overall disadvantages of these researches can
be briefly described as follows: i) these algorithms highly
concentrated on the second order SISO nonlinear systems.
Therefore, it may not be suitable to apply for higher order dis-
turbed MIMO systems in the appearance of multiple inputs;
ii) awareness of the upper bound information must be known
in advanced; iii) these controllers just guarantee a stability
of system with a slow performance without ensuring the
finite-time convergence.

Intelligent control method is also another well-known
trend of study to deal with the problem of controlling the

nonlinear systems in the presence of uncertainties and/or
external disturbances. The conceptual methodology of this
approach is to apply composite techniques between fuzzy
algorithm, neural network, and SMC to stabilize the closed-
loop systems [28]. In [29], a fuzzy logic algorithm is used
to estimate the unknown terms, following an adaptive fuzzy
siding mode control for a class of perturbed MIMO nonlinear
system was developed by an input-output model to guaran-
tee the convergence of the tracking errors to a small ball
containing the origin zero. In [30], a robust control to deal
with the stabilization problem and tracking control problem
for a disturbed MIMO system is presented by a combination
of the SMC technique and fuzzy logic algorithm. In [31],
an adaptive SMC for Takagi-Sugeno fuzzy system based
LMIsmethod is proposed to improve the control performance
of the system with mismatched uncertainties and/or exoge-
nous perturbations. However, the general drawback of these
mentioned approaches is not easy to demonstrate the stability
of the closed-loop system in a finite-time.

The research’s inspiration of this paper is to deal with the
aforementioned drawbacks of the existent approaches. The
essential methodology of this study is based on an improved
modification of the super-twisting algorithm (STA) to design
a robust adaptive law allowing to reimburse uncertainties
and/or external perturbations changing in time or together
with the system states for improvement the stability of a
closed-loop perturbed MIMO nonlinear system. The main
contributions of this scientific paper are briefly summarized
as follows:

1) A robust adaptive control law is designed through a
novel nonlinear sliding manifold which is not only to
ensure that the system states strongly converge to zero
in the finite-time but also to easily understand and
execute to the practical system because the proposed
controller is designed in the state space model of a
general disturbed MIMO system.

2) Unlike the existent control strategies, the proposed
algorithm is entirely possible to improve the perfor-
mance of transient response and steady state response
of the high-order perturbed MIMO systems.

3) The proposed algorithm always guarantees a robust sta-
bility of the system against uncertainties and external
disturbances without requiring precise awareness of its
upper bound information compared with the classical
STA [32]–[34]. It implies that the controller allows to
reimburse uncertainties/perturbations changing in time
or together with the system states.

4) The singularity problem is removed by the presented
controller, and the negative effect of a chattering is also
eliminated due to the anti-chattering capacity of the
super twisting technique.

The rest of this article is organized as follows. The problem
statement and preliminaries are briefly described in Section 2.
Section 3 provides the steps of designing a novel nonlinear
sliding manifold and robust adaptive sliding mode controller;
the stability analysis of the control system is also included
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in this section. The results of a numerical simulation of the
chaotic systems are presented in section 4. Finally, the con-
clusions are given in Section 5.

II. PROBLEM STATEMENT AND PRELIMINARIES
It is proposed to consider a class of disturbed MIMO nonlin-
ear system given by the following state space model as

ẋ = (A+1A(t)) x + (B+1B(t)) (u+ f (x, t)+ g(x, t))

+h(t) (1)

where x ∈ Rn represents state vector of the system, u ∈
Rm denotes the control input; f (x) and g(x) denote the
known and unknown smooth nonlinear functions in term
of x, respectively; A and B are constant matrices of proper
dimensions;1A(t) and 1B(t) are the unknown time varying
matrices of uncertain parameters of the system; h(t) is an
unknown time varying function representing an exogenous
perturbation. There are some assumptions given by the fol-
lowing statements
Assumption 1: Pair (A,B) is completely controllable
Assumption 2: The matrix B is full rank, i.e.,rank B = m
Assumption 3: There exist unknown time-varying matrices

with proper dimension represented by PA(t),PB(t) and Ph(t)
in such a way that 1A(t) = BPA(t), 1B(t) = BPB(t), h(t) =
BPh(t). Thus, the disturbed MIMO nonlinear system (1) can
be re-written by a simple model as follows:

ẋ = Ax + Bf (x, t)+ B (u+ d (x, u, t)) (2)

where d(x, u, t) is a lumped perturbation generated by the
uncertain parameters and external disturbances as follows:

d(x, u, t) = PA(t)x(t)+ PB(t)u(t)+ PB(t)f (x, t)+ g(x, t)

+PB(t)g(x, t)+ Ph(t)h(t) (3)

From the Assumption 3, it is clear that instead of designing a
controller for system (1), we can do it with the system (2).

