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ABSTRACT In order to solve the problem that the gridless DOA estimation algorithms based on generalized
finite rate of innovation (FRI) signal reconstruction model are not suitable for two-dimensional DOA estima-
tion using planar array, a separable gridless DOA estimation algorithm exploiting bi-orthogonal sparse linear
array (BSLA) structure is proposed in this article, which is called 2D-SGFRI. The 2D-SGFRI algorithm
firstly recovers the covariance data of the virtual array formed by BSLA through the matrix completion
method, so as to obtain the complete covariance data vectors about two independent parameters respectively.
Next, since the covariance data vector satisfies the constraints of annihilation filter equations, the generalized
FRI signal reconstruction model can be utilized to retrieve DOA from the covariance data vector. Compared
with the existing DOA estimation algorithms based on generalized FRI signal reconstruction model, the
2D-SGFRI algorithm can be can be effectively applied to two-dimensional DOA estimation, and can obtain
stable estimation results. At the same time, due to the reduction of the dimension of positive semidefinite
matrix, the 2D-SGFRI algorithm can significantly reduce the computational complexity compared with
the two-dimensional DOA estimation algorithms based on atomic norm minimization (ANM). A series of
simulation experiments are shown to verify the effectiveness and superiority of 2D-SGFRI algorithm.

INDEX TERMS Two-dimensional DOA estimation, bi-orthogonal sparse linear array (BSLA), finite rate of
innovation (FRI), matrix completion, annihilation filter.

I. INTRODUCTION
As the key and difficult issue in DOA estimation, two-
dimensional DOA estimation has been widely concerned and
studied [1], [2]. The subspace-based one-dimensional DOA
estimation algorithms can be effectively extended to two-
dimensional cases, such as 2D-MUSIC [3], 2D-ESPRIT [4]
and matrix enhancement matrix pencil (MEMP) [5]. With
the development of compressed sensing (CS) and sparse
signal reconstruction theory [6]–[8], a series of DOA esti-
mation algorithms based on CS have emerged in recent
years [9], [10]. Compared with the subspace-based DOA
estimation algorithms, CS-based DOA estimation algorithms
have better estimation performance under some demanding
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conditions, such as less snapshots, low signal to noise ratio
(SNR) and coherent signals.

However, the deviation between the DOAs of real incident
sources and the pre-set spatial angle discrete grid will sub-
stantially reduce the performance of CS-based DOA estima-
tion algorithms, which is called grid mismatch problem [11].
In addition, in the two-dimensional DOA estimation problem,
the dimensions of the over complete dictionary formed by the
spatial angle discrete grid and correlation between adjacent
atoms will increase immensely, which lead to the serious
degradation of the estimation performance of CS-based DOA
estimation algorithms.

In order to overcome the grid mismatch problem, the grid-
less DOA estimation algorithms have been proposed by intro-
ducing the concept of atomic norm of infinite dimensional
atomic set in continuous domain [12]–[15]. These algorithms

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 17275

https://orcid.org/0000-0002-8845-0748
https://orcid.org/0000-0001-6447-6153
https://orcid.org/0000-0002-9454-4919


K. Wang et al.: Two-Dimensional Separable Gridless Direction-of-Arrival Estimation Based on FRI

transform the DOA estimation problem into a convex opti-
mization problem by minimizing the atomic norm of the
observation vector, which is called atomic normminimization
(ANM) problem. Due to the properties of a series of semidefi-
nite matrices, the ANM problem has been proved to be equiv-
alent to a semidefinite programming (SDP) process, which
can be implemented effectively through many state-of-the-art
convex optimization solvers. Furthermore, the ANM-based
gridless DOA estimation algorithm can be well extended to
the case of two-dimensional because it does not need the
discretization process of two-dimensional angle space. The
Vandermonde decomposition theory of multi-dimensional
Toeplitz matrices [16] provides a basis for the application
of ANM in two-dimensional and even multi-dimensional
estimation problems, which is first realized in [17]. A decou-
pled ANM model is established to reduce the dimension of
positive semidefinite matrix, and successfully applied in the
field of spectrum estimation, which can be regarded as the
DOA estimation problem in the case of single snapshot [18].
In [19], the decoupled ANM model is extended to the case
of multi snapshots, and combined with coprime planar array
(CPPA), which can effectively increase the degree of freedom
(DOF) and improve the estimation accuracy as a result of
expanding the array aperture.

