
IEEE RELIABILITY SOCIETY SECTION

Received December 25, 2020, accepted January 23, 2021, date of publication January 26, 2021, date of current version February 2, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3054760

EM Algorithm for Estimating Reliability of
Multi-Release Open Source Software
Based on General Masked Data
JIANFENG YANG 1,3, JING CHEN2, AND XIBIN WANG1
1School of Data Science, Guizhou Institute of Technology, Guiyang 550003, China
2College of Information Engineering, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
3Special Key Laboratory of Artificial Intelligence and Intelligent Control of Guizhou Province, Guiyang 550003, China

Corresponding authors: Jianfeng Yang (yjf@git.edu.cn) and Jing Chen (gogochen06@163.com)

This work was supported in part by the National Natural Science Foundation of China under Grant 71901078, in part by the Science and
Technology Foundation of Guizhou under Grant QianKeHeJiChu[2020]1Y269, and in part by the Special Key Laboratory of Artificial
Intelligence and Intelligent Control of Guizhou Province under Grant QianJiaoHeKY[2020]001.

ABSTRACT Multi-release is critical for modern open source software product in order to satisfy more
customer requirements. Masked data, a kind of missing data, is the system failure data when the exact cause
of the failures might be unknown. That is, the cause of the system failures may be any one of the objects.
However, due to the influence of the test strategy in real project, the cause of the system failures may be a
subset of the system objects, not any one of the objects. In this paper, the mathematical description of general
masked data is presented based on the traditional masked data. Furthermore, a novel multi-release open
source software (OSS) reliability model based on general masked data is proposed. Different from traditional
multi-release OSS reliability model, the proposed approach is based on additive model with general masked
data other than change point model. And then, the maximum likelihood estimation (MLE) process of the
model parameters is derived in detail, and expectation maximization (EM) algorithm is used to solve the
extremely complicated problem of the log-likelihood function. Finally, two data sets from real open source
software project are applied to the proposed approach, and the results show that the proposed reliability
model is useful and powerful.

INDEX TERMS General masked data, multi-release open source software, reliability model, maximum
likelihood estimation, EM algorithm.

NOTATIONS
k the number of objects (releases) in software system
i the release number, i= 1, 2, · · · ,k
j the observation number, j= 1, 2, · · · ,m
Ni(t) counting number of failures for release i at time t
N (t) counting number of failures for system at time t
N i
j the number of failures in interval (t j−1, tj] due to

release i
mi(t) mean value function of failure process for release

i
m(t) mean value function of failure process for system
λ(t) failure intensity function for system

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhaojun Li .

nij the observed number of failures in interval (t j−1, tj]
known due to release i

nMj the observed number of failures that are masked in
interval (t j−1, tj]

nj the observed number of failures for system in
interval (t j−1, tj]

mj the observed cumulative number of failures for
system until tj

Sj failure cause set (FCS), Sj ⊆ 1, 2, · · · ,k
θi parameter vector of model for release i
τi the release time for release i

I. INTRODUCTION
In order to develop high-quality, high-security, and satis-
factory products for software users, software companies
spend a lot of money to test the software, remove fault and

18890 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0003-3486-9604
https://orcid.org/0000-0002-2673-9909

J. Yang et al.: EM Algorithm for Estimating Reliability of Multi-Release OSS Based on General Masked Data

improve the reliability of the software. In the process of
software testing, it is usually assumed that the cumulative
number of failures follows the non-homogeneous Poisson
process (NHPP). This type of model is called NHPP-based
software reliability growth model [1]–[5]. However, many
factors affect the reliability growth of traditional closed
source software, such as software complexity, error in
requirements, test efficiency, test intensity, fault detection
rate, fault exposure rate, fault remove and correction rate,
fault introduction, change point, user behaviour, environ-
mental factors, etc. Compared with the traditional closed
source software development process, open source software
has many characteristics. The development process of open
source software is mainly mastered by community engineers.
Many research results have been published on specific
software reliability growth model(SRGM) for investigating
the reliability of open source software (OSS) with a single
release, which is a growing area of software development and
applications. For example, Tamura and Yamada proposed a
software reliability growth model based on stochastic differ-
ential equations [6]. Later, Tamura and Yamada proposed a
method of software reliability assessment for the embedded
OSS with flexible hazard rate modeling [7]. Luan and Huang
proposed a modified Pareto-based distribution(PD) OSS
reliability model, called the single-change-point 2-parameter
generalized PD(SCP-2GPD) model [8], and a special form
of the Generalized Pareto-based distribution model, named
the Bounded Generalized Pareto distribution (BGPD) model,
is further proposed to investigate the fault distributions of
Open Source Software [9]. Ullah et al. proposed a method
that selects the SRGM, which among several alternative
models best predicts the reliability of the OSS, in terms of
residual defects [10], [11]. Recently, a new proposed model
considering the decreasing trend of fault detection rate is
developed to effectively improve OSS reliability [12].

Staying competitive in the market and keep prof-
itable for a software product unlikely happen in this
increasing-innovational society if only has a single release
especially when rival has a new release carrying more attrac-
tive features and satisfying more customer requirements [13].
Since multi-release is critical for modern software product,
release planning is becoming a popular research topic in
the past few years. Nevertheless, most of the proposed
model only can be applied on a single release. It is thus
necessary to investigate changes in reliability arising from
ongoing releases, which is a rather complex problem as
usually there are many reasons for a new release. Only a
few researches studied multi-release software reliability. For
example, Li et al proposed a modified non-homogeneous
Poisson process model for open source software reliability
modeling and analysis, optimal version-updating for open
source software is investigated as well [14]. Hu et al.
considered a scenario in which a software development team
develops, tests, and releases software version by version,
and proposed a number of practical assumptions [15].
Kapur et al. proposes a mathematical modeling framework

for multiple releases of software products, and the model
takes into consideration the combined effect of schedule
pressure and resource limitations using a Cobb Douglas
production function in modeling the failure process using
a software reliability growth model [16]. Pachauri et al.
proposed a modeling framework considering the inflection
S-shaped fault reduction factor and extended this model
into multi-release software [17]. Yang et al. investigated the
failure processes in testing multi-release software by taking
into consideration of the delays in fault repair time based on
a proposed time delay model [18]. Ahmadi et al. proposed a
multi up-gradation reliability model for open source software
incorporating bugs removed from two different phases,
namely a pre-commit test and parallel debugging test [19].
Singh et al. developed a Non-Homogeneous Poisson Process
model for Open Source Software to understand the fixing
of issues across releases, and optimal release-updating using
entropy and maximizing the active user’s satisfaction level
subject to fixing of issues up to a desired level, is investigated
as well [20]. Zhu et al. proposed a multi-release software reli-
ability model with consideration of the remaining software
faults from previous release and the new introduced-faults,
and dependent fault detection process is taken into account in
this model [21]. Last year, a method to evaluate reliability
and maintainability of OSS by using both code-based and
community-based aspects is proposed [22].