According to the Assumptions 1 and 2, there exists a trans-
formation matrix T such that [35]:

z =
[
z1
z2

]
= Tx ∈

[
Rn−m

Rm

]
(4)

where

T =
[
T1
T2

]
, T2 =

(
BTB

)−1
BT , T1B = 0

Thus, the nonlinear system (2) can be re-written by using the
new transformed state variables from Eq. (4) as follows:

ż = A∗z+ B∗f (z, t)+ B∗ (u+ d(z, u, t)) (5)

where

A∗ = TAT−1 =
[
A11 A12
A21 A22

]
(6)

B∗ = TB =
[
0
B2

]
, B2 ∈ Rm×m (7)

and Aij(i, j = 1, 2) are matrices of proper dimensions.

The regular form of the system (5) can be re-written from
Eq.(6) and Eq.(7) as follows:

ż1 = A11z1 + A12z2 (8a)

ż2 = A21z1 + A22z2 + B2f (z, t)+ B2 (u+ d(z, u, t)) (8b)

The objective/control problem of this research article is to
design a robust adaptive sliding mode controller based on
an improved modification of the STA. The controller must
allow to reimburse uncertainties and/or external perturba-
tions changing in time or together with the system states.
An additional demand of the control algorithm is not only to
guarantee the finite time stabilization of the disturbed MIMO
nonlinear system, but also to remove the negative influences
of a chattering phenomenon compared with the traditional
SMC method.

III. MAIN RESULTS
A. DESIGN OF SLIDING SURFACE FUNCTION
The steps of designing a nonlinear sliding manifold and
its stability analysis are derived in this subsection. A novel
nonlinear sliding surface function is defined by

s = Qz+
(
3 ‖z1‖α−1 + 0 ‖z1(0)‖

)
z1 (9)

where 0 < α < 1,3 and 0 are constant matrices with proper
dimensions; z1(0) is an initial state of z1.

LetQ =
[
ϒ I

]
∈
[
Rm×(n−m) Rm×m

]
is a constant matrix

appropriately selected; Im×m is an identity matrix. The sliding
manifold in Eq. (9) can be re-written by:

s = ϒz1 + z2 +
(
3 ‖z1‖α−1 + 0 ‖z1(0)‖

)
z1 (10)

when the sliding surface converges to zero i.e., s = 0, then
the Eq. (10) can be achieved as

z2 = −ϒz1 −
(
3 ‖z1‖α−1 + 0 ‖z1(0)‖

)
z1 (11)

From Eq.(11), It can be seen that if the system state, z1,
is convergent to zero in a finite time when s = 0, then the
system state, z2, also drives to zero in a finite time. Thus,
a stability of the control system can be demonstrated and
discussed by Theorem 1.
Theorem 1: Consider the dynamic model (8). The system

state z1, z2 will strongly converge to zero in a finite time if the
sliding manifold given in Eq.(9) is used to design a controller
u, and the values of3,0, andϒ must also be chosen such that
the matrices E = A11−A12ϒ ,A123, and A120 are symmetric
matrices and satisfy the following conditions:

i)

λmax

{
E + ET

}
= −χ < 0 (12)

ii)

λmin {A123} = η > 0, λmin {A120} = θ > 0 (13)

where χ, η, θ are positive constants, λmin{·} and λmax{·}

represent the minimum and maximum eigenvalue of
a matrix.
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Proof: Substituting the Eq.(11) to Eq.(8a), the dynamic
system state ż1 can be obtained as follows:

ż1 = A11z1 + A12
[
−ϒz1 −

(
3 ‖z1‖α−1 + 0 ‖z1(0)‖

)
z1
]

= Ez1 − A123 ‖z1‖α−1 z1 − A120 ‖z1(0)‖ z1 (14)

Consider a Lyapunov function candidate as

V = zT1 z1 (15)

