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ABSTRACT Based on compressive sensing and fractional-order simplest memristive chaotic system, this
paper proposes an image compression and encryption scheme. First, a fractional-order simplest memristive
chaotic circuit system is designed. The dynamic characteristics of the chaotic system are analyzed by the
phase diagram, the Lyapunov exponent’s spectrum, and the bifurcation diagram to determine the parameters
and pseudo-random sequences used in the encryption scheme. Secondly, an encryption scheme based on
compressive sensing is designed. This scheme compresses the image twice to fully reduce the storage
cost, and scrambles the pixel matrix twice through block scrambling and zigzag transformation, and then
uses chaotic pseudo-random sequence and GF (17) domain diffusion image matrix to obtain the final
cipher image. Finally, simulation results and performances analysis indicate that the scheme still has good
reconstruction performance, even when the compression ratio is 0.25, and the security analysis shows that it
can resist various attacks and has high security.

INDEX TERMS Image encryption, compressive sensing (CS), fractional-order simplest memristive chaotic

system.

I. INTRODUCTION

The rapid development of communication and Internet tech-
nology has made digital images widely used in various fields.
Because image information contains privacy and confiden-
tiality, secure real-time transmission of digital images is
incredibly important. Therefore, digital images need to be
encrypted before transmission to ensure information secu-
rity. Recently, many algorithms for digital image encryp-
tion are presented [1]-[14]. For example, Cao, et al. [1]
used a 2D-LCMIC hyperchaotic map to design an image
encryption scheme that uses both bit-level displacement and
diffusion. A novel image cryptosystem based on the tent
chaotic map was presented by Li, et al. [2]. Zhang, ef al. [5]
introduced an image encryption algorithm by DNA sequence
operations and chaos in 2010. Liu, ef al. [6] proposed a
fast image encryption algorithm based on 2D Sine ICMIC
modulation map for scrambling and diffusion simultaneously.
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Wang et al. introduced a novel image encryption scheme
through DNA sequence operations and 2D logistic chaotic
system [7]. Zhang, et al. [8] proposed a color image encryp-
tion algorithm that uses a hybrid model of bidirectional cyclic
substitution and DNA sequence manipulation. Liu, et al. [15]
designed a stream-cipher algorithm based on one-time key
using piecewise linear chaotic map. Wang, et al. [16] pro-
posed a chaotic image encryption scheme based on a sim-
ple perceptron. Liu, et al. [17] introduced a novel image
encryption algorithm that uses DNA coding for pixel diffu-
sion. The above methods achieve digital image encryption,
whereas these algorithms do not compress the image, which
are not suitable for digital image transmission under the
circumstances of limited storage resources and transmission
bandwidth.

To overcome these weaknesses, Candes and Donoho pro-
posed CS theory. If the signal is sparse, random sampling
can be used to obtain discrete samples of the signal, and the
signal is reconstructed by a non-linear reconstruction algo-
rithm at a condition much lower than the Nyquist sampling
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rate [18], [19]. With the development of CS, it has been shown
to be able to effectively reduce storage and transmission costs
[20], [21]. Therefore, the application of compressive sensing
to image encryption algorithms has been widely studied.
[22]-[34]. Wang, et al. [22] designed an image password
system using embedding technology and parallel compres-
sive sensing counter mode, but the encrypted images have
high correlation, so the security of the algorithm is lower.
Chai, et al. [23] proposed an image encryption scheme based
on the memristive chaotic system, basic cellular automata and
compressive sensing. In this algorithm, the key is relevant to
the plaintext, which can effectively resist the plaintext attacks.
However, the pixel distribution of the encrypted image is
uneven, so the image demands to be re-encrypted after
compressive sensing. Mou, et al. [24] introduced an image
encryption scheme, which combined the 3D-SIMM chaotic
system and compressive sensing. Xu, et al. [25] studied an
image cryptosystem, which is based on compressive sensing
and 2D-SLIM hyper-chaotic map. Zhou, et al. [26] described
a 2D compressive sensing image encryption scheme based on
the Chen hyperchaotic system. In the above method, hyper-
chaotic system and compressive sensing are used in image
compression and encryption algorithm, which can effectively
compress the images and reduce the transmission cost, but
those methods are not safe enough and the accuracy of image
reconstruction is low when the image compression rate is
small.

Fractional calculus has been proposed for more than
300 years. Due to the lack of effective calculation tools,
it has not attracted widespread attention. In recent years,
with the development of computer science, fractional calculus
has become a research hotspot. Research shows that frac-
tional calculus provides new mathematical tools and theories
for studying some complex phenomena and systems. When
building a chaotic system with strong chaotic characteristics,
scholars found that after introducing fractional calculus, not
only the degree of freedom of the system increases, but
the chaotic characteristics of the system also become more
complicated. It is found that compared with other chaotic sys-
tems, fractional-order systems have richer dynamic character-
istics. Because fractional derivatives are non-local and highly
non-linear, their geometric interpretation is very complex
[35]-[40]. In addition, applying fractional order to chaotic
systems can increase the key space of the system to improve
the reliability of the cryptosystem. Therefore, some encryp-
tion schemes combining fractional-order chaotic systems are
proposed [41]-[50]. Yang, et al. [41] studied a color image
compression-encryption scheme based on fractional-order
memristive chaotic map, but the memristive chaotic circuit is
complicated. Hence, it is difficult to achieve in practical appli-
cations. A symmetric digital image encryption scheme based
on an improper fractional-order chaotic system was proposed
by Zhao, et al. [42]. However, the information entropy is
not close to the ideal value of 8, so the security perfor-
mance is not high. Huang, et al. [43] studied an image pass-
word system based on fractional-order hyperchaotic map.
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However, a small key space is not effective against brute-force
attacks.

To further improve the security and the image reconstruc-
tion accuracy, an image encryption algorithm based on com-
pressive sensing and fractional-order simplest memristive
chaotic system is proposed. First, the Adomian decomposi-
tion method solves the fractional-order simplest memristive
chaotic system to determine the parameters, and applies
the chaotic sequence generated by the system to the entire
encryption algorithm. Secondly, the discrete cosine transform
is performed on the plain image to obtain the sparse coeffi-
cient matrix. Then the sparse coefficient matrix is compressed
and sampled by the measurement matrix generated by the
Hadamard matrix and the chaotic pseudo-random sequence.
This compression is performed twice to reduce the trans-
mission cost sufficiently. Finally, the compressed image is
encrypted by block scrambling, zigzag transform and GF (17)
diffusion to ensure the algorithm has good security
performance.