Large open source software is often composed of many
components or subsystems. In order to make full use of the
failure data of the components, the failure data of components
can be used to build a software reliability model. It is well
known that the additive NHPP-based model is an important
reliability model for estimating system reliability using
failure data of components. The hyper-exponential NHPP
model proposed by Ohba [23] was one of this kind, in which
the ordinary models were G-O model proposed by Goel and
Okumoto [24]. A similar version of the hyper-exponential
model is also studied by Yamada et al. [25]. Xie and
Goh developed a system reliability growth analysis method
using component failure data [26]. Furthermore, an additive
Weibull model from Xie and Lai [27], Burr XII model from
Wang [28] and power-law model from [29] by using the
component failure data. Because there are many parameters
in the additive model, how to effectively estimate the model
parameters is the main problem of this type of model.

The above additive reliability model cannot consider the
masked data. Masked data are the system failure data when
the exact cause of the failures might be unknown. That is,
the cause of the system failures may be any one of the compo-
nents (modules, subsystem, object, etc.) [29]. Many research
results have been obtained for hardware reliability analysis
under masked data [30]–[33], but there are few research
results for software reliability based on masked data. The
observed failure data is incomplete, that is, there is masked in
the failure data. At this time, the software reliability additive
model cannot be decomposed into several simple NHPP
models, so it is difficult to estimate the parameters. For the

VOLUME 9, 2021 18891

J. Yang et al.: EM Algorithm for Estimating Reliability of Multi-Release OSS Based on General Masked Data

first time, Zhao established an additive software reliability
model under masked data and used maximum likelihood
estimation to estimate the parameters. He used EM algorithm
to find the approximate value of the parameter estimates [29].
It is well known, software reliability assessment methods
have been changed from closed to open source software,
andmaximum likelihood estimation is an effective estimation
method in engineering application [34], [35]. Therefore, a
modified additive reliability model for multi-release open
source software using general masked data (GMA) is
proposed in this paper. Moreover, the general masked data is
generalization of traditional masked data in Zhao’s research
in order to estimate reliability with multi-release versions.

The remainder of this paper is organized as follows.
Section II reviews the additive NHPP-based reliability
models, and discusses the general masked data. In addition,
a novel multi-release OSS reliability model based on general
masked data is proposed in this section. Section III gives the
MLE process of the model parameters with general masked
data, and EM algorithm is used to solve the extremely com-
plicated problem of the log-likelihood function. Section IV
gives two numerical examples with real open source software
using grouped general masked data, employing the proposed
models. Finally, Section V concludes this paper.

II. MULTI-RELEASE OPEN SOURCE SOFTWARE
RELIABILITY MODEL
A. REVIEW OF ADDITIVE NHPP RELIABILITY MODEL
In general, an additive NHPP software reliability model is set
up based on the following assumptions [29]:

1) The software contains k components.
2) The counting number of detected faults in component i

at time t, denoted by {Ni(t), t ≥ 0}, is characterized by
NHPPwith mean value functionmi(t), i = 1, 2, · · · , k .

3) {Ni(t), t ≥ 0}, i = 1, 2, · · · , k are statistical
independent.

4) The cumulative number of system failures, say N (t),
is given by:

N (t) =
k∑
i=1

Ni(t) (1)

The mean value function (MVF) for NHPP {Ni(t), t ≥ 0}
is then given by:

m(t) =
k∑
i=1

mi(t) (2)

The failure intensity function of software system is given
by:

λ(t) = m′(t) =
k∑
i=1

m′i(t) (3)

Note that a component may be a subsystem, a module,
or a failure mode in this model. According to the above
assumptions and characters of NHPP, the reliability function

of software system under the additive NHPP model is
therefore given by

R(t) = P{N (t)− N (0) = 0}

= exp {− [m(t)− m(0)]}

= exp

{
−

k∑
i=1

mi(t)

}
(4)

Additionally, the probability of no failure happens during
time interval (t, t +1t) can be calculated by:

R(1t |t) = exp {− [m(t +1t)− m(t)]} (5)

Below we briefly show that some classical SRGM based
on NHPP, such as the Goel-Okumoto model [24], the Yamada
delayed S-shapedmodel [36] and the generalized Goel NHPP
model [37]. Table 1 gives the SRGM corresponding to mean
value function (MVF) and failure intensity function (FIF) [1].

TABLE 1. Some classical SRGM corresponding to MVF and FIF.

B. GENERAL MASKED DATA
The masked data are the system failure data when the exact
causes of the failures, i.e., the components that have caused
the system failure, may be unknown. Note that a component
may be a subsystem, a module, an object, or a failure
mode in this model. Occasionally, the failure report provided
by the testing team may not give us complete information
on the types of failures. For example, the component that
causes a system failure during system-level testing may not
be identified or omitted in the failure report. Additionally,
the failures due to errors in the interfaces between modules
cannot be said to belong to a specific module. Another
example is that the field data do not contain complete
component failure information for economic reasons or
human error. The analysts often collect a lot of field data and
hope to make use of such extra information. Unfortunately,
the failure data do not contain complete information on failure
modes. It is a common phenomenon that the failure reporting
from field does not provides the details of interest. Therefore,
the masking phenomenon is often appeared in collecting field
component failure data, especially for large software product.
In such cases the components that may cause a system failure
are said to be masked [29].

Zhao and Xie assumed that the cause of the system failures
may be any one of the components to build the additive

18892 VOLUME 9, 2021

J. Yang et al.: EM Algorithm for Estimating Reliability of Multi-Release OSS Based on General Masked Data

reliability model [29]. However, due to the influence of the
test strategy in real project, the cause of the system failures
may be a subset of the system components, not any one of the
components. Therefore, the general masked data is defined in
this paper based on existed theory, and is given as follows.
Definition 1: Suppose that the software contains k objects

(subsystem, component, module, or failure mode), and S =
{1, 2, · · · , k} is the object set in software system. Let Sj ⊆
{1, 2, · · · , k}(j = 1, 2, · · · ,m), and Sj contains the cause of
the system failures at time tj, named Failure Cause Set (FCS).
Then the general masked data is defined by

(
k, tj, Sj

)
.

According to Definition 1, when one failure arrives, the
subset Sj and failure arrival time can be observed. Note that
an object may be a subsystem, a component, a module, or a
failure mode. For example, the software testing strategy is
carried out using function testing, and function module is
related to object {1, 2, 3}. In this case, if a masked failure
arrives at time tj, then Sj {1, 2, 3}. It is easy to know, if Sj = {s}
(s = 1, 2, . . . , k), then we know that the cause of failure is
not masked. If Sj = {1, 2}, we have that the exact cause of
failure is masked, and the cause of the system failures may
be object 1 or object 2.