The performance of ANM-based gridless DOA esti-
mation algorithm completely depends on SDP and Van-
dermonde decomposition of toeplitz matrix. However, in
two-dimensional DOA estimation problems, especially when
CPPA is used, the dimensions of above two processes will
be very large, which will lead to a rapid increase in the
complexity of the algorithm. Alternatively, the gridless DOA
estimation algorithm based on finite rate of innovation (FRI)
does not need to deal with SDP process [20]–[22]. The FRI-
based gridless DOA estimation algorithm uses Bessel func-
tion expansion formula to project a plane array of arbitrary
geometry onto a virtual continuous uniform linear array, so as
to obtain the signal model satisfying the annihilation equa-
tions [23]. The FRIDA-V algorithm proposed in [24] directly
processes the multi snapshots data received by the planar
array, and no longer depends on the covariance data after vec-
torization, making the algorithm suitable for coherent signals.
In [25], the generalized FRI signal reconstruction model is
extended to two-dimensional and even higher dimensional
cases, but it is not specifically applied to the problem of
two-dimensional DOA estimation.

Generally speaking, for the generalized FRI signal recon-
struction model, the most urgent problem is that there is
no algorithm that can be effectively applied in the field of
two-dimensional DOA estimation using planar antenna array.
Therefore, a FRI-based two-dimensional separable gridless
DOA estimation algorithm using bi-orthogonal sparse linear
array (BSLA) is proposed in this article, which is called
2D-SGFRI. Firstly, the 2D-SGFRI algorithm recovers the
complete covariance data vectors of the received signal of
two continuous virtual uniform linear arrays in two different
directions using the matrix completion theory, which are both

satisfied the constraints of annihilation equations about two
independent parameters respectively. Then, a simplified gen-
eralized FRI signal reconstruction model can be established
based on the covariance data vector mentioned above. Finally,
the final DOA estimation results are obtained by the pairing
strategy in [22].

Compared with other two-dimensional gridless DOA esti-
mation algorithms, 2D-SGFRI algorithm has the following
two advantages:

(a) Extension in application scenarios: Due to the
introduction of BSLA, 2D-SGFRI algorithm transforms a
two-dimensional DOA estimation problem into two inde-
pendent one-dimensional DOA estimation problems, which
effectively solves the problem that the gridless DOA estima-
tion algorithm based on generalized FRI signal reconstruction
model cannot be applied in the field of two-dimensional DOA
estimation using planar antenna array;

(b) Reduction in algorithm complexity: Compared with the
two-dimensional gridless DOA estimation algorithm based
on ANM, the dimension of SDP problem in 2D-SGFRI
is lower, which saves the computational cost. In addition,
the 2D-SGFRI algorithm replaces Vandermonder decom-
position of two-dimensional Toeplitz matrix with two
one-dimensional FRI signal reconstruction processes, which
can also reduce the complexity.

The rest of this article is organized as follows. In Section 2,
the principle and process of 2D-SGFRI algorithm are
described in detail, including two-dimensional signal model
of DOA estimation based on BSLA, covariance data recov-
ery based on matrix completion theory and simplified sepa-
rate two-dimensional generalized FRI signal reconstruction
model. Some simulation results and analysis are presented in
Section 3 before the paper is concluded in Section 4.

The notations used in this article are introduced as fol-
lows. The lower (upper) case bold font represents the vector
(matrix). The superscripts (•)T and (•)H denote transpose
and conjugate transpose of •. Z+, R+ and C is the set of
non-negative integer, non-negative real numbers and complex
numbers, respectively. E {•} is the expectation of •. 〈•〉i is the
i-th element in a vector. 〈•〉i,j represents the element at i-th
row and j-th column of a matrix. |•| denotes the cardinality
of a set. ‖•‖2 is the `2 norm of the vector •. ‖•‖F and ‖•‖∗
stand for the matrix norm and kernel norm of a matrix. The
symbol toep (•) is used to represent a matrix that satisfies
both Hermitian and Toeplitz structures with the vector • as
the first row. The expression A � 0 means that matrix A is
an SDP matrix.