The rest parts of the paper are organized as follows.
In Section 2, the fractional-order simplest memristive chaotic
system is designed and compressive sensing theory is pre-
sented. In Section 3, an image compression and encryption
process based on CS is described. The proposed algorithm
is simulated and its performance is analyzed in Section 4.
Finally came to a conclusion.

Il. COMPRESSIVE SENSING AND FRACTIONAL-ORDER
SIMPLEST MEMRISTIVE CHAOTIC SYSTEM

This section introduces the principle of compressive sensing,
and then uses the ADM algorithm to solve the fractional-
order simplest memristive chaotic system, and analyzes the
dynamic characteristics of the chaotic system through the
phase diagram, Lyapunov exponent’s spectrum, and bifurca-
tion. From this, determines the parameter values and chaotic
pseudo-random sequences used in the encryption scheme.

A. COMPRESSIVE SENSING

Compressive sensing exploits signal sparsity. If the signal
is sparse, random sampling can be used to obtain discrete
samples of the signal, and the signal is reconstructed by a non-
linear reconstruction algorithm at a condition much lower
than the Nyquist sampling rate. Its processing flow is shown
in Fig. 1.

Original Reconstructed
signal Sparse Projection Signal signal
—p E—

observation transform reconstruction

FIGURE 1. Compressive sensing processing flow.

Assuming that a one-dimensional signal X € RM of
length M, Which can adopt an M x M dimensional orthogonal

basis matrix, and a linear combination of ¥ = [, Y,
Y3, -+ -, Y] is expressed as follows:
n
e Yoy = o m
j=1
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where v; is the column vector, «; is the weighting coefficient,
and the prerequisite for compressive sensing of signal x is that
the signal is sparse. If there are L (L < M) non-zero values
in &, then x is an L sparse signal. Projecting the signal x with
the measurement matrix ¢ as follows:

y=®x = Py« 2)

This is the dimension reduction process. By solving the
lp-norm minimization problem, the signal x is reconstructed
from

= argmin||c|lp,s.t.y = Py 3)

where || - ||o represents the /p-norm of a vector.

In this encryption scheme, the plaintext image pixels are
sparse by DCT transformation, the measurement matrix is
generated by the chaotic pseudo-random sequences and the
Hadamard matrix. Meanwhile, the image is reconstructed by
the orthogonal matching pursuit (OMP) algorithm.

B. FRACTIONAL-ORDER SIMPLEST MEMRISTIVE

CHAOTIC SYSTEM

1) ADOMIAN DECOMPOSITION METHOD

For a given fractional differential equation *D{f (t) = f (x(1)),
its function variable x(¢) = [x1(¢), x2(t), x3(¢), - - -, x,()]T is
the state variable, and *D?O represents the Caputo differential
operator of order g, where m — 1 < g < m,m € N. The
function f (x(¢)) is divided into linear, nonlinear and constant
terms.

*D{ x(1) = Lx(1) + Nx(1) + g(t)
<k>(tg)=bk,k_o,1,..., -1 4)

g(0) = [g1(0), &2(0), ..., g
where L is the linear term, N is the nonlinear term, g(¢) is
the system constant and by is the initial value. After applying

operator J,Z to both sides of equation (4), it can be obtained
from

k
r— 1
x=JlLx +JINx +J g+Zb( 0) (5)

here, J;(’) is the R-L fractional 1ntegra1 operator of order
g, the fractional integral operator has the following basic
properties:

r 1

T - 1) = ﬁ(r )
c

JyC = m(f — t9)? (7

JLI () = T x (@) )

wheret €[tg, 11], v = —1,g > 0,r > 0, C is a constant term.
According to the ADM decomposition algorithm, the non-
linear terms in Eq. (5) can be decomposed according to
the Eq. (9)

l

Al = ,[ dMN(U {e8) )

Vi) = i)k
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FIGURE 2. Simplest memristive chaotic circuit.
herei = 0,1,2,3,---,00,j = 1,2,3,---, n. Then the
nonlinear part is
o
Ne =Y AGO " x) (10)

Therefore, the numerical solution of Eq. (4) is

q m— 1 (t—t())
x° =J, g—I—Zk T
= gL +JqA0(x0)
x —Jqu +JqA % xh (11)

X' = J,((I)in_1 +J,'(]]A’_1(x0,x1, L

2) FRACTIONAL-ORDER SIMPLEST MEMRISTIVE

CHAOTIC CIRCUIT

The fractional-order simplest memristive chaotic circuit
model consisting of a nonlinear active charge-controlled
memristor, a linear passive capacitor and a linear passive
inductor is shown in Fig. 1. M, Vy, Vi, Ve, iy and ip
represent the state variables of the circuit.

According to the volt-ampere characteristics of each ele-
ment and Kirchhoff’s law, the simplest memristive chaotic
circuit can be determined by the first-order differential
Eq. (12).

c X

i
LD — ey + BR0 - i) (12)
dacf

= ir(t) — az(t) + i (H)z(1)

Let V() = x,it(t) =y, z(t) = 2, 1/C = a, 1/L = b,
the normalization operation of equation (12) are:
X =ay
¥ =—blx+ B — 1)y (13)
Z=—-y—oaz+)z
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here a, b, o, B are the system parameters, fixed parameters
a=1,b=1/3,a = 0.6, 8 = 1.5, and the initial values
of Eq. (13) are [0.1, 0, 0]. By calculating the Lyapunov expo-
nents of the system are L; = 0.0453, L, = 0, L3 = —0.6025.
Since the system has a positive Lyapunov exponent and the
Lyapunov dimension Dy = 2.075 is the score. It indicates
that the system is in chaotic state.

From the definition of Caputo fractional calculus and the
simplest memristive chaotic circuit system equation (13),
the mathematical expression of the fractional-order simplest
memristive chaotic system is

*D?Ox =ay
*D}y = —b(x + B — 1)y) (14)

*Diz=—y—az+yz

where x, y, z are the state variables, *D?O is the Caputo
operator, ty is the integral initial value, 0 < ¢ < 1 is
the order of fractional-order system equation, o and B are
internal parameters of the memristor, a and b are the system
parameters.