FIGURE 1. An example of failure process with general masked data for a
software system of three objects.

As shown in Figure.1, an example of failure process with
general masked data is described for a software product with
three objects. It is shown that system failed at time t1 and S1 =
{1, 2}, both objects 1 and 2 may cause the system failure.
This is a masked data since it is impossible to determine
which object is the cause. Furthermore, system failed at time
t2 and the cause of system failure is object 1, that is, there
is not masked data. It is easy to know that the cause of the
system failures are masked at time t4, t6, t8 and not masked
at time t3, t5, t7, t9.
Suppose that the software system has the grouped failure

data at sequential observation times t1 < t2 < · · · < tm.
The general masked data have the form as shown in the
following table. In Table 2, nMj and nij are the numbers
of the masked and ith object tested at observation time tj,
respectively, i = 1, 2, . . . , k; j = 1, 2, . . . ,m. If there exist
the general masked data as illustrated in Table 2, the failure
process for the system cannot be decomposed into the simple
object processes. Using maximum likelihood estimation or
least squares estimation, the parameters of objects have to
be estimated based on the overall objective function instead

TABLE 2. Grouped general masked data of software system with k
objects.

of the objective functions for objects. Therefore, common
techniques for maximizing or minimizing a multivariate
nonlinear function are not easily used because there may exist
so many unknown parameters.

C. MULTI-RELEASE OPEN SOURCE SOFTWARE
RELIABILITY MODEL WITH GENERAL MASKED DATA
Modern software systems are with increasing complexity and
these large systems are generally object-based. Moreover,
since the new release has more attractive features and
satisfies more customer requirements, is critical for modern
software product. Additivemodel is not only one of important
approach in object-based software reliability analysis, but
also an important model for multi-release software reliability
analysis. In general, additive NHPP-based software reliability
model is set up based on the following assumptions. Due
to the complexity of the testing environments, some other
assumptions are also required in order to be able to model
and analyze multi-release OSS reliability. The formulation of
proposed model is based on the following assumptions:

1) The open source software contains k releases. It means
that there are totally k releases. Failures data of each
release are observed, and some may be masked. Denote
τi (τ1 ≤ · · · ≤ τk) is version-update time of release i.
2) The counting number of detected faults for release

i (i = 1, 2, · · · , k) at time t , denoted by {Ni(t), t ≥ τi},
is characterized by NHPP with mean value function mi (t).
3) {Ni(t), t ≥ τi} are statistical independent during the

testing phase.
4) If any of the release version fail, the software system

fails.
5) The cumulative number of system failures N (t) =∑k
i=1 Ni(t).
Based on the above assumptions, the mean value function

m(t) (Expecting cumulative number of failures for software
system) for NHPP {N (t) , t ≥ 0} is given by

m(t) =
k∑
i=1

mi(t) (6)

where

mi(t) =

{
0, t < τi

mi(t − τi), t ≥ τi
(7)

VOLUME 9, 2021 18893

J. Yang et al.: EM Algorithm for Estimating Reliability of Multi-Release OSS Based on General Masked Data

TABLE 3. Three selected additive model corresponding to MVF.

The failure intensity function of system is given by

λ(t) =
k∑
i=1

λi(t) =
k∑
i=1

m′i(t) (8)

Note that a software release version can be recorded as an
object, therefore the object mentioned below in this paper
means a software release version. Moreover, an object may
be a subsystem, a module, or a failure mode in the future
generalized reliability model.

According to the above assumptions and characters of
NHPP, the reliability function of software system under the
additive NHPP model is therefore given by

R(t) = P{N (t)− N (0) = 0}

= exp {− [m(t)− m(0)]}

= exp

{
−

k∑
i=1

mi(t)

}
(9)

Additionally, the probability of no failure happens during
time interval (t, t +1t) can be calculated:

R(1t |t) = exp {− [m(t +1t)− m(t)]} (10)

When release times τi = 0, the proposed model becomes
the existed model proposed by Zhao and Xie [29]. Especially,
GO model with general masked data (GOGM Model),
DSS model with general masked data(DSSGM Model) and
GGO model with general masked data(GGOGM Model) are
proposed using EM algorithm, as shown in Table 3. Table 3
also shows the mean value functions (MVF) of selected
models. Furthermore, EM algorithm will be described in the
following Section. Without a doubt, the proposed model in
this paper can be extended to other NHPP-based SRGMs.

III. MAXIMUM LIKELIHOOD ANALYSIS OF SOFTWARE
RELIABILITY WITH GROUPED GENERAL MASKED DATA
Two commonly used methods in parameter estimation are the
Maximum Likelihood Estimation (MLE) and Least Squares
Estimation (LSE) methods. However, when the masked data
are present, the failure process for the system cannot be

decomposed into the simple object processes. Moreover,
the objective function in MLE and LSE becomes a complex
multivariable function with a very high dimension. For
example, GOGM model from Table 3 for software system
contained k releases has totally 2k parameters to be esti-
mated simultaneously from failure data. Therefore, common
techniques for maximizing or minimizing a multivariate
nonlinear function are not easily used because there may
exist so many unknown parameters. Fortunately, Zhao and
Xie applied Expectation Maximization(EM) algorithm to
solve the problem of maximum likelihood estimation with
masked data, and it is shown that the EM algorithm is
powerful to deal with the masked data [29]. But, maximum
likelihood estimation with general masked data is more
complicated than traditional maximum likelihood estimation
with masked data in Zhao’s research. In the following
Sections, the maximum likelihood estimation process of the
model parameters is derived in detail, and EM algorithm
is used to solve the extremely complicated problem of the
log-likelihood function.

A. MAXIMUM LIKELIHOOD ESTIMATION WITH
GENERAL MASKED DATA
The grouped failure data is the cumulative number of failures
in time interval. In order to describe the observed data clearly,
the following notation is given

S∗j =

{
∅, no masked
Sj, masked

(11)

Assume that the failure process is observed at time points
0 = t0< t1 < t2< · · · <tm, the observed data with general
masked data based on Table 2 are(

n11, n
2
1, · · · , n

k
1, n

M
1 , S

∗

1

)
,(

n12, n
2
2, · · · , n

k
2, n

M
2 , S

∗

2

)
, · · · ,(

n1m, n
2
m, · · · , n

k
m, n

M
m , S

∗
m

)
(12)

where nij is the number of failures in interval
(
tj−1, tj

]
known

due to release i, nMj is the number of failures that are

18894 VOLUME 9, 2021

J. Yang et al.: EM Algorithm for Estimating Reliability of Multi-Release OSS Based on General Masked Data

not identified corresponding to S∗j , i = 1, 2, . . . , k; j =
1, 2, . . . ,m, i denotes the release number and j denotes the
observation number. It means that there are totally k releases,
and there are m number of observations. It is easy to know
S∗j = ∅ if and only if nMj = 0.