II. 2D-SGFRI ALGORITHM
In this section, we first introduce the two-dimensional signal
model of DOA estimation based on BSLA, and then the
matrix completion theory is exploited to recover the complete
covariance data of received signal satisfying the annihila-
tion filtering equation. Finally, the DOA information can be
revived from the complete covariance data of received signal
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FIGURE 1. The spatial angles of the k-th incident source.

in terms of the simplified generalized FRI signal reconstruc-
tion model.

A. TWO-DIMENSIONAL SIGNAL MODEL OF DOA
ESTIMATION BASED ON BSLA
The BSLA exploited in this article is a special planar array
geometry, which consists of two orthogonal sparse linear
arrays. Before introducing the signal model, the spatial angles
of the incident sources are defined, as shown in Figure 1.
θk ∈ [0◦, 360◦] and ϕk ∈ [0◦, 90◦] represent the azimuth
and elevation angle of the k-th incident source, respectively.

Consider a BSLA composed of two orthogonal sparse
linear arrays. One of them contains M elements regarded
as X-axis, and the other contains N elements, which is
regarded as Y-axis. The position sets of the antennas on two
axes are recorded as Dx = {dx1, . . . , dxM} λ/2 and Dy ={
dy1, . . . , dyN

}
λ/2, respectively. λ is the wavelength of the

incident sources, dxi, dyj ∈ Z+, 1 6 i 6 M and 1 6 j 6 N.
For the convenience of later description, these two sets are
considered to be arranged in ascending.

Assume that there are K far-field, narrow-band and uncor-
related signals in the space impinging on the BSLA from
directions θk and ϕk with k = 1, . . . ,K.
The single snapshot model of the BSLA received signal in

two axes x (t) ∈ CM and y (t) ∈ CN can be expressed as

x (t) =
K∑

k=1

ax (θk, ϕk) sk (t)+ nx (t) ,

y (t) =
K∑

k=1

ay (θk, ϕk) sk (t)+ ny (t) , (1)

respectively. sk (t) ∈ C represents the complex amplitude of
the k-th signal at t-th snapshot. nx (t) ∈ CM and ny (t) ∈ CM

are zero mean additive Gaussian white noise with the same
variance σ 2, σ ∈ R+. The steering vectors of the k-th signal
along with the X-axis ax (αk) ∈ CM and Y-axis ay (βk) ∈ CN

are

ax (αk) =
[
e−παkdx1 , . . . , e−παkdxM

]T
,

ay (βk) =
[
e−πβkdy1 , . . . , e−πβkdyN

]T
, (2)

where αk = cos (θk) cos (ϕk) and βk = sin (θk) cos (ϕk).

The covariance matrices of the received signal of two
orthogonal sparse linear arrays Rx ∈ CM×M and Ry ∈ CN×N

are:

Rx = E
{
x (t) xH (t)

}
=

K∑
k=1

pkax (αk) aHx (αk)+ σ
2I,

Ry = E
{
y (t) yH (t)

}
=

K∑
k=1

pkay (βk) aHy (βk)+ σ
2I, (3)

where pk ∈ R+ represents the power of the k-th signal.
In fact, due to the limited number of snapshots, the exact

covariance matrices of the BSLA received signal as shown in
formula (3) cannot be obtained. It is generally approximated
as follows

R̂x =
1
T

T∑
t=1

x (t) xH (t),

R̂y =
1
T

T∑
t=1

y (t) yH (t), (4)

where T ∈ Z+ is the total number of snapshots.
Through the above analysis, it is not difficult to see that the

two-dimensional DOA estimation model can be transformed
into two independent one-dimensional DOA estimation mod-
els by using the special geometric structure of BSLA,
which provides support for the promotion of one-dimensional
DOA estimation algorithm in two-dimensional estimation
problems.

B. COVARIANCE DATA RECOVERY BASED ON MATRIX
COMPLETION THEORY
For the sparse linear array, there are missing parts in the
covariance data, which leads to the covariance matrix does
not satisfy the Toeplitz structure. As a common method to
recover complete covariance data, matrix completion theory
is generally used to fill the discontinuous part of virtual array
formed by sparse linear array represented by coprime array.
Before the completion of the matrix, we need to process the
data in the covariance matrix. Obviously, there are a large
number of redundancy data inRx andRy, which is not helpful
to improve the accuracy of subsequent DOA estimation, but
will increase the burden of operation. Therefore, the covari-
ance data need to be removed redundant and rearranged in
a certain order. It is worth mentioning that the next analysis
takes Rx as an example, which is completely consistent with
the processing of the data in Ry.
First of all, the specific form of data in Rx is