3) NUMERICAL SOLUTION OF FRACTION-ORDERS
SIMPLEST MEMRISTIVE CHAOTIC CIRCUIT

Using the ADM decomposition method, the linear and non-
linear terms of Eq. (14) are obtained from

Lx; [ axy

Lxy | = | —bx1 — bBx;

Lx3 i |~ +ax3

NX1 T B 0

Nxy | = | —bBxix; (15)
Nx3 | | X3

According to Eq. (9), the first six ADM polynomials for
nonlinear terms x>x3x3 and xpx3 are respectively decomposed
into:

A9 = 9’

A =x] (xg)2 + 2xgx31x§)

A% = x%(xg)z + 2x21x31x§) + xg(x31 )2 + 2xgx§xg
A; = xg (xg )2 + 2x22x31x§) + le ()c31 )2 + 2x21x32x§)

+2xgx32x31 + 2x§x§’x§)

A3 = x5 (3)° + 200528 +305)° + 293503 (16)
+2x21x32x31 + 2x21x;xg + 2xgx§xg + 2xgx31x§’
+003)°

Ag = x5 (xg Y + 2x§x31x§) + 25 ()% + 2x§x§x§)

+2x§x32x31 + 2x22x§xg + Zx%xé‘xg + 2x21x31x§

2
+x21 (x32 ) + 2xgx§x3l + 2xgx32x§ + 2xgx§xg
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0_ 0.0
A3 =13
A% = lexg +x(2)x31
2_.2.0 1.1 0.2
A3 = X3x3 + Xy X3 +X;X3 a7
A3 = 3x0 2! 4y 2 4 (03
3 = XpX3 T XpX3 T XXy T Xy X3
Ag = xé‘xg —i—xgx; +x§x32 +x21x33x +x§x§

A} = 13x8 + X3x3 + X333 + X303 + Xpx3 + x9x3

According to the equations (6)-(8) and (11), the dis-
crete iterative calculation formula of the system (14) can be
obtained as:

hd
X1 = X + aymm—i-ab(xm — BYm + BYmza)
h%a
_—+ ...
['2q+1) .
= b(x,y — 2y
Ym+1 = Ym + bom — Bym + ﬂymzm)r(g 1) a8
2 h=1
by, — b )+ ...
+(abyp, Bxm + )F(2g+ D +
Zmd1 = Zm + OmZm — Ym — azm)m + (Zmbxp,
h*
+..) — 4+ ...
) '2qg+1)

where & is the iteration step size, I" (+) is the gamma function.
The iterative algorithm in the simulation process is (19)-(25).

Cio = Xm
C20 = ym (19)
C30 = 7m
Ci1 =aCy
Ca1 = bCio — bBCao + bBC2Cy (20)
C30 = —Cy — aC3p + C20C30
Ci2 = aCy
Ca = bCy1 — bBCay + bB(C21C3y 21
+2C20C30C31)
C3n = —Ca1 —aC31 + C21C30 + C20C3y
Ciz3 =aCx
Cp3 = bCiy — bBCx + bP(C1aC3y + 2C20C30C3)
BB C30Car + CooCpy o4t D
g+ 1)
C33 = —Cp — aC3 + CC3p + C20C32 + C21C34
I'Cqg+1)
Mg+ 1)
(22)
Cis = aCp3
Cos = bC13 — bBCo3 + bB(C23C3y + 2C2C30C 3
+(2C22C30C31 + 2C21 C30C32 + 2C20C31C32)
'Gg+1) >, I'Gg+1)
Tt Drag+n TS m
C34 = —Co3 —aCs33 + C23C30 + C20C33 + (€21 C32
+CnCs1) [Gg+ 1)
I'g+ HI'Qqg+1)

(23)
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FIGURE 3. Dynamics of the chaotic map: (a) x — z plane phase diagram (b) Lyapunov exponents spectrum of q (c) Bifurcation diagram of q.

Ci5 =aCyy
Cas5 = bCis — bPCoy + bB(C24C3 + 2C20C30C34
+(2C23C30C31 + 2C21C30C33 + 2C20C31C33)

T(dg+1)
+(2CnC
T+ DIGg+ 1) (2€22C30
iC Cz)F(461+1)
052041 1)
T(dg+1)

C3»C? +2CyC3,C
+(C22C5; 4+ 2C21C31 32)F(2q+1)r‘2(q+1))
C35 = —Co4 — aC34 + C24C30 + Cr9C34 + (C23C51

C'(dg+1)
+C21C33) 1
I'g + 1)1“(3? +1)
O C '4qg+1
2ER 2041 1)
(24)
Therefore the solution of system (14) is defined as
O, = 10)
() =) d—m— (25)

\ i
=0 lq

where h =t — ¢ is time step, j = 1, 2, 3.

4) SYSTEM DYNAMICS ANALYSIS

Setting the parameters « = 0.6, 8 = 1.5,a=1,b = 1/3,
g = 0.545, h = 0.01, and the initial values [xg, Yo, Z0] =
[0.1, 0, O]. Then the chaotic attractor phase diagram can be
obtained as Fig. 3(a). The Lyapunov exponents are L; =
0.3459, L, = 0, L3 = —8.1652, and Lyapunov dimension
D; = 2.042. There is a Lyapunov exponent greater than
zero in these Lyapunov exponent values, so the system is
in chaotic state. The Lyapunov exponent’s spectrum and the
bifurcation diagram are important indicators for assessing the
dynamical behaviors of chaotic systems. Fig. 3(b) and (c) are
the Lyapunov exponents spectrum and bifurcation diagram of
q € (0.3, 1) respectively, the minimum order for generating
chaos was observed as g = 0.38 x 3.1.14. It is obviously that
the fractional-order simplest chaotic system is highly random,
highly sensitive of initial values and parameters, and the
system can generate more random chaotic sequences, which
can effectively improve the security of encrypted images.
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TABLE 1. Test results of NIST test.