The first time derivative of V can be computed by using the
Eqs.(14), (15) as follows

V̇ = żT1 z1 + z
T
1 ż1

=

(
Ez1 − A123 ‖z1‖α−1 z1 − A120 ‖z1(0)‖ z1

)T
z1

+zT1
(
Ez1 − A123 ‖z1‖α−1 z1 − A120 ‖z1(0)‖ z1

)
= zT1

(
ET + E

)
z1 − 2zT1 (A123) z1 ‖z1‖

α−1

−2zT1 (A120) z1 ‖z1(0)‖ (16)

It is always possible to choose the constant matrices ϒ , 3,
and 0 in such a way that the matrices E = A11 − A12ϒ ,
A123, and A120 are symmetric. Therefore, the following
inequalities (17), (18), and (19) are always satisfied,

λmin

{
ET + E

}
‖z1‖2

≤ zT1
(
ET + E

)
z1 ≤ λmax

{
ET + E

}
‖z1‖2 (17)

λmin {A123} ‖z1‖2

≤ zT1 (A123) z1 ≤ λmax {A123} ‖z1‖2 (18)

λmin {A120} ‖z1‖2

≤ zT1 (A120) z1 ≤ λmax {A120} ‖z1‖2 (19)

Substituting the Eqs.(12), (13), and Eqs.(17-19) to Eq.(16),
the negative value of the function V̇ can be proven as follows:

V̇ ≤ −χ ‖z1‖2 − 2η ‖z1‖α+1 − 2θ ‖z1‖2 ‖z1(0)‖ (20)

From Eq.(15), expression (20) becomes

V̇ =
dV
dt
≤ − (χ + 2θ ‖z1(0)‖)V − 2ηV γ , (21)

where γ = α+1
2 , due to 0 < α < 1, thus 1

2 < γ < 1 From
the inequality (21), it yields

⇒ dt ≤ −
V−γ dV

(χ + 2θ ‖z1(0)‖)V 1−γ + 2η

= −
1

1− γ

[
(1− γ )V−γ dV

(χ + 2θ ‖z1(0)‖)V 1−γ + 2η

]
(22)

Due to d
(
V 1−γ

)
= (1− γ )V−γ dV , thus the inequality (22)

can be re-written as follows

dt ≤ −
1

1− γ

[
d
(
V 1−γ

)
(χ + 2θ ‖z1(0)‖)V 1−γ + 2η

]
(23)

Let t0 is an initial time, and tf > 0 is a finite time at which the
Lyapunov function, V (tf ), converges to zero. It implies that

V (t) = 0 as t ≥ tf . Thus, the value of tf can be computed
by integrating of the inequality (23) with the time interval
t0 ≤ t ≤ tf .

tf ≤ t0 −
1

1− γ

tf∫
t0

[
d
(
V 1−γ

)
(χ + 2θ ‖z1 (0)‖)V 1−γ + 2η

]

= t0 +
1

(1− γ ) (χ + 2θ ‖z1 (0)‖)

× ln
[
(χ + 2θ ‖z1 (0)‖)V 1−γ (t0)+ 2η

2η

]
(24)

Since (χ + 2θ ‖z1(0)‖) > 0, and 2η > 0, expression (21)
proves that the state trajectories z1, z2 of the control system
are powerfully convergent to zero in finite-time tf given in
expression (24). The proof of Theorem 1 is completed.

B. ROBUST ADAPTIVE SLIDING CONTROLLER DESIGN
In this subsection, a robust adaptive sliding mode controller is
designed through the nonlinear sliding manifold presented in
Section 3.A. The proposed controller is constructed by using
an improved modification of the super-twisting sliding mode
technique to enhance a stability of the closed-loop MIMO
nonlinear system and alleviating the chattering effect.
Assumption 4: [32]–[34], The unknown uncertain param-

eters and external perturbations, d(z, u, t), effecting on the
MIMO nonlinear system (5) are the smooth function and
bounded by