〈Rx〉i,j =

K∑
k=1

pke−π(dxi−dxj)αk + σ 2δij, (5)

where δij = 1 when i = j and δij = 0 in other cases.
Based on the above analysis, it can be seen that the values of
different elements in Rx only depend on the spacing between
two antennas dxi − dxj, that is, the array element position
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of the virtual array. Therefore, the sets of array element
positions along with X-axis in the continuous virtual array
with the largest aperture that can be formed by BSLA is
D̃x = {−dxM, . . . , dxM}. It is worth noting that the array
element position here omits the half wavelength of the signal
λ/2, that is to say, the location of the m-th virtual element
in X-axis should be (−dxM +m− 1) λ/2. At the same time,
a series of covariance data collections composed by the data
in Rx are established as follows

Sν =
{〈
R̂x
〉
i,j

∣∣dxi − dxj = ν, 1 6 i, j 6 M
}
, ν ∈ D̃x. (6)

Next, according to the set Sν defined in formula (6),
the covariance matrix of the received signal along with the
X-axis direction after removing redundancy, zero padding
and ascending arrangement R̃x ∈ C(dxM+1)×(dxM+1) can be
expressed as〈

R̃x
〉
i,j =

{
0, if

∣∣Si−j∣∣ = 0,
1
|Si−j|

∑
Si−j, otherwise,

(7)

where 1 6 i, j 6 dxM + 1 and
∑

Si−j is the sum of all
elements in Si−j.

Finally, since the covariance matrix of the received signal
of ideal virtual uniform linear array satisfies the semi-definite
positive and Toeplitz structure, the complete covariance
matrix can be recovered by exploiting the following matrix
completion theory based onmatrix kernel normminimization

argmin
r̂x

1
2

∥∥R̃x − toep (r̂x) ◦Gx
∥∥2
F + τ ‖toep (r̂x)‖∗ ,

s.t., toep (r̂x) � 0, (8)

where τ ∈ R+ is the regularization parameter and Gx ∈

Z(dxM+1)×(dxM+1) is a binary selection matrix whose posi-
tions of zero elements are the same as those of zero elements
in R̃x.

The SDP problem described in formula (8) can be effec-
tively solved byCVX toolbox, and the optimal result toep (r̂x)
is the complete covariance matrix corresponding to the vir-
tual uniform linear array. Similarly, the missing data in the
covariance matrix of the received signal of the sparse linear
array located in Y-axis direction can also be recovered by a
consistent method as follow

argmin
r̂y

1
2

∥∥R̃y − toep
(
r̂y
)
◦Gy

∥∥2
F + τ

∥∥toep (r̂y)∥∥∗ ,
s.t., toep

(
r̂y
)
� 0. (9)

C. SIMPLIFIED SEPARATER TWO-DIMENSIONAL
GENERALIZED FRI SIGNAL RECONSTRUCTION MODEL
From the previous analysis, it is not difficult to see that the
covariancematrix after the completion toep (r̂x) only depends
on the value of its first row r̂x. In the case of ignoring
noise, the ideal mathematical model rx ∈ C(dxM+1) can be
expressed as

rx =

[
K∑

k=1

pk,
K∑

k=1

pkeπαk , . . . ,
K∑

k=1

pkeπαkdxM
]T
. (10)

The element position parameters are usually prior, so no
matter how large the scale of rx is, its value is only related to
pk and αk, that is, 2K parameters. Such signals are called FRI
signals. As the key to the reconstruction processing of FRI
signal, an annihilation filter (AF) polynomial is established
as follows

C (z) =
K∏

k=1

(
1− g−1k z

)
=

K+1∑
q=1

cqzq−1, (11)

where gk = eπαk with k = 1, ..,K and cq ∈ C is the
coefficient of the polynomial C (z) with q = 1, . . . ,K + 1.
It is worth noting that c1 = 1.
Therefore, gk is the zero point of polynomial C (z), that is,

C (gk) = 0. In this way, we can transform the estimation of
parameter αk to the estimation of polynomial coefficient cq
through AF equation as follow

K+1∑
q=1

cq 〈rx〉q+i =
K+1∑
q=1

cq
K∑

k=1

pkeπαk(q+i−1)

=

K∑
k=1

pkgik

K+1∑
q=1

cqg
q−1
k =

K∑
k=1

pkgikC (gk)=0,

(12)

where i = 0, 1, . . . , dxM − K.
The equation shown in formula (12) is written in the form

of matrix

T (rx) c = R (c) rx = 0, (13)

where c = [c1, . . . , cK+1]T and the specific form
of matrix T (rx) ∈ C(dxM−K+1)×(K+1) and R (c) ∈
C(dxM−K+1)×(dxM+1) is

T (rx) =


〈rx〉1 〈rx〉2 · · · 〈rx〉K+1
〈rx〉2 〈rx〉3 · · · 〈rx〉K+2
...