Our chaotic system Ref. [41]
Test Name P-value Pass rate P-value Pass rate
Frequency 0.275709 0.98 0.867692 0.99
Block Frequency 0.224821 0.98 0.77918 1

Cumulative Sums 0.275709 0.98
Runs 0.249284 0.99

0.739918 0.99
0.779188 0.98

Longest Run 0.350485 0.99 0.055361 1
Rank 0.055361 0.98 0.474986 0.99
FFT 0.851383 1 0.062821 1

0.508088 0.99
0.637119 0.98
0.262249 1

0.304126 0.99
0.368150 0.98
0.348970 0.98
0.397096 0.99
0.071177 0.99

0.071177 0.99
0.013569 0.99
0.108791 0.99
0.759756 1

0.249284 0.98
0.025193 0.98
0.137282 0.98
0.227821 0.97

Non Overlapping Template
Overlapping Template
Universal
Approximate Entropy
Random Excursions
Random Excursions Variant
Serial
Linear Complexity

5) THE RANDOMNESS OF FRACTIONAL-ORDER SIMPLEST
MEMRISTIVE CHAOTIC SYSTEM
In order to quantitatively analyze the pseudo-randomness of
the chaotic sequence, the NIST SP 800-22 test package is
used to test the randomness of the sequences. The software
package uses 15 performance indicators and 2 judgment crite-
ria (P-value, pass rate) to evaluate the randomness of chaotic
sequences.

P-value reflects the uniform distribution of the chaotic
sequence, which is calculated as

10 2 2

) (Fi = 0.1m) . X
x* = g o1, b value =igmacd.5, ) (26)
where F; represents the number of P-value between
(0.1(i-1), 0.1i), m represents the number of groups, and igamc
is a high-priced incomplete gamma function. If the P-value is
greater than 0.0001, it means the sequence is random.

The pass rate is mainly the percentage of passing the test
sequence, and the confidence interval for passing the test is

l—ai,/u Q7
m

where the significance level « is 0.01, m > 1000. Table 1 lists
the NIST test results of the fractional-order simplest memris-
tive chaotic system and the test results of Ref [41].
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FIGURE 4. DSP implementation platform.

6) DSP REALIZATION OF FRACTIONAL-ORDER SIMPLEST
MEMRISTIVE CHAOTIC SYSTEM
In this part, the fractional-order simplest memristive chaotic
system is realized by the DSP platform. It’s hardware imple-
mentation platform is shown in Figure 4. The DSP chip
used here is TMS320F28335, which features fast processing
speed, high accuracy and high reliability. A 16-bit dual-
channel D/A converter (DAC8552) controlled by SPI con-
verts digital signals into analog signals. The output signal is
displayed on the oscilloscope (UTD7102H). First, preprocess
the data, and then write the formula (20-24) on the DSP board
through C language programming. After DA conversion and
output result, it is input to the oscilloscope.

Settinga = 1,b = 1/3, ¢ = 0.6, 8 = 1.5, g = 0.545,
h = 0.01, and initial conditions [xop, yo, zo] = [0.1,0, 0],
Fig. 5(a)-(c) show the phase diagram of the fractional-order
simplest memristive chaotic map captured by the oscillo-
scope, which are the same as the computer simulation results.

x y
(a) (b) (c)

FIGURE 5. Phase diagram realized by DSP platform (a) x — y plane
(b) x — z plane (c) y — z plane.

lIl. IMAGE ENCRYPTION AND DECRYPTION ALGORITHM
A. ZiGZAG TRANSFORM METHOD

The elements of a matrix are scanned in the zigzag order from
the upper left corner, as shown in Fig. 6(a). First, the scanned
elements are sequentially stored in a one-dimensional array,
and then a two-dimensional matrix is generated from the one
dimensional array. The process can be recognized from the
Fig. 6(b) (the number in the matrix indicates the index of the
element value at that position). Therefore, the above transfor-
mation process can be regarded as scrambling of elements in

22146

2 j»|1|2|5|9|6|3|~-| 14 1] 8] 12] 15] 14]

0| 41| N2 1| 2|5]9
4| B 16 63| 4|7
(a) 10| 13| 14| 11
8| 12| 15| 16

(b)

FIGURE 6. Zigzag transformation process (a) Original matrix (b) The
matrix after zigzag transformation.

the matrix, and this transformation is called zigzag transfor-
mation. Since digital images can be represented by a matrix,
the above ideas can be used for scrambling digital images.

B. IMAGE ENCRYPTION ALGORITHM

The image encryption algorithm flow chart is shown
in figure 7. It consists three parts. (1) Sparse and CS calcula-
tion processing on the grayscale plane image. (2) To obtain
better security, the block scrambling and zigzag transform
are used to scramble the compressed image. (3) Using the
GF (17) algorithm to diffuse the scrambled image to obtain
the final encrypted image.

Step 1: The discrete cosine transform (DCT) is used to
transform a digital image P with size of H x H into a sparse
coefficient matrix P; of the same size as P.

Step 2: Setting the initial conditions and parameters of the
chaotic system, and the system (14) is iterated m + M times
to obtain three chaotic sequences, and then the x sequence is
combined with the Hadamard matrix to generate the M x H
(M = H x CR) measurement matrix ®, where CR is the
compression ratio and it is defined as equation (28), here, P
is original image, C is encrypted image.

_ Cheigt X Cyidh

CR =
Pheigt X Pwidth

(28)

Step 3: According to the Eq. (29), the image is linearly
projected twice to obtain a compressed image P> of a size
of M x M.

Py = ®(QYP) = &(PPy) (29)

where v is the DCT matrix, P is the original image.

Step 4: The matrix P; is quantized to obtain P3, and the
value of P3 is limited to an integer between 0 and 255.

Step 5: The matrix P3 is divided into blocks, and since the
compression ratio is different, the matrix P3 is different in
size, so Pj is divided into blocks of different sizes for different
compression ratios. The block matrix is scrambled according
to Fig. 8.

Step 6: Firstly, the matrices after the block scrambled are
combined into a large image matrix, and then the image
pixel positions are scrambled by using the zigzag transform
depicted in Section 3.1.