‖d(z, u, t)‖ ≤ κ ‖s‖1/2 (25)

where κ ∈ R+ is a unknown constant.
Remark 1:TheAssumption 4was also given in the previous

researches [32]–[34]. However, in those studies, the con-
troller gains strictly depend on the value of κ . Thus, in order
to design an efficient controller ensuring a robust stability
of the closed-loop system, either the coefficient κ must be
known in advance or the controller gains must be selected by
trial-and-error method regardless of parameter κ . However,
it is almost impossible way to precisely know κ due to the
diversity and complexity of the working environment [36].
Furthermore, although it is obvious that the controller gains
must be appropriately chosen according to the bound of per-
turbations through the trial-and-error method, it is not clear
how to pick the appropriate gains. The problem is solved by
a typical robust adaptive controller using the super-twisting
sliding technique given in [37]. However, it is also difficult
to find out the proper controller gains since there are many
parameters that need to be fine-tuned and furthermore the
algorithm is only appropriate for controlling the SISO system.
Hence, in this subsection a robust controller based an adaptive
law of κ is proposed to overcome these existent drawbacks for
controlling the MIMO system.
Remark 2: In this approach, the Assumption 4 is also

used to analyze a stability of the control system. How-
ever, the real upper bound of d(z, u, t) is not precisely
known in advance. It implies that a prior knowledge of the
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coefficient, κ , is not required. Instead of that, the value, κ ,
will be approximated through an adaptive law using the novel
sliding manifold presented in Eq.(9) and a robust controller
given in Theorem 2. Furthermore, the approximate value is
also used as an adaptive gain to guarantee a rapid adaptation
and robust stability of the control system with perturbations
raising in time or together with the system states. The detail
method is described and discussed through Theorem 2 and its
proof.
Theorem 2: Consider the disturbed MIMO nonlinear

system (8), the motion on sliding manifold function given
in Eq.(9) is strongly convergent to zero if the controller,
u, and adaptive law, κ̂ , are chosen as the following
equations (26), (27), and equation (28).

u = −
(
QB∗

)−1
×

[
QA∗z+QB∗f (z, t)+

(
3α ‖z1‖α−1+0 ‖z1(0)‖

)
A∗1z

+
(
k1 +

∥∥QB∗∥∥ κ̂) ‖s‖−1/2 s+ k3s− σ] (26)

σ̇ = −k2 ‖s‖−1 s (27)

˙̂κ =
‖QB∗‖ ‖s‖1/2

2δ
, where δ > 0 (28)

where A∗1 =
[
A11 A12

]
; k1, k2, k3 > 0 are constants; κ̂ is an

adaptive law estimating value of κ .
Proof:

Let ξ1, ξ2 ∈ R are new variables defined by functions{
ξ1 = ‖s‖−1/2 s→ ‖ξ1‖ = ‖s‖1/2

ξ2 = σ
(29)

According to Eq.(29), if the new state variables, (ξ1, ξ2), are
convergent to zero, it implies that the sliding function, s, also
converges to zero. The first-time derivative of (ξ1, ξ2) can be
achieved from Eqs.(27), and (29) as follows,

ξ̇1 =
ṡ

2 ‖s‖1/2
=

ṡ
2 ‖ξ1‖

ξ̇2 = −k2 ‖s‖−1 s = −k2
‖s‖−1/2 s

‖s‖1/2
= −k2

ξ1

‖ξ1‖

(30)

The first derivative of sliding function s can be computed
from Eqs.(9), (5) and Eq.(8a) as follows

ṡ = Qż+
(
3α ‖z1‖α−1 + 0 ‖z1(0)‖

)
ż1

= QA∗z+ QB∗f (z, t)+ QB∗u+ QB∗d(z, u, t)

+

(
3α ‖z1‖α−1 + 0 ‖z1(0)‖

)
A∗1z (31)

Substituting the controller u given in Eq.(26) and Eq.(29) to
Eq.(31), ṡ becomes

ṡ = −
(
k1 +

∥∥QB∗∥∥ κ̂) ξ1 − k3s+ ξ2 + QB∗d(z, u, t) (32)
Consider a positive Lyapunov function as

V2 =
1
2
ξT1 ξ1 +

1
4k2

ξT2 ξ2 +
1
2
δκ̃2 (33)

where κ̃ is an adaptive error and its value is κ̃ = κ − κ̂ .