...
. . .

...

〈rx〉dxM−K+1 〈rx〉dxM−K+2 · · · 〈rx〉dxM+1

 ,

R (c) =


c1 · · · cK+1 0 0 · · · 0
0 c1 · · · cK+1 0 · · · 0
...
. . .

. . .
. . .

. . .
...

0 · · · 0 c1 · · · cK+1 0
0 · · · 0 0 c1 · · · cK+1

 . (14)

After the AF equation is obtained, the reconstruction pro-
cessing of FRI signal can be described as the following
optimization process

argmin
rx,c

‖r̂x − rx‖22 ,

s.t.,

{
R (c) rx = 0
c1 = 1.

(15)

Although the problem in formula (15) is not a convex
optimization process, it can be accurately solved by the dou-
ble iteration strategy given in reference [22], but the two
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linear equations in the iterative process are simplified to the
following form 0 TH (r̂x) e

T (r̂x) −R (cn−1)RH (cn−1) 0
eT 0 0

 c
η

µ

 =
 0
0
1

 ,
[

I RH (c)
R (c) 0

] [
rx
λ

]
=

[
r̂x
0

]
, (16)

where e = [1, 0, . . . , 0]T ∈ ZK+1
+ . The detailed derivation of

formula (16) is given in the appendix of this article.
It can be seen from formula (16) that compared with

the existing generalized FRI signal reconstruction model,
the computational burden of solving the bi-variate optimiza-
tion problem in the proposed algorithm becomes lighter. This
is due to the introduction of the matrix completion process,
which makes the received signal of the antenna array in
each dimension become uniform. This is one of the main
contributions of this article.

A polynomial is constructed by taking the optimal solution
c of formula (16) as the coefficient, then the K zeros of the
polynomial exactly correspond to eπαk . In this way, we can
get the estimation of the parameter αk. Similarly, the estima-
tion result of βk is obtained by the following optimization
problem

argmin
ry,h

∥∥r̂y − ry
∥∥2
2 ,

s.t.,

{
R (h) ry = 0
h1 = 1.

(17)

After obtaining the estimation results of αk and βk param-
eters, the two groups of parameters are paired according to
the pairing strategy in reference [22], and then the final DOA
parameters θk and ϕk are estimated according to the following
angle translation formulas

θk =


arc tan

(
βk
αk

)
, ifαk > 0andβk > 0,

arc tan
(
βk
αk

)
+ π, ifαk < 0,

arc tan
(
βk
αk

)
+ 2π, ifαk > 0andβk < 0,

ϕk = arc cos
(√

α2k + β
2
k

)
. (18)

In Table 1, the detailed process of 2D-SGFRI algorithm
is given, and the double iterative reconstruction algorithm of
FRI signal is shown in Table 2.

III. SIMULATIONS AND RESULT ANALYSIS
In this section, several simulation experiments are shown to
verify the effectiveness and superiority of 2D-SGFRI algo-
rithm. An eight elements coprime array is adopted in both
X-axis and Y-axis directions with the set of antenna positions

Dx = Dy = {0, 4, 5, 8, 10, 12, 15, 16} λ/2, (19)

which imply that M = N = 8 and dxM = dyN = 16.

TABLE 1. The process of 2D-SGFRI algorithm.

TABLE 2. The process of double iterative reconstruction algorithm of FRI
signal.

A. EFFECTIVENESS
In this experiment, we use the BSLA with 16 elements
described above to distinguish four incident sources in two-
dimensional angle space. The azimuth angle and elevation
angle are selected randomly in θk ∈ [0◦, 360◦] and ϕk ∈
[0◦, 90◦] respectively, and the minimum angle interval is 10◦.
In 2D-SGFRI, regularization parameter τ = 0.5, the max-
imum number of initializations and internal iterations are
both 20. When SNR is 20dB and the number of snapshots
is 100, the simulation result of 2D-SGFRI algorithm to dis-
tinguish four independent signals is shown in Fig. 2. It can be
seen from the simulation results that 2D-SGFRI can success-
fully distinguish four incident sources.