Step 7: To obtain the chaotic pseudo-random sequences
in the diffusion process, the initial values and parameters of
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Fractional-order
simplest chaotic

system
A 4 \ 4 A 4
Hadamar " Chaotic Chaofic Chaotic
matrix 3 sequence x sequence y sequence z
\ 4 \ 4
Measurement R Pseudo-random
matrix @ ”|  sequences S1 and S2
DCT
i \ 4 A 4
- " Zigza; GF(17) domain
Sparse signal | Compressive Block - pig;(elg = mél ti;lication Encrypted
matrix I1 B sensing | scrambling screaming diffusion image C

FIGURE 7. Encryption process flow chart.

(b)

(a)

FIGURE 8. Image block scrambling (a) Original matrix block (b) The
matrix block after scrambling.

the chaotic system are set, and then the system (14) iterates
N + M x M times, taking the previous M x M terms to get
the sequence y with length M x M and taking the last M x M
terms to get the sequence z with length M x M, Y and Z are
generated from

Y = mod(floor(y * pow2(16)), 256)
Z = mod(floor(z * pow2(16)), 256)

(30)
(3D

Step 8: The pseudo-random sequences S and S> of forward
diffusion and reverse diffusion are obtained by Y and Z,
respectively.

Step 9: After the scrambled algorithm, the GF (17) mul-
tiplication diffusion algorithm is applied to the gray value
of the pixel. This paper uses a combination of forward dif-
fusion and reverse diffusion. Forward and reverse diffusion
processes are

Cin=Ci—1,g X Sim X Pig

Cip =Ci—1,L X SiL X PiL (32)
C=(Cipg x 16 + CiL)

Cin =Cit1,m X Sim X Pig

Cip =Cit1,L X SiL X Pi (33)
C=(Cig X 16 + C,"L)

VOLUME 9, 2021

in which, Eq. (32) and Eq. (33) are the forward diffusion
process and the reverse diffusion process, respectively. P rep-
resents one-dimensional vector of the pixel matrix. C and S
are cryptographic vectors, initial values Cy comes from the
secret key (i = 1,2,3,---, M x M), H is the upper
4 bits of the data, and L represents the lower 4 bits of the
data.

Step 10: The encrypted image C of size M x M is obtained
by converting the diffused vector into a matrix.

C. IMAGE DECRYPTION ALGORITHM

The image decryption process is illustrated in Fig. 9. This is
the reverse process of the encryption algorithm, and image
reconstruction uses the OMP algorithm, and the detailed
decryption steps are as follows.

Step 1: The encrypted image C is input, and the pixel gray
values are subjected to GF (17) domain division diffusion.
The diffusion sequences are S7 and S generated by encryp-
tion steps 7 and 8. The diffusion processes are

Pig=Cig+Ci-1,0 +~Sin

Pip=Cip +Ci—1L ~SiL (34)
Pi=(Pig x16+P;1)

Pin=Cin +Ciy1H +SiH
Pip=Cir+Cit1,L +SiL (35)
Pi=(Pig x 16+ P; )

Step 2: Scrambling recovery of the pixel matrix. Firstly,
performing the zigzag inverse algorithm on the matrix, and
then the matrix is divided into the block. The size of the block
is identical with in the encryption step 5, and matrix blocks
are reversely scrambled according to Fig. 8, and matrices
after the block scrambled are combined into a large image
matrix.

Step 3: The twice OMP algorithm is used to reconstruct the
pixel matrix to obtain the sparse matrix before compression.
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FIGURE 9. Decryption process flow chart.

Step 4: The decrypted image is obtained by performing an
inverse discrete cosine transform (IDCT) algorithm on the
sparse pixel matrix.

IV. SIMULATION RESULTS AND

PERFORMANCE ANALYSIS

This simulation was implemented on Matlab 2018a. The
workstation with Intel Core i7-6500U CPU @ 3.1 GHz,
4.00 GB memories, and operating system for Microsoft Win-
dows 10. Setting the parameters, « = 0.6, 8 = 1.9,
a=1,b = 1/3, g = 0.45, h = 0.01, initial values
[x0, ¥0, zo] = [0.1, 0, 0], compression ratio CR = (.75, input
“Lena”, “pepper”’, “man”, “baboon”, “fruits”, “Tiffany™,
“Zelda, “house”, eight 256 x 256 grayscale images to test
this algorithm. The results are shown in Fig. 10. Obviously,
the encrypted image is smaller than the original image, and
the encrypted image does not recognize any plaintext image
information, which means that the encryption algorithm can
compress the original image and effectively encrypt the image
information. Comparing the decrypted image with the origi-
nal image, it can be found that the two are almost identical.
It represents that the decryption algorithm can effectively
reconstruct and decrypt images.

A. THE EFFECT OF COMPRESSION RATIO ON
SIMULATION RESULTS

1) PEAK SIGNAL TO NOISE RATIO (PSNR)

The PSNR is usually used to assess the performance of image
reconstruction. The larger the PSNR value, the more similar
the image is to the original image, which is defined as follows:

1 H W
MSE = —— "> " (F(i,j) = (i, )’
HxW =3 (36)
255

PSNR =10 -1
°210(375E
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TABLE 2. PSNR values of different images under different CRs.

CR 0.25 0.5 0.75 0.9
Lena (256x256)  30.7689  33.3791 322754  34.9429
pepper(256x256)  30.5564  33.7346  32.4140  35.3235
man (256 x256) 29.8442  32.2468  31.2159  33.5839

TABLE 3. PSNR values of Lena (256 x 256) with different algorithms.

CR Ours Ref. [23] Ref. [24] Ref. [25] Ref. [32]
0.75 32.28 29.56 32.22 29.22 30.82
0.5 33.38 29.82 29.85 29.23 26.87
0.25  30.77 26.06 28.09 26.52 22.62

where F (i, j) is the decrypted image and f (i, j) is the original
image. H and W represent the length and width of the image.
Table 2 displays the PSNR values of different images under
different CRs. In Table 3, the PSNR values of the Lena image
under different CRs are compared with other algorithms.
From the table, we can see that the quality of our image
reconstruction is higher than other algorithms under the same
image compression ratios. When the sampled data of the
image is small, the proposed algorithm still obtains good
reconstructed image quality.