The first time derivative of the Lyapunov function, V̇2, can
be obtained by Eq(33) and Eq.(30) as

V̇2 =
1
2

(
ξ̇T1 ξ1 + ξ

T
1 ξ̇1

)
+

1
4k2

(
ξ̇T2 ξ2 + ξ

T
2 ξ̇2

)
+ δκ̃ ˙̃κ

=
1
2

(
ṡT

2 ‖ξ1‖
ξ1 + ξ

T
1

ṡ
2 ‖ξ1‖

)
+

1
4k2

(
−k2

ξT1
‖ξ1‖

ξ2 − ξ
T
2 k2

ξ1

‖ξ1‖

)
− δκ̃ ˙̂κ

=
ξT1

2 ‖ξ1‖
ṡ−

ξT1

2 ‖ξ1‖
ξ2 − δκ̃ ˙̂κ (34)

Substituting the Eq.(32) to Eq.(34), V̇2 becomes

V̇2 =
1

2 ‖ξ1‖

(
−
(
k1 + ‖QB∗‖ κ̂

)
‖ξ1‖

2
− k3ξT1 s

+ξT1 ξ2 + ξ
T
1 QB

∗d(z, u, t)

)
−

ξT1

2 ‖ξ1‖
ξ2 − δκ̃ ˙̂κ (35)

From Eq.(29), it can be seen that,

ξ1 ‖s‖1/2 = s⇔ ‖ξ1‖2 ‖s‖1/2 = ξT1 s⇔ ‖ξ1‖
3
= ξT1 s (36)

Therefore, from inequality (25), Eq.(29) and Eq.(36), the fol-
lowing expressions always satisfy{

ξT1 s = ‖ξ1‖
3

‖d(z, u, t)‖ ≤ κ ‖ξ1‖
(37)

Substituting the Eq.(28) and Eq.(37) to Eq.(35), the negative
value of V̇2 can be expressed by

V̇2 ≤
1

2 ‖ξ1‖

(
−k1 ‖ξ1‖2 − κ̂ ‖QB∗‖ ‖ξ1‖2 − k3 ‖ξ1‖3

+κ ‖QB∗‖ ‖ξ1‖2

)
−
κ̃

2

∥∥QB∗∥∥ ‖ξ1‖
≤ −

1
2

(
k1 ‖ξ1‖ + k3 ‖ξ1‖2

)
⇒ V̇2 ≤ 0, ∀k1, k3 > 0 (38)

From the result of expression (38), we can confirm that the
motion on sliding manifold function given in Eq.(9) is pow-
erfully convergent to zero by using the presented controller
in Eqs.(26), (27) and Eq.(28). From Theorem 1, it exhibited
that the system states, z1, z2, of a disturbed MIMO nonlinear
system (5) are strongly convergent to zero in finite time as the
sliding manifold s = 0.
Remark 3: From Eq.(26), we can see that the coefficient κ̂ ,

which is an estimate of κ in Assumption 4, is used as an adap-
tive gain to stabilize the control system. However, the value
of κ̂ can be easily obtained from Eq.(28) by fine-tuning δ
regardless of the original parameter κ . Thus, it is obvious that
the prior knowledge of κ is not necessary. In other words,
the real bound of uncertainties and/or external perturbations
does not actually need to know in the proposed controller.
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IV. SIMULATION RESULTS AND DISCUSSIONS
In this Section, the presented control algorithm is verified
through two typical examples of stabilizing the chaotic sys-
tems. The first example is to control the disturbed Duffing –
Holmes dynamic model representing an uncertain SISO non-
linear system. Next, the proposed algorithm is also applied to
stabilize a perturbedMIMOnonlinear systemwith the Lorenz
model as given in example 2. In addition, the performance of
system trajectories is compared with the previous algorithms
such as terminal SMC based linear matrix inequality (TSMC-
LMI) in [22], and SMCwith a nonlinear disturbance observer
(SMC-NDO) in [28], to emphasize the contribution of the
proposed method.