Denote N i
j is the random variable of the number of failures

in
(
tj−1, tj

]
due to release i. It is well known that N i

j are
independent Poisson distributed with mean value function
mi(tj)− mi(tj−1). Let

λij = mi(tj)− mi(tj−1) (13)

We only observed the occurrences of successive events:

Aj =

{
∩i/∈S∗j

〈
N i
j = nij

〉
,∩i∈S∗j

〈
N i
j ≥ n

i
j

〉
,

k∑
i=1

N i
j = nj

}

=

∩i/∈S∗j
〈
N i
j = nij

〉
,∩i∈S∗j

〈
N i
j ≥ n

i
j

〉
,
∑
i∈S∗j

N i
j = n∗j

(14)

where

nj =
k∑
i=1

nij + n
M
j , n

∗
j =

∑
i∈S∗j

(
nij
)
+ nMj = nj

−

∑
i/∈S∗j

nij, j = 1, 2, (15)

The probability of events Aj are calculated by:

P
(
Aj
)
= P

{
∩i/∈S∗j

〈
N i
j = nij

〉}
·

P

(
∩i∈S∗j

〈
N i
j ≥ n

i
j

〉)
·

∑
i∈S∗j

N i
j = n∗j

=

∏
i/∈S∗j

P
〈
N i
j = nij

〉

·P

(
∩i∈S∗j

〈
N i
j ≥ n

i
j

〉)
·

∑
i∈S∗j

N i
j = n∗j

 (16)

where

P
〈
N i
j = nij

〉
=
λ
nij
ij

nij!
· exp

(
−λij

)
(17)

and

P

(
∩i∈S∗j

〈
N i
j ≥ n

i
j

〉)
·

∑
i∈S∗j

N i
j = n∗j

= exp

−∑
i∈S∗j

λij

 · ∑
∩r∈S∗j

〈
ir≥nrj

〉
,
∑
r∈S∗j

ir=n∗j

∏
r∈S∗j

λ
ir
rj

ir !

(18)

According to the formulas (16), (17) and (18), P
(
Aj
)
has

the following form:

P(Aj) =
∏
i/∈S∗j

λn
i
j
ij

nij!
· exp

(
−λij

) ·
exp

−∑
i∈S∗j

λij

 · ∑
∩r∈S∗j

〈
ir≥nrj

〉
,
∑
r∈S∗j

ir=n∗j

∏
r∈S∗j

λ
ir
rj

ir !

(19)

Therefore, the overall likelihood function given observa-
tion

(
nij, n

M
j , S

∗

j
, i = 1, 2, . . . , k; j = 1, 2, . . . ,m

)
is

L(·
∣∣∣nij , nMj , S∗j) = m∏

j=1

P(Aj)

=

m∏
j=1

∏
i/∈S∗j

λn
i
j
ij

nij!
· exp

(
−λij

) · exp
−∑

i∈S∗j

λij

 ·

∑
∩r∈S∗j

〈
ir≥nrj

〉
,
∑
r∈S∗j

ir=n∗j

∏
r∈S∗j

λ
ir
rj

ir !

=

m∏
j=1

∏
i/∈S∗j

λn
i
j
ij

nij!

 · exp(− k∑
i=1

λij

)
·

∑
∩r∈S∗j

〈
ir≥nrj

〉
,
∑
r∈S∗j

ir=n∗j

∏
r∈S∗j

λ
ir
rj

ir !

(20)

Then the log-likelihood function has the following form:

logL(·
∣∣∣nij , nMj , S∗j)

= log
m∏
j=1

P(Aj)

=

m∑
j=1

∑
i/∈S∗j

log

λn
i
j
ij

nij!

− k∑
i=1

λij

+ log

∑

∩r∈S∗j

〈
ir≥nrj

〉
,
∑
r∈S∗j

ir=n∗j

∏
r∈S∗j

λ
ir
rj

ir !

(21)

The MLE can be obtained by maximizing the log-
likelihood function as shown in formula (21). However, it can
be seen that the likelihood function is very complicated with

VOLUME 9, 2021 18895

J. Yang et al.: EM Algorithm for Estimating Reliability of Multi-Release OSS Based on General Masked Data

general masked data, and it is also difficult to obtain the
MLE by a numerical algorithm. This paper will use the
EM algorithm to solve the problem of maximum likelihood
estimation.

When the observed data are non-masked, i.e. nMj = 0 or
S∗j = ∅ for j = 1, 2, . . . ,m. The additive model can be
decomposed into k NHPP models. The likelihood function
becomes simple and is given by:

L(·
∣∣∣nij) = k∏

i=1

e−mi(tm)
m∏
j=1

(
λij
)nij

nij!

 (22)

Then the log-likelihood function has the following form:

logL(·
∣∣∣nij)

=

k∑
i=1

 m∑
j=1

nij log
(
λij
)
− mi(tm)−

m∑
j=1

log
(
nij!
) (23)

The likelihood function has the same forms as given in
existed researches, and the computations of MLE are not
complicate, see some references for details [24], [36], [37].

If the failure data are traditional masked described in Zhao
and Xie [29], i.e. S∗j = {1, 2, . . . , k}. The likelihood function
is reduced to

L(·
∣∣∣nij , nMj)

= e−m(tm) ·
m∏
j=1

[m(tj)−m(tj−1)]nj

nj!

·
∑

∩

〈
ri≥nij

〉
,
∑k

i=1 ri=nj

(
nj! ·

k∏
i=1

p
ri
ij
ri!

)
 (24)

B. EM ALGORITHM MAXIMIZING LIKELIHOOD FUNCTION
WITH GENERAL MASKED DATA
The fact that the estimation from non-masked data is
reduced to simple cases stimulates the application of the
EM algorithm. The EM algorithm has become increasingly
popular today and has been used in various areas. It can be
expected to make the maximization of likelihood functions
very easy in some cases.

More generally, if the data consist of two parts: the
observation xobs and the missing data xmiss, we can state the
EM algorithm in two steps to maximize the log-likelihood:

Expectation step: For current estimate θ (l) of parameter
θ , calculate the conditional expectation of the full log-
likelihood:

Q
(
θ (l), θ

)
= Eθ (l) {log (θ |xobs, xmiss) |xobs} (25)

Maximization step: Find a new estimate θ (l+1) as the
value of θ by maximizing function Q

(
θ (l), θ

)
.