2) MEAN STRUCTURAL SIMILARITY (MSSIM)

The MSSIM is an indicator that measures the degree of
similarity between two images from three levels: brightness,
contrast, and structure. The calculation process is

MSSIM(X,Y) = i %SSIM(X Yi) (37)
’ - M k:1 k? k
SSIM(X,Y) =IX,Y) - c(X,Y) -s(X,Y) (38)
2uxuy + C
IX,Y) = (39

u}y +uy + C
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(a2)

(el)

(eh) (22) (g3)

(h1) (h2) (h3)

FIGURE 10. Simulation results: (a1) plaintext “Lena” (a2) Encrypted “Lena” (a3) Decrypted “Lena” (b1) plaintext “pepper”
(b2) Encrypted “pepper” (b3) Decrypted “pepper” (c1) plaintext “man” (c2) Encrypted “man” (c3) Decrypted “man”

(d1) plaintext “baboon” (d2) Encrypted “baboon” (d3) Decrypted “baboon” (e1) plaintext “fruits” (e2) Encrypted “fruits”

(e3) Decrypted “fruits” (f1) plaintext image “Tiffany” (f2) Encrypted “Tiffany” (f3) Decrypted “Tiffany” (g1) plaintext image
“Zelda” (g2) Encrypted “Zelda” (g3) Decrypted “Zelda” (h1) plaintext “house” (h2) Encrypted “house” (h3) Decrypted “house”.

TABLE 4. MSSIM values of different images under different CRs.

CR 0.25 05 0.75 0.9
Lena (256x256)  0.6211  0.7899  0.6860  0.7988
pepper (256x256)  0.6354  0.8051  0.7146  0.8180
man (256x256)  0.5375 07551 0.6616  0.7830
20x0y + C2
X, ¥) = 5—F5—-— (40)
oy +toy+C
oxy + C3
sX,Y) = ——— (41)
oxoy + C3

where X is the plaintext image, Y is the decrypted image.
uy is the mean of X, uy is the mean of Y, a)%, o% and oxy
represent the variance and covariance of the images X and Y
separately. C1 = (K x LY, Cy = (Ko x L)2, C3 = Co/2 are
three constants, here K; = 0.01, K, = 0.03 are the default
values, and L = 255. The range of MSSIM values is 0-1. The
larger the MSSIM values, the more similar the two images
are. Table 4 indicates the MSSIM values of different images
under different CRs. It can be found that the value of MSSIM
changes with the change of CRs, and the quality of the image
reconstructed by this algorithm is well.

VOLUME 9, 2021

TABLE 5. Key space of different encryption schemes.

Ours  Ref.[24] Ref.[25] Ref.[26] Ref.[31] Ref.[51] Ref.[52]
2449 9298 9299 9276 3187 2400 2319

B. KEY SPACE ANALYSIS

For an effective image cryptosystem, its key space should
be large enough to withstand brute-force attacks. The key
of the studied encryption algorithm is composed of chaotic
system parameters a, b, «, B, h, derivative order ¢, initial
values xg, yo, 20, and the number of iterations m and n. It is
assumed that the calculation accuracy of key is 10~13, the key
space is (101°)° = 10!3 a 2% 50 the key space of the
encryption algorithm proposed can effectively prevent brute-
force attacks. The key space in this paper is compared with
other methods in Table 5.

C. KEY SENSITIVITY ANALYSIS

To test the key sensitivity of the proposed algorithm, the key
are changed 10~'3, and the Lena image is used as the key
sensitivity test image. Fig. 11 illustrates the decrypted Lena
image after the key changed 10~!5. Obviously, even though
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TABLE 6. The variance values of histograms of the cipher images using different keys.

b

h

Images Ko a a IF] q x0 Yo 20
Lena 5489 5479 5422 5474 5466 5491 5437 5439 5501 5465

Pepper 5445 5426 5437 5472 5456 5502 5456 5459 5475 5449
Man 5479 5484 5494 5473 5461 5448 5466 5489 5450 5457

Baboon 5490 5439 5481 5455 5470 5447 5421 5433 5449 5491

(cl) (c2)

FIGURE 11. Key sensitivity test results (al1) a + 10~13 (a2) b + 10~15
(@3) « + 10715 (b1) g+ 10715 (b2) h+ 10715 (b3) g + 10~13
(1) xg + 10713 (c2) yg + 10713 (c3) zo + 10715,

(c3)

the key changes are very tiny, the image cannot be decrypted
normally. It indicates that the secret key is sufficiently sensi-
tive. In addition, as shown in Fig. 12, we tested the difference
between the two cipher images obtained after encrypting the
same Lena image when the key changes slightly. The test
results show that when the key is slightly changed, the two
cipher images got by encrypting the same plain image are
significantly different. It also proves that the secret key of the
proposed algorithm is sufficiently sensitive.

D. STATISTICAL ANALYSIS

In this section, the algorithm’s resistance to statistical attacks
is evaluated by analyzing the histogram and the correlation
between adjacent pixels.

1) HISTOGRAM

The histogram can intuitively reflect the distribution of the
pixel values of the image, so Fig. 13 draws the histogram
of the plaintext image and the cipher image. When in the
range of O to 255, the histogram pixel values of the origi-
nal image are unevenly distributed, but the encrypted image
pixel values are uniformly distributed, and the histograms
of different images after encryption are nearly the same.
Obviously, the statistical characteristics of plaintext images
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(i) (j)
(m) (n)

FIGURE 12. Key sensitivity test results: (a) Original Lena image;
(b) Original cipher image C; (c) Encrypted Lena image using a + 10~153;
(d) Encrypted Lena image using b + 10~15; (e) Encrypted Lena image

using o + 10~15; (f) Encrypted Lena image using 8 + 10~5; (g) Encrypted
Lena image using h + 10~15; (h) Encrypted Lena image using g + 10~13
(i) Encrypted Lena image using xo + 10~13; (j) Encrypted Lena image using
Yo + 10~15; (k) Encrypted Lena image using zo + 10~15; (I) Difference
between Fig. 12(b) and (c); (m) Difference between Fig. 12(b) and (d);

(n) Difference between Fig. 12(b) and (e); (o) Difference between

Fig. 12(b) and (f); (p) Difference between Fig. 12(b) and (g); (q) Difference
between Fig. 12(b) and (h); (r) Difference between Fig. 12(b) and (i);

(s) Difference between Fig. 12(b) and (j); (t) Difference between

Fig. 12(b) and (k).

have undergone fundamental changes, so the effective infor-
mation of the image cannot be obtained through statistical
attacks.