B. ESTIMATION ACCURACY
In this simulation, the 2D-SGFRI algorithm is compared with
three other two-dimensional DOA estimation algorithms,
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FIGURE 2. Estimation results of 2D-SGFRI algorithm.

FIGURE 3. Antenna array structure.

including 2D-MUSIC algorithm for planar array with arbi-
trary geometry [3], decoupled atomic norm minimization
algorithm for uniform rectangular array (2D-DANM) [18]
and 2D Toeplitz matrix complete algorithm for sparse planar
array (2D-TMC) [26]. Among them, 2D-MUSIC is suitable
for the bi-orthogonal sparse linear array used in this article,
but 2D-DANM algorithm is only suitable for uniform rect-
angular array and 2D-TMC algorithm is suitable for uniform
rectangular array and sparse rectangular array. To ensure that
the number of elements is the same, the 2D-DANM algorithm
uses a uniform rectangular array of 4 × 4, that is, the total
number of elements is 16. Similarly, the 2D-TMC algorithm
utilizes a sparse rectangular array of 4×4. The specific struc-
tures of the above arrays are shown in Figure 3. In Figure 3,
the solid circles represent the actual antenna positions, and
the hollow circles represent that there is no antenna at this
position. In the direction of X-axis and Y-axis, the distances
between adjacent circles are all half of the incident source
wavelength.

In addition, in this article, the root mean square error
(RMSE) for azimuth angle is defined as

RMSE =

√√√√ 1
KL

L∑
l=1

K∑
k=1

(
θ̂k,l − θk

)2
, (20)

where L = 500 is the number of Monte-Carlo experiments.
The definition of RMSE for elevation angle is similar to
formula (20).

The above four algorithms are used to distinguish four
independent incident sources in space, and the selection
of incident angles is the same as the previous experiment.

FIGURE 4. RMSE vs. SNR.

FIGURE 5. RMSE vs. the number of snapshots.

When the number of snapshots is fixed at 200, the RMSE
statistical results of the above four 2D-DOA estimation algo-
rithms under different SNR are shown in Fig. 4. Similarly,
when the SNR is fixed at 10dB, the RMSE statistical results
under different numbers of snapshots are shown in Fig. 5.
The simulation results show that the proposed 2D-SGFRI
algorithm has the best estimation performance under the same
conditions.

It is worth mentioning that the traditional DOA estimation
algorithm based on the generalized FRI signal reconstruction
model [22]–[25] cannot be directly applied to the plane array
DOA estimation problem. Therefore, in the simulation exper-
iment of this article, there is no comparison with this kind of
algorithm.

C. RESOLUTION
In this simulation, we consider two closely spaced targets to
examine the angular resolution of the above four 2D-DOA
estimation algorithms. The azimuth angles are assumed as
θ − 1θ and θ + 1θ . The generation method of elevation
angles is the same as that of azimuth angle. Set SNR and the
number of snapshots as 10 dB and 100. When the deviations
between the estimated angles and the real angles are all within
2 degrees, it is considered that this experiment is successful.
The angular resolution probability is depicted in Fig. 6, where
500 independent trials are repeated. It can be seen that the
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FIGURE 6. Angular resolution.

2D-SGFRI algorithm has the best resolution, and has nearly
100% estimated success probability when the angle interval
is greater than 3.5◦.
It can be seen from the simulation results that although

2D-MUSIC algorithm and 2D-SGFRI algorithm use the
same array geometry, there is a certain gap in both esti-
mation accuracy and angle resolution. There are many rea-
sons for this situation. Firstly, the 2D-MUSIC algorithm
requires that the received signal of the antenna array meet
the two-dimensional positive semi-definite Toeplitz structure.
However, because the BSLA exploited in this article does
not have this structure, and lacks the process of matrix com-
pletion or other means, so even under better experimental
conditions, the performance of 2D-MUSIC algorithm still has
a certain gap with 2D-SGFRI algorithm. Secondly, compared
with 2D-SGFRI algorithm, 2D-MUSIC algorithm is more
sensitive to SNR and snapshot number, so the estimation
performance gap between them will be larger under poor
experimental conditions.