Under fairly general conditions, the sequence {θ (l), l = 1,
2, · · · } will converge to the MLE obtained by maximizing
the overall likelihood function. More discussions on this
algorithm are referred to reference [38].

Suppose that the mean value function mi (t) for each
release i contains unknown parameter θi. In current problem,
the missing data are occurred when nMj > 0 since the
observation of random variable N i

j is not complete. By using
the formula (23) and (25), the function Q has the form of

Q
(
θ (l), θ

)
=

k∑
i=1

m∑
j=1

E
(
N i
j |n

i
j, n

M
j , θ

(l)
)
·

log
[
mi
(
tj, θi

)
− mi

(
tj−1, θi

)] − mi (tm, θi)

(26)

Note thatE
(
N i
j |n

i
j, n

M
j , θ

(l)
)
is independent on the dummy

variable θ and can be regarded as constant in maximizing
function Q

(
θ (l), θ

)
, so that the maximizing step can be

completed bymaximizing the following functions separately:

Q
(
θ (l), θ

)
=

m∑
j=1

E
(
N i
j |n

i
j, n

M
j , θ

(l)
)

log
[
mi
(
tj, θi

)
− mi

(
tj−1, θi

)] − mi (tm, θi) (27)

To realize the EM algorithm, one needs to find out what
is the expected number of failures for each release i at each
observation time interval when the system has nMj masked
failures. Next, we focus on the case of nMj 6= 0, that is S∗j 6= ∅.
Since, when S∗j = ∅, there are no masked. Let random vector
N ∗j = (N r1

j , . . . ,N
rLj
j), rl ∈ S∗j , j = 1, 2, . . . ,m, where Lj

is the number of elements in set S∗j and l = 1, 2, . . . ,Lj.
It is well known that random vector N ∗j obeys multinomial
distribution, that is, N ∗j ∼ M (n∗j , pr1 , pr2 , · · · , prLj). Where
n∗j is shown in formula (15), and

prj =
mr (tj)− mr (tj−1)
m(tj)− m(tj−1)

=
mr (tj)− mr (tj−1)∑

r∈S∗j

[
mr (tj)− mr (tj−1)

] ,
r ∈ S∗j 6= ∅, j = 1, 2, · · · ,m (28)

It is easy to know
∑
r∈S∗j

prj =
Lj∑
l=1

prl= 1. Furthermore,

we can obtain the following conditional probability.

P

⋂
r∈S∗j

〈
N r
j ≥ n

r
j

〉
∣∣∣∣∣∣∣
N r
j∑

r∈S∗j

= n∗j

=

∑
∩r∈S∗j

〈
αr≥nrj

〉
,
∑
r∈S∗j

αr=n∗j

n∗j ! ·
pαrrj
αr !∏
r∈S∗j

 (29)

The problem is now focused on how to calculate, for
each release i, the conditional expectation of the number of
failures. For a specific release i, the conditional expectation

18896 VOLUME 9, 2021

J. Yang et al.: EM Algorithm for Estimating Reliability of Multi-Release OSS Based on General Masked Data

of N i
j , denoted by N̂

i
j = E

(
N i
j |n

i
j, n

M
j , θ

(l)
)
, can be shown to

be that:

N̂ i
j =

nij, i /∈ S∗j 6= ∅ or S
∗
j = ∅∑

∩r∈S∗j

〈
αr≥nrj

〉
,∑

r∈S∗j

αr=n∗j

αr · ∏
r∈S∗j

pαrrj
αr !

∑
∩r∈S∗j

〈
αr≥nrj

〉
,∑

r∈S∗j

αr=n∗j

 ∏
r∈S∗j

pαrrj
αr !

 , i ∈ S∗j 6= ∅

i = 1, 2, · · · , k; j = 1, 2, · · · ,m

(30)

Now, we summarize the EM procedure for the estimates of
parameters θ = (θ1, θ2, · · · θk) with general masked data as
follows:

Step 1: Give initial values of parameters (θ1, · · · , θk)(0).
Step 2: Calculate conditional expectations N̂ i

j by for-
mula (30).

Step 3: Obtain the new estimates (θ1, · · · , θk)(1) by
maximizing the log-likelihood function with respect to θi
using formula (27).

Step 4: Replace (θ1, · · · , θk)(0) by (θ1, · · · , θk)(1) and go
to step 2.

Step 5: Repeat step 2-step 4 until stable values are
obtained.

IV. NUMERICAL EXAMPLES
A. DATA DESCRIPTION
The failure data required in this paper comes from the user
bug tracking system, which is a bug reporting system.Mozilla
Bugzilla (http://www.bugzilla.org/) is the most popular bug
tracking system. It is a web application for software bug
tracking management, developed by the Mozilla Foundation
program.

To validate our model, the first data set (DS-1) we
employed was from a real open source project, is called
Apache Tomcat. Tomcat is a core project in the Jakarta project
of the Apache Software Foundation. It was jointly developed
by Apache, Sun, and other companies and individuals.
The Tomcat server is a free open source web application
server. The failure data come from bug tracking system of
Tomcat (https://bz.apache.org/bugzilla/). The failure data set
has 162 corresponding data entries from October 2006 to
March 2020, as shown in Table 4. The data set contains
the failure data of three software release versions of Apache
Tomcat, namely release version 6.x, 7.x and 8.x. The release
times of version 6.0.0, 7.0.0 and 8.0.0 are October 2006,
June 2010, and August 2013 respectively (See the official
website for details: https://tomcat.apache.org/oldnews.html).
In Table 4, R6, R7, R8 represents the number of failures at
each observation time interval for release version 6, version 7

and version 8 respectively.M stands for the number of failures
for Masked or Unknown. S∗j is the failure cause set shown in
formula (11).

The second data set (DS-2) was obtained from a real
open source project, is called Apache POI (Poor Obfuscation
Implementation). The Apache POI project is the master
project for developing pure Java ports of file formats based
onMicrosoft’s OLE 2 Compound Document Format. Apache
POI is also the master project for developing pure Java
ports of file formats based on Office Open XML. The
failure data come from bug tracking system of Tomcat
(https://bz.apache.org/bugzilla/). The failure data set has
211 corresponding data entries from March 2002 to Septem-
ber 2019, as shown in Table 4. The data set contains the
failure data of three software release versions of Apache POI,
namely release version 1.x, 2.x and 3.x. The release times
of version 1.1.0, 2.0-pre2 and 3.0-final are January 2002,
July 2003, and May 2007 respectively (See the official
website: https://poi.apache.org/devel/history/index.html). In
Table 5, R1, R2, R3 represents the number of failures at
each observation time interval for release version 1.x, 2.x
and 3.x respectively. M stands for the number of failures
for Masked or Unknown. S∗j is the failure cause set shown
in formula (11).