A. EXAMPLE 1 (DISTURBED SISO NONLINEAR MODEL)
Consider a Duffing – Holmes system [38], which is a typi-
cal example of the second-order nonlinear dynamical model
describing a complex and chaotic motion,{

ż1 = z2
ż2 = −c1z1 − c2z2 − z31 + l cos (ωt)

(39)

where c1, c2 are constants, l is an excitation magnitude, and
ω is an excitation frequency. The dynamic model (39) can be
formulated by a matrix form as follows:[
ż1
ż2

]
=

[
0 1
−c1 −c2

] [
z1
z2

]
+

[
0
1

] (
−z31 + l cosωt

)
(40)

The constant parameters of the system (40) are chosen as
c1 = −1, c2 = 0.073, l = 3.97, ω = 0.68, the initial state of
the system is z0 =

[
z1(0) z2(0)

]T
=
[
1 −5

]T . The complex
and chaotic behavior of the uncontrolled Duffing-Holmes
system is described by a phase portrait and state trajectories
exhibited in Figures 1 and 2. In order to verify efficiency
of the presented algorithm for a disturbed SISO system,
a control input, u, is added to the system (40) according to
the regular form of a closed-loop system given in Eq.(5).
The system matrices and the effect of an uncertainty on the
dynamic model can be described as follows:

A∗ =
[
A11 A12
A21 A22

]
=

[
0 1
1 −0.073

]
,B∗ =

[
0
1

]
,A∗1 =[

0 1
]
, f (z, t) = −z31 + l cosωt; the uncertainty, d(z, u, t),

is given by d (z, u, t) =
(
1
/
2
)
cos (5π t) +

(
1
/
5
)
sin z1 +

2z1z2 + 0.1u.
The control objective of the first illustrative example is to

design a controller in such a way that the state trajectories
(z1, z2) of the chaotic system (40) are convergent to zero in a
finite time. The coefficients of the proposed sliding manifold
are selected as Q =

[
0.52 1

]
, 3 = 5.2, α = 0.85, and

0 = 8.0. The parameters of controller and adaptive law
are chosen as k1 = 15, k2 = 0.1, k3 = 0.1, δ = 0.85,
κ̂(0) = 1.0. The simulation results of the controlled Duffing
– Holmes system are exhibited in Figures 3-7.

The presented controller is applied to stabilize the chaotic
behavior right after t ≥ 0. For easy understanding, we only
exhibit the simulation results in the short time interval t ≥ 0
and t ≤ 7s. As shown in Figures 3 and 4, the responses

FIGURE 1. Phase portrait of the Duffing – Holmes system.

FIGURE 2. State trajectories z1(t), z2(t) of the uncontrolled Duffing –
Holmes system.

FIGURE 3. Performance z1(t) of the controlled Duffing – Holmes system
compared with TSMC-LMI and SMC-NDO.

FIGURE 4. Performance z2(t) of the controlled Duffing – Holmes system
compared with TSMC-LMI and SMC-NDO.

of z1, z2 powerfully converge to zero compared with the
other methods such as TSMC-LMI and SMC-NDO even
though the upper bound of uncertainty, d(z, u, t), is not known
in advance. The chattering effect is efficiently eliminated
as shown in Figure 5. The trajectory of sliding surface of
the proposed method rapidly converges to zero without any
significant oscillations in comparison with the controllers
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FIGURE 5. Controller u(t) for the controlled Duffing – Holmes system.

FIGURE 6. Sliding surface s(t) to control the Duffing – Holmes system.

FIGURE 7. Adaptive law κ̂ to control the Duffing – Holmes system.

of TSMC-LMI and SMC-NDO as exhibited in Figure 6.
The adaptive gain κ̂ is automatically adjusted to guarantee
a strong convergence of the system states to zero as shown
in Figure 7. This example demonstrated that the proposed
algorithm is more effective control performance than the
methods of TSMC-LMI and SMC-NDO in controlling the
SISO system.

B. EXAMPLE 2 (DISTURBED MIMO NONLINEAR SYSTEM)
Next, the proposed controller is also applied to stabilize a
disturbed MIMO nonlinear system. A third order of Lorenz
model [39] is considered. The system model is given as
follows:

ż1 = −az1 + az2
ż2 = bz1 − z2 − z1z3
ż3 = −cz3 + z1z2 (41)

where a and b denote the Prandtl and Rayleigh num-
bers, respectively, and c is physical dimension factor. The
system (41) can be re-written under the matrix form ż1ż2

ż3

 =
−a a 0

b −1 0
0 0 −c

 z1z2
z3

+
 0 0

1 0
0 1

[−z1z3
z1z2

]
(42)

FIGURE 8. Phase portrait of the uncontrolled Lorenz system.