In addition, we use the variance of the histogram to eval-
uate the uniformity of the pixel distribution of the cipher
image. The smaller the calculated variance value, the better
the uniformity of the cipher image. Table 6 lists the variance
of the four cipher images of Lena, pepper, man, and baboon.
The second column of Table 6 is the variance values of the
cipher image under the original secret key K. The other
columns are the variance values of the cipher image when
only one key is changed. Table 6 shows that the average
variance of the cipher images are about 5450, while the
variance values of the plain images are about 621874, so the
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TABLE 7. The variance values of histograms of the cipher images using different keys.

Images  a(%) b(%) o%) B(%) h(%) q(%) xo(%) yo(%) z0(%)
Lena 0.1 1.2 1.3 0.4 0.03 0.9 0.9 0.2 0.4

Pepper 0.3 0.1 0.4 0.2 1.0 0.2 0.3 0.6 0.07
Man 0.09 0.3 0.1 0.3 0.6 0.2 0.2 0.5 0.4

Baboon 0.9 0.2 0.6 0.4 0.8 1.3 1.0 0.7 0.01
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FIGURE 13. Histogram of the plaintext and cipher image (a1) Plaintext
“Lena” (a2) Cipher “Lena” (b1) Plaintext “Pepper” (b2) Cipher “Pepper”
(c1) Plaintext “Man” (c2) Cipher “Man”.

proposed encryption scheme is effective. We study the impact
of changing the key on the consistency of the cipher image by
calculating the percentage of the variance of the two cipher
images. The calculation results are listed in Table 7. As shown
in Table 7, we found that the variance of different images
fluctuates differently, and the average variance fluctuates very
little, with the largest fluctuation being only 1.3%. Moreover,
compared with the encryption scheme [51], the average vari-
ance fluctuates much smaller. The fluctuation value of the key
a for the Lena image is 1.2%, but the fluctuation value for the
pepper image is only 0.1%. It means that the histogram of
proposed algorithm is sensitive to plain images. Therefore,
any statistical attack is invalid for this scheme.

2) CORRELATION BETWEEN ADJACENT PIXELS

Generally, an unencrypted ordinary image has a high cor-
relation between adjacent pixels, especially in the hor-
izontal, vertical, and diagonal directions. The encrypted
image has almost no correlation between its adjacent pixels.
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The calculation formula for the correlation coefficient is

_ cov(u, v) 42)
N N/ )

1 N
coviu, v) = + Y i —E@)yi—Ew)  (43)
i=1

N

D(u) = 1% ; (u; — E(u))> (44)
| N

Ew) = > ui (45)

i=1
where E(u) and E(v) are the mean of adjacent pixels « and v,
respectively, D(u) and D(v) are the variance of u and v, and N
is the number of all pixels in the image.

25 —] 250
200 L | 200
2150 :

100
50

06750 100 150200 250 °0 30 109 150200250 0
(x, ») XY,

50 10(())( 1;0 20025
@b (b1 @

1)
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(x, y) (x, X,{
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FIGURE 14. Pixel value distribution of original image and cipher image
(a1) Horizontal direction of Lena image, (a2) Horizontal direction of
cipher Lena image, (b1) Vertical direction of Lena image, (b2) Vertical
direction of cipher Lena image, (c) Diagonal direction of Lena image,
(c2) Diagonal direction of cipher Lena image.

TABLE 8. Correlation coefficients of adjacent pixels.

Images Horizontal ~ Vertical — Diagonal
Lena Original image 0.9720 0.9464 0.9223
Encrypted image -0.0046 -0.0002 0.0005
Pepper Original image 0.9714 0.9654 0.9395
Encrypted image 0.0003 0.0011 -0.0030
Man Original image 0.9570 0.9435 0.9130
Encrypted image -0.0048 0.0018 -0.0022

The distribution of adjacent pixels of the original Lena
image and the cipher Lena image in different directions
is shown in Fig. 14. From the figure, the adjacent pixels
of the plaintext image of various directions are distributed
among the diagonal of the coordinate axis, whereas the adja-
cent pixels of the encrypted image are evenly distributed
over 0-250. The correlation coefficients of adjacent pixels in
various directions in different images are given in Table 8.
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TABLE 9. Correlation coefficients of adjacent pixels in different algorithms.

Direction Lean Ours Ref. [22] Ref.[33] Ref.[53] Ref.[54] Ref.[10] Ref.[52]
Horizontal — 0.9720  -0.0046 0.0062 0.0104 0.0020 0.0024 0.0008 0.0019

Vertical 0.9465 -0.0002  -0.0107 0.0299 0.0007 -0.0006 0.0008 0.0038
Diagonal 0.9223  0.0005 0.0052 0.0062 0.0014 0.0012 0.0008 -0.0019

From Table 8, the correlation coefficients between adja-
cent pixels of plaintext images in various directions is very
high, and the correlation coefficients of encrypted images
approach 0, indicating that the proposed algorithm can effec-
tively break the correlation between pixels. Table 9 compares
the correlation coefficients of Lena images in different liter-
atures and the algorithm.

E. INFORMATION ENTROPY
The information entropy is an indicator that reflects the
uncertainty of image information distribution, the stronger
the randomness, the larger the entropy value. It can be
expressed as

N-1

H(S) == P(Splog,[P(S)] (46)

i=0
here N indicates that S; has N different values, and P(S;)
means the probability that S; appears in the image S. For a
plaintext image of S = 256, the theoretical value H(S) = 8.
The entropy of different images before and after encryption
is shown in Table 10. Table 11 compares the information
entropy of encrypted Lena image with different method. From
Tables 10 and 11, information entropy of the encryption
algorithm is close to 8, so it has strong randomness and can
resist statistical attacks well.

TABLE 10. Information entropy of different images.

Lena pepper man
7.4127  7.5570  7.2283
7.9951  7.9954  7.9948

Plaintext image
Cipher image

F. ROBUSTNESS ANALYSI

The robustness is an important evaluation criterion for crypto-
graphic systems. The encrypted images may lose data during
transmission and processing. Therefore, a good cryptosystem
must have strong robustness to withstand data loss.