B. MODEL PERFORMANCE EVALUATION CRITERIA
To validate the proposed model, it is necessary to apply some
measurement on how well the model can fit the observed
data. The Mean Squared Error (MSE), Akaike information
Criterion (AIC) and Bayesian Information Criterion(BIC) are
used to compare the goodness of the model fit. The MSE can
be calculated as:

MSE =
1
m

m∑
j=1

(
m(tj)− mj

)2
=

1
m

m∑
j=1

(
k∑
i=1

mi(tj)− mj

)2

(31)

where, m(tj) and mj is the estimated and observed cumulative
number of failures for system until tj respectively. It is
obvious to see that the smaller of MSE, the better the model
gives the fit to the observed data.

AIC is a standard for measuring the goodness of fit
of a statistical model. It can weigh the complexity of the
estimated model and the goodness of the fit data of the model.
In general, AIC can be expressed as:

AIC = 2K − log (L)

= 2K −
1
k

k∑
i=1

log (Li) (32)

where K is the number of parameters in model and L is
the maximum value of the likelihood function. Increasing
the number of parameters improves the goodness of fitting.
AIC encourages the goodness of data fitting but tries to avoid

VOLUME 9, 2021 18897

J. Yang et al.: EM Algorithm for Estimating Reliability of Multi-Release OSS Based on General Masked Data

TABLE 4. The number of failures with general masked data for apache tomcat (DS-1).

18898 VOLUME 9, 2021

J. Yang et al.: EM Algorithm for Estimating Reliability of Multi-Release OSS Based on General Masked Data

TABLE 5. The number of failures with general masked data for apache POI (DS-2).

VOLUME 9, 2021 18899

J. Yang et al.: EM Algorithm for Estimating Reliability of Multi-Release OSS Based on General Masked Data

TABLE 5. (Continued.) The number of failures with general masked data for apache POI (DS-2).

over fitting. So the priority model should be the one with the
smallest AIC value.

BIC is also a standard for measuring the goodness of fit
of a statistical model. When the sample size is large, BIC
penalizes the model parameters more than AIC, which causes
BIC to prefer simple models with fewer parameters. BIC can
be expressed as:

BIC = K log (m)− log (L)

= K log (m)−
1
k

k∑
i=1

log (Li) (33)

where K is the number of parameters in model, m is the
sample size, and L is the maximum value of the likelihood
function.

C. PERFORMANCE ANALYSIS
In this section, the datasets collected from bug tracking
system of Apache Tomcat and POI are used to conduct
a comparative analysis of model performance. Those two
datasets are grouped general masked data with equal time
interval of one month.

1) THE FIRST DATA Set (DS-1)
Using the EM algorithm described in the last section,
the estimated parameters and comparison results of all
selected models for dataset 1 are shown in Table 6.
Figure 2 displays the observed cumulative number of failures
and the fitted mean value functions in all selected models.
From Table 6, we can see that the MSE, AIC and BIC of
the GOGM model(proposed) are less than the traditional GO
model. Moreover, the MSE, AIC and BIC of the DSSGM
model (proposed) are also less than the traditional DSS
model. Finally, the GGOGM model(proposed) are also less

FIGURE 2. Fitted versus Observed for all Selected Models (DS-1).

than the traditional GGO model. On the other hand, we can
see that the MSE, AIC and BIC of all proposed models
(GOGM model, DSSGM model and GGOGM model), are
still small than any traditionalmodels (GOmodel, DSSmodel
and GGO model). On the whole, it is reasonable to conclude
that the proposed models have the better goodness-of-fit than
traditional models. Furthermore, we insist that the DSSGM
model (proposed) has the best goodness-of-fit of all selected
model.

2) THE SECOND DATA Set (DS-2)
Using the EM algorithm described in the last section,
the estimated parameters and comparison results of all
selected models for dataset 2 are also shown in Table 7.
Figure 3 displays the observed cumulative number of
failures and the fitted mean value functions in all selected
models. From Table 7, we can see that the MSE, AIC

18900 VOLUME 9, 2021

J. Yang et al.: EM Algorithm for Estimating Reliability of Multi-Release OSS Based on General Masked Data

TABLE 6. Parameter estimation and comparison results of all selected models for DS-1.

TABLE 7. Parameter estimation and comparison results of all selected models for DS-2.

FIGURE 3. Fitted versus Observed for all Selected Models (DS-2).

and BIC of the GOGM model(proposed) are less than
the traditional GO model. Moreover, the AIC and BIC
of the DSSGM model (proposed) are also less than the

traditional DSS model. And the DSSGM model doesn’t
provide the smaller MSE compared to the traditional DSS
model, but the differences are not big. Finally, the GGOGM
model(proposed) are also less than the traditional GGO
model. On the other hand, we can see that the MSE, AIC and
BIC of all proposed models (GOGM model, DSSGM model
and GGOGM model), are still small than any traditional
models (GO model, DSS model and GGO model) expect for
the MSE of DSSGMmodel. On the whole, it is reasonable to
conclude that the proposed models have the better goodness-
of-fit than traditional models. Furthermore, we insist that the
GOGM model (proposed) has the best goodness-of-fit of all
selected model.

V. CONCLUSION
Masked data are the system failure data when the exact
cause of the failures might be unknown. That is, the cause
of the system failures may be any one of the components.
However, due to the influence of the test strategy in real

VOLUME 9, 2021 18901

J. Yang et al.: EM Algorithm for Estimating Reliability of Multi-Release OSS Based on General Masked Data

project, the cause of the system failures may be a subset of
the system objects, not any one of the objects. Additionally,
multi-release is critical for modern open source software
product in order to satisfy more customer requirements.
If there exist the masked data, the objective function in MLE
and LSE becomes a complex multivariable function with
a very high dimension. Therefore, common techniques for
maximizing or minimizing a multivariate nonlinear function
are not easily used because there may exist so many unknown
parameters.

In this paper, we first discuss the mathematical description
of general masked data based on the traditional masked
data and review the additive NHPP-based reliability model.
Furthermore, a novel multi-release OSS reliability model
based on general masked data is proposed and EM algorithm
is used to solve the extremely complicated problem of the
log-likelihood function. In general, the proposed mode can
be extended to other NHPP-based model for estimating
multi-release OSS reliability. Using open source software
Apache Tomcat and POI grouped masked data to conduct
a comparative analysis of model performance, the results
show that the proposed models are useful and powerful.
Finally, the reliability modeling of hardware/software system
considering masked failure data will be studied in the future
works.