The system parameters are chosen as a = 8, b = 60, and
c = 10

/
3. The initial states of the chaotic system are given

by z1(0) = 2, z2(0) = 4 and z3(0) = −5. The complex
and chaotic motion of an uncontrolled Lorenz system can be
easily described by the phase portraits (Figure 8), and state
trajectories of z1, z2, z3 (Figure 9). In order to demonstrate the
effectiveness of the proposed method with a disturbedMIMO
nonlinear system, the control inputs are added to the system
(42) according to the presented regular form in Eq.(5). The
system matrices and uncertainties are given as follows

A∗ =
[
A11 A12
A21 A22

]
=

−a a 0
b −1 0
0 0 −c


=

−8 8 0
60 −1 0
0 0 −10

/
3

 ,
A11 = −8,A12 =

[
8 0

]
, and B∗ =

 0 0
1 0
0 1

 ;
f (z, t) =

[
−z1z3
z1z2

]
and the influences of uncertainties and external perturbations,
d(z, u, t), on the Lorenz system are given by

d(z, u, t)

= ‖s‖1/2
[(

1
2 z

2
1 +

[
sin(2t) 0.2 1

]
z+ t

6 + sin2 2t
)

1
2 z

2
1 +

3
10 cos z1 +

1
2 z2z3

]

+

[
0.1 0.5
0 0.7

]
u

The coefficients of a sliding manifold are selected as follows:

Q =
[

1.05 1 0
−0.25 0 1

]
, 3 =

[
0.1
1

]
, 0 =

[
0.02
0.2

]
, α = 0.75.

The other parameters are selected as k1 = 2.1, k2 = 0.2,
k3 = 10, δ = 0.15, and κ̂(0) = 1.0. The presented controller
is applied to stabilize the chaotic system right after t ≥ 0.
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FIGURE 9. State trajectories z1(t), z2(t), and z3(t) of the uncontrolled
Lorenz system.

FIGURE 10. Performance z1(t) of the controlled Lorenz system compared
with TSMC-LMI and SMC-NDO.

FIGURE 11. Performance z2(t) of the controlled Lorenz system compared
with TSMC-LMI and SMC-NDO.

FIGURE 12. Performance z3(t) of the controlled Lorenz system compared
with TSMC-LMI and SMC-NDO.

For easy understanding, we exhibit the results of simula-
tion in the short time interval t ∈ [0, 3]sec. The simula-
tion results of the controlled Lorenz system are exhibited
in Figures 10-17.

As shown in Figures 10-12, the state trajectories of z1, z2,
and z3 are excellently convergent to zero compared with the
other methods of TSMC-LMI and SMC-NDO even though
the upper bound of uncertainty and exogeneous disturbance,
d(z, u, t), is not known in advance. The proposed controllers
u1 and u2 strongly remove the chattering effect as shown

FIGURE 13. Controller u1(t) for Lorenz system.

FIGURE 14. Controller u2(t) for Lorenz system.

FIGURE 15. Sliding surface s1(t) for the Lorenz system.

FIGURE 16. Sliding surface s2(t) for the Lorenz system.

FIGURE 17. Adaptive law κ̂ for the Lorenz system.

in Figures 13-14. The trajectories of sliding surface s1, s2
of the proposed method rapidly and accurately converge to
zero without any significant oscillations compared with the
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algorithms of TSMC-LMI and SMC-NDO as exhibited
in Figures 15 and 16. The self-adjustment of an adaptive
gain κ̂ (Figure 17) guaranteed an excellent convergence of
the state trajectories to zero. This example confirmed that the
control performance of the disturbed MIMO nonlinear sys-
tems is significantly improved by using the proposed method.

V. CONCLUSION
In this study, we introduced a robust adaptive sliding control
method for stabilization problem of the multiple inputs and
multiple outputs nonlinear systems influenced by uncertain-
ties and external disturbances. A novel sliding manifold and
an adaptive law are proposed to guarantee a strict stability
and fast convergence of the state trajectories to zero in a
finite-time without any awareness of the upper bound con-
dition of uncertainties and external perturbations. A general
stability of the closed-loop disturbed MINO nonlinear sys-
tem is demonstrated through the Lyapunov theorem. The
effectiveness and advantages of the introduced method are
verified and confirmed through the numerical simulations
compared with the existent methods. From the above results,
the stabilization problem of a disturbed MIMO systems is
excellently resolved by the proposed algorithm. However,
the research did not consider the time delays of the control
system. Thus, this topic will be conducted in the future study.
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