To assess the robustness of the proposed algorithm, three
data loss with different amounts was generated for the
encrypted Lena image. The encrypted Lena images after
different data loss are shown in Fig. 15(al), (bl) and (c1),
and decrypted images are shown in Fig. 15(a2), (b2) and (c2).
It shows that although the data of the encrypted image is lost,
the decrypted image still contains the main information of
the original image. It explains that the studied algorithm has
strong robust performance.

G. KNOWN/CHOSEN PLAINTEXT ATTACKS ANALYSIS

An effective cryptographic system should be able to
resist four typical attacks, such as ciphertext only, known
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(b3)

FIGURE 15. Robustness analysis results (a1) The encrypted image with
5% data loss (a2) The decrypted image with 5% data loss (b1) The
encrypted image with 10% data loss (b2)The decrypted image with 10%
data loss (c1) The encrypted image with 15% data loss (c2) The decrypted
image with 15% data loss.

plaintext, chosen ciphertext, chosen plaintext, etc. Among
them, the chosen plaintext attack is the most powerful. If the
cryptographic system is capable of such an attack, it can
also resist several other attacks [60]. In this part, we use
known/chosen plaintext attacks to evaluate the security of
encryption algorithms. Hackers usually choose a random
matrix to obtain the corresponding cipher and guess the key
structure. And a completely black or completely white image
will invalidate the encryption scrambling algorithm. In order
to measure the performance of the algorithm against known
plaintext attacks and selected plaintext attacks, we use all
white and all black pictures as the encryption objects. The
encryption effect is shown in Fig. 16.

From the Fig. 16, the encrypted image cannot identify any
information of the original image, and the pixel values of the
encrypted image are evenly distributed. In addition, it can be
seen from Table 12 that the information entropy, NPCR and
UACIT are close to theoretical values, the correlation coeffi-
cient of the ciphertext image is close to 0. Therefore, the algo-
rithm can resist known/chosen plaintext attacks. Moreover,
compared with schemes [61] and [62], the calculated data is
closer to the theoretical value, so the proposed algorithm has
higher security.

H. RANDOMNESS OF CIPHER IMAGES

In order to resist statistical attacks, the pixels of an ideal
cipher image need to be evenly distributed. We use NIST
SP 800-22 to measure whether the pixels of the ciphertext
image are evenly distributed. When P-value>0.0001, the mea-
surement sequence is randomly and uniformly distributed.
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TABLE 11. Information entropy of different algorithms.

Algorithm Ours  Ref. [25] Ref.[55] Ref.[56] Ref.[57] Ref.[58] Ref.[59]
Lena 7.9951 7.9935 7.9826 7.9404 7.9941 7.9943 7.9872
TABLE 12. The performance analysis of all-white and all-black images.
Image(256x256)  Information entr UACI(%) NPCR(%) —<orelation coefficients
age ormation entropy ¢ ° Horizontal ~ Vertical = Diagonal
All-white 7.9951 33.4891 99.6063 -0.0082 -0.0071 0.0015
All-black 7.9957 33.4853 99.6080 -0.0005 -0.0067  -0.0011

50 100 150 200 250
(al) (b1) 7 (cl)

50 100__ 150
(a2) (b2) (c2)

FIGURE 16. The analysis result. (a) Original image. (b) Encrypted image.
(c) Histogram of cipher image.

TABLE 13. The randomness test result of the cipher images.

Test Name P-value Pass rate
Frequency 0.534146 0.99 pass
Block Frequency 0.145326 1 pass
Cumulative Sums 0.463393 1 pass
Runs 0.983453 0.99 pass
Longest Run 0.574903 0.99 pass
Rank 0.162606 0.98 pass
FFT 0.115387 0.98 pass
Non Overlapping Template 0.492798 0.99 pass
Overlapping Template 0.137282 1 pass
Universal 0.534146 0.99 pass
Approximate Entropy 0.350485 1 pass

Random Excursions 0.4007377 0.99 pass
Random Excursions Variant ~ 0.482630 0.99 pass
Serial 0.668026 0.97 pass

Linear Complexity 0.955835 0.99 pass

We choose 22 images with a size of 1024 x 1024, set the
compression rate is 0.75, and the size of the encrypted image
is 768 x 768, and then converts each pixel of the cipher
images into an eight-bit binary sequence. The total length of
the obtained sequence is 22 x 768 x 768 x 8.103809024.
Table 13 lists the test results. It can be seen that the P-values
are all greater than 0.0001, which indicates that the cipher
images have very high randomness.
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TABLE 14. Encryption speed test results.

Schemes Our  Ref.[63] Ref.[53] Ref.[64] Ref.[65]
Time(s) 7.07 5.89 7.53 4.98 8.86

I. TIME ANALYSIS

The execution time of the encryption process is also an
important measure of the encryption scheme. We analyze
the encryption time of the Lena image and compare it with
the previous algorithm [53], [63]-[65] as shown in Table 14.
Table 14 shows that the encryption time of the proposed
algorithm is faster than that of schemes [53], [65], but obvi-
ously slower than that of schemes [63], [64]. The main reason
is that to improve the security of the encryption algorithm,
the chaotic system runs longer when performing complex
diffusion algorithms on images. In short, in order to ensure a
safe and effective encryption effect, the encryption time con-
sumption is large, which is lower than some other algorithms.

V. CONCLUSION

A fractional-order simplest memristive chaotic circuit
is established. The dynamic analysis indicates that the
fractional-order simplest memristive chaotic system is highly
sensitive to initial values and parameters. The chaotic
sequences generated by the system have good randomness.
Therefore, it can be better applied to digital image password
system. Based on the fractional-order simplest memristive
chaotic system and compressive sensing theory, a digital
image encryption algorithm is proposed. The compressing
images of CS theory are used to decrease the costs of image
transmission and storage, and improve reconstruction accu-
racy. Simulation results display that the algorithm has good
compression and reconstruction performance. Even the CR =
0.25, the obtained PSNR values and MSSIM values are large
enough to still identify the main information of the original
image. The analysis of security performance indicates that
the algorithm has the ability to effectively prevent the vari-
ous attacks, such as statistical attack, robustness attack and
known/chosen plaintext attacks. In addition, the key space
of 2** is much larger than 2!%°, which can prevent brute
force attacks, and the algorithm security is high. Therefore,
it has a good application prospect in the field of image secure
transmission.
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