REFERENCES
[1] C.-Y. Huang, M. R. Lyu, and S.-Y. Kuo, ‘‘A unified scheme of

some nonhomogenous Poisson process models for software reliability
estimation,’’ IEEE Trans. Softw. Eng., vol. 29, no. 3, pp. 261–269,
Mar. 2003, doi: 10.1109/TSE.2003.1183936.

[2] X. Xiao and T. Dohi, ‘‘Wavelet shrinkage estimation for non-homogeneous
Poisson process based software reliability models,’’ IEEE Trans. Rel.,
vol. 62, no. 1, pp. 211–225, Mar. 2013, doi: 10.1109/tr.2013.2240897.

[3] J. Yang, M. Zhao, and W. Hu, ‘‘Web software reliability modeling
with random impulsive shocks,’’ J. Syst. Eng. Electron., vol. 25, no. 2,
pp. 349–356, Apr. 2014.

[4] S. E. Rigdon, ‘‘Non-homogeneous Poisson process models
for software reliability,’’ in Analytic Methods in Systems and
Software Testing. Hoboken, NJ, USA: Wiley, 2018, pp. 195–211,
doi: 10.1002/9781119357056.ch7.

[5] Q. Li and H. Pham, ‘‘A generalized software reliability growth model with
consideration of the uncertainty of operating environments,’’ IEEE Access,
vol. 7, pp. 84253–84267, 2019, doi: 10.1109/access.2019.2924084.

[6] Y. Tamura and S. Yamada, ‘‘Optimisation analysis for reliability assess-
ment based on stochastic differential equation modelling for open source
software,’’ Int. J. Syst. Sci., vol. 40, no. 4, pp. 429–438, Apr. 2009, doi:
10.1080/00207720802556245.

[7] Y. Tamura and S. Yamada, ‘‘Reliability assessment based on hazard rate
model for an embedded OSS porting-phase,’’ Softw. Test., Verification Rel.,
vol. 23, no. 1, pp. 77–88, Jan. 2013, doi: 10.1002/stvr.455.

[8] S.-P. Luan and C.-Y. Huang, ‘‘An improved Pareto distribution for
modelling the fault data of open source software,’’ Softw. Test., Verification
Rel., vol. 24, no. 6, pp. 416–437, Sep. 2014, doi: 10.1002/stvr.1504.

[9] C.-Y. Huang, C.-S. Kuo, and S.-P. Luan, ‘‘Evaluation and application of
bounded generalized Pareto analysis to fault distributions in open source
software,’’ IEEE Trans. Rel., vol. 63, no. 1, pp. 309–319, Mar. 2014, doi:
10.1109/tr.2013.2285056.

[10] N. Ullah, ‘‘Amethod for predicting open source software residual defects,’’
Softw. Qual. J., vol. 23, no. 1, pp. 55–76, Mar. 2015, doi: 10.1007/s11219-
014-9229-3.

[11] N. Ullah, M. Morisio, and A. Vetro, ‘‘Selecting the best reliability model
to predict residual defects in open source software,’’ Computer, vol. 48,
no. 6, pp. 50–58, Jun. 2015, doi: 10.1109/mc.2013.446.

[12] J. Wang and X. Mi, ‘‘Open source software reliability model with the
decreasing trend of fault detection rate,’’ Comput. J., vol. 62, no. 9,
pp. 1301–1312, Sep. 2019, doi: 10.1093/comjnl/bxy111.

[13] O. Saliu and G. Ruhe, ‘‘Software release planning for evolving systems,’’
Innov. Syst. Softw. Eng., vol. 1, no. 2, pp. 189–204, Sep. 2005, doi:
10.1007/s11334-005-0012-2.

[14] X. Li, Y. F. Li, M. Xie, and S. H. Ng, ‘‘Reliability analysis and optimal
version-updating for open source software,’’ Inf. Softw. Technol., vol. 53,
no. 9, pp. 929–936, Sep. 2011, doi: 10.1016/j.infsof.2011.04.005.

[15] Q. P. Hu, R. Peng, M. Xie, S. H. Ng, and G. Levitin, ‘‘Software reliability
modelling and optimization for multi-release software development
processes,’’ in Proc. IEEE Int. Conf. Ind. Eng. Eng. Manage., Dec. 2011,
pp. 1534–1538, doi: 10.1109/IEEM.2011.6118174.

[16] P. K. Kapur, H. Pham, A. G. Aggarwal, and G. Kaur, ‘‘Two dimensional
multi-release software reliability modeling and optimal release planning,’’
IEEE Trans. Rel., vol. 61, no. 3, pp. 758–768, Sep. 2012.

[17] B. Pachauri, J. Dhar, and A. Kumar, ‘‘Incorporating inflection S-shaped
fault reduction factor to enhance software reliability growth,’’ Appl. Math.
Model., vol. 39, nos. 5–6, pp. 1463–1469, Mar. 2015, doi: 10.1016/
j.apm.2014.08.006.

[18] J. Yang, Y. Liu, M. Xie, and M. Zhao, ‘‘Modeling and analysis of
reliability of multi-release open source software incorporating both fault
detection and correction processes,’’ J. Syst. Softw., vol. 115, pp. 102–110,
May 2016, doi: 10.1016/j.jss.2016.01.025.

[19] M. Ahmadi, I. Mahdavi, and A. H. S. Garmabaki, ‘‘Multi up-gradation
reliability model for open source software,’’ in Current Trends in
Reliability, Availability, Maintainability and Safety, U. Kumar, A. Ahmadi,
A. K. Verma, and P. Varde, Eds. Cham, Switzerland: Springer, 2016,
pp. 691–702.

[20] V. B. Singh, M. Sharma, and H. Pham, ‘‘Entropy based software reliability
analysis of multi-version open source software,’’ IEEE Trans. Softw.
Eng., vol. 44, no. 12, pp. 1207–1223, Dec. 2018, doi: 10.1109/tse.2017.
2766070.

[21] M. Zhu and H. Pham, ‘‘A multi-release software reliability modeling for
open source software incorporating dependent fault detection process,’’
Ann. Oper. Res., vol. 269, nos. 1–2, pp. 773–790, Oct. 2018, doi:
10.1007/s10479-017-2556-6.

[22] N. Yilmaz and A. Tarhan, ‘‘A two-dimensional method for evaluating
maintainability and reliability of open source software,’’ J. Fac. Eng.
Archit. Gazi Univ., vol. 34, no. 4, pp. 1807–1829, 2019, doi: 10.17341/gaz-
immfd.571563.

[23] M. Ohba, ‘‘Software reliability analysis models,’’ IBM J. Res. Develop.,
vol. 28, no. 4, pp. 428–443, Jul. 1984.

[24] A. L. Goel and K. Okumoto, ‘‘Time-dependent error-detection rate model
for software reliability and other performance measures,’’ IEEE Trans.
Rel., vol. R-28, no. 3, pp. 206–211, Aug. 1979.

[25] S. Yamada, S. Osaki, andH. Narihisa, ‘‘A software reliability growthmodel
with two types of errors,’’ RAIRO Oper. Res., vol. 19, no. 1, pp. 87–104,
1985.

[26] M. Xie and T. N. Goh, ‘‘System reliability growth analysis using
component failure data,’’ Int. J. Rel., Qual. Saf. Eng., vol. 1, no. 1,
pp. 71–83, Mar. 1994.

[27] M. Xie and C. D. Lai, ‘‘Reliability analysis using an additive weibull model
with bathtub-shaped failure rate function,’’ Rel. Eng. Syst. Saf., vol. 52,
no. 1, pp. 87–93, Apr. 1996.

[28] F. K. Wang, ‘‘A new model with bathtub-shaped failure rate using an
additive burr XII distribution,’’ Rel. Eng. Syst. Saf., vol. 70, no. 3,
pp. 305–312, Dec. 2000.

[29] M. Zhao and M. Xie, ‘‘EM algorithms for estimating software reliability
based on masked data,’’Microelectron. Rel., vol. 34, no. 6, pp. 1027–1038,
Jun. 1994, doi: 10.1016/0026-2714(94)90067-1.

[30] B. Zhao, J. Yang, M. Zhao, Q. Li, and Y. Liu, ‘‘Wireless sensor network
reliability modelling based on masked data,’’ Int. J. Sensor Netw., vol. 17,
no. 4, pp. 217–223, 2015.

[31] J. Cai, Y. Shi, and H. Yue, ‘‘Accelerated life tests for log-normal
series system with dependent masked data under Type-I progressive
hybrid censoring,’’ Commun. Statist. Simul. Comput., vol. 46, no. 2,
pp. 1628–1646, Feb. 2017, doi: 10.1080/03610918.2015.1045078.

[32] A. S. Rodrigues, C. A. D. B. Pereira, and A. Polpo, ‘‘Estimation of com-
ponent reliability in coherent systems with masked data,’’ IEEE Access,
vol. 7, pp. 57476–57487, 2019, doi: 10.1109/access.2019.2913675.

[33] B. Liu, Y. Shi, J. Cai, X. Bai, and C. Zhang, ‘‘Nonparametric Bayesian
analysis for masked data from hybrid systems in accelerated lifetime
tests,’’ IEEE Trans. Rel., vol. 66, no. 3, pp. 662–676, Sep. 2017, doi:
10.1109/tr.2017.2704582.

18902 VOLUME 9, 2021

http://dx.doi.org/10.1109/TSE.2003.1183936
http://dx.doi.org/10.1109/tr.2013.2240897
http://dx.doi.org/10.1002/9781119357056.ch7
http://dx.doi.org/10.1109/access.2019.2924084
http://dx.doi.org/10.1080/00207720802556245
http://dx.doi.org/10.1002/stvr.455
http://dx.doi.org/10.1002/stvr.1504
http://dx.doi.org/10.1109/tr.2013.2285056
http://dx.doi.org/10.1007/s11219-014-9229-3
http://dx.doi.org/10.1007/s11219-014-9229-3
http://dx.doi.org/10.1109/mc.2013.446
http://dx.doi.org/10.1093/comjnl/bxy111
http://dx.doi.org/10.1007/s11334-005-0012-2
http://dx.doi.org/10.1016/j.infsof.2011.04.005
http://dx.doi.org/10.1109/IEEM.2011.6118174
http://dx.doi.org/10.1016/j.apm.2014.08.006
http://dx.doi.org/10.1016/j.apm.2014.08.006
http://dx.doi.org/10.1016/j.jss.2016.01.025
http://dx.doi.org/10.1109/tse.2017.2766070
http://dx.doi.org/10.1109/tse.2017.2766070
http://dx.doi.org/10.1007/s10479-017-2556-6
http://dx.doi.org/10.17341/gazimmfd.571563
http://dx.doi.org/10.17341/gazimmfd.571563
http://dx.doi.org/10.1016/0026-2714(94)90067-1
http://dx.doi.org/10.1080/03610918.2015.1045078
http://dx.doi.org/10.1109/access.2019.2913675
http://dx.doi.org/10.1109/tr.2017.2704582

J. Yang et al.: EM Algorithm for Estimating Reliability of Multi-Release OSS Based on General Masked Data

[34] Y. Zhang, M. Zhao, Y. Zhang, R. Pan, and J. Cai, ‘‘Dynamic and
steady-state performance analysis for multi-state repairable reconfigurable
manufacturing systems with buffers,’’ Eur. J. Oper. Res., vol. 283, no. 2,
pp. 491–510, Jun. 2020.

[35] Y. Zhang, M. Zhao, S. Zhang, J. Wang, and Y. Zhang, ‘‘An integrated
approach to estimate storage reliability with initial failures based on E-
Bayesian estimates,’’ Rel. Eng. Syst. Saf., vol. 159, pp. 24–36, Mar. 2017.

[36] S. Yamada, M. Ohba, and S. Osaki, ‘‘S-shaped software reliability growth
models and their applications,’’ IEEE Trans. Rel., vol. R-33, no. 4,
pp. 289–292, Oct. 1984.

[37] M. Xie, Software Reliability Modelling. Singapore:World Scientific, 1991.
[38] A. P. Dempster, N. M. Laird, and D. B. Rubin, ‘‘Maximum likelihood

from incomplete data via the EM algorithm,’’ J. Roy. Statist. Soc., B,
Methodol., vol. 39, no. 1, pp. 1–38, 1977. [Online]. Available: www.jstor.
org/stable/2984875

JIANFENG YANG received the B.S. and M.S.
degrees in mathematics, in 2008 and 2011, respec-
tively, and the Ph.D. degree in software engi-
neering from Guizhou University, in 2014. He is
currently an Associate Professor with the School
of Data Science, Guizhou Institute of Technology.
His research interests include reliability modeling
and applied statistics.

JING CHEN received the B.S. and M.S. degrees
in mathematics, in 2009 and 2012, respectively.
She is currently a Teacher with the College
of Information Engineering, Guizhou University
of Traditional Chinese Medicine. Her research
interests include intelligent optimization algorithm
and applied statistics.

XIBIN WANG received the M.S. degree in com-
puter science from Guizhou University, in 2012,
and the Ph.D. degree from the College of Com-
puter Science, Chongqing University, in 2015.
Since 2017, he has been an Associate Professor
with the School of Big Data, Guizhou Institute of
Technology. His research interests include com-
putational intelligence, data mining and business
intelligence, and machine learning.

VOLUME 9, 2021 18903