D. ALGORITHM COMPLEXITY
At last, in order to more clearly show the differences with
other methods in the computational complexity, specific anal-
ysis is given in this section.

In 2D-MUSIC algorithm [3], the parts that play a lead-
ing role in computing complexity include the calculation of
covariance matrix, its eigenvalue decomposition, and the pro-
cess of peak searching. Their corresponding computational
complexity are as follows:O(M2L),O(M3), andO(M2NxNy),
whereNx andNy represent the number of grids in the azimuth
and elevation directions respectively.

The computational complexity of 2D-DANM algorithm
and 2D-TMC algorithm have been given respectively in
references [18] and [26]. Similarly, the complexity of the
proposed 2D-SGFRI algorithm is not difficult to give based
on the analysis of SDP process complexity in the above two
references. To sum up, the computational complexity of the
above four algorithms are given in Table 3. In Table 3,Mx and
My represent the maximum number of elements in the x-axis

TABLE 3. The computational complexity of the above four algorithms.

and Y-axis directions, respectively. ε is the desired recovery
precision.

IV. CONCLUSION
In this article, a two-dimensional gridless DOA estimation
algorithm named 2D-SGFRI is proposed by exploiting bi-
orthogonal sparse linear array. The 2D-SGFRI algorithm
transforms a two-dimensional DOA estimation problem into
two one-dimensional DOA problems in independent direc-
tions through the distinctive geometry structure of BSLA,
thus avoiding the spectrum peak search in two-dimensional
angle space and Vandermonder decomposition processing of
two-dimensional Toeplitz matrix. In each one-dimensional
DOA estimation problem, the 2D-SGFRI algorithm first uses
the matrix completion theory to recover the complete covari-
ance data, which brings the advantage of improving the esti-
mation accuracy. Then, through the simplified generalized
FRI signal reconstruction model, the estimation results of
incident source direction parameters can be obtained from
the complete covariance data. Finally, through the processing
of pairing and angle conversion, the DOA information of the
sources can be estimated. The simulation results also prove
the effectiveness and superiority of 2D-SGFRI algorithm.

APPENDIX
THE SOLUTION PROCESS OF OPTIMIZATION PROBLEM
For a fixed parameter c, the optimization problem as shown
in formula (15) will be simplified to a quadratic minimization
problem only with respect to the parameter rx. The associated
Lagrangian is

L (rx, λ) =
1
2
‖r̂x − rx‖22 + λ

HR (c) rx, (21)

where λ ∈ CdxM−K+1 is the Lagrangian multiplier.
According to the fact that the derivative of Langrangian

function to variable rx and λ is zero, we can have
∂L
∂rx
= 0,

∂L
∂λ
= 0.

⇔

{
rx − r̂x + RH (c) λ = 0,
R (c) rx = 0.

(22)

It can be obtained from the above formula

R (c)RH (c) λ = R (c) r̂x. (23)

According to the specific form shown in formula (14), it is
not difficult to see that R (c) matrix is a row full rank matrix,
so there are

λ =
[
R (c)RH (c)

]−1
R (c) r̂x. (24)
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By substituting formula (24) into the first equation in
formula (22), we can obtain

rx = r̂x − RH (c)
[
R (c)RH (c)

]−1
R (c) r̂x. (25)

When the parameter c is determined, the above formula
can be used to solve the parameter rx. This result naturally
satisfies the constraint of AF equation. In addition, in order
to avoid the complex and unstable operation process such
as matrix inversion, formula (25) can be rewritten into the
form of linear equations, that is, the second linear equations
in formula (16).

Then, the above results are brought back to the objective
function of the optimization problem

‖r̂x − rx‖22 =
∥∥∥∥RH (c)

[
R (c)RH (c)

]−1
R (c) r̂x

∥∥∥∥2
2

= r̂xTRH (c)
{[

R (c)RH (c)
]−1}T

R (c)RH (c)[
R (c)RH (c)

]−1
R (c) r̂x

= r̂xHRH (c)
[
R (c)RH (c)

]−1
R (c) r̂x

= cHTH (r̂x)
[
R (c)RH (c)

]−1
T (r̂x) c. (26)

Since the process of minimizing the above objective func-
tion of parameter c is very complicated, an iterative optimiza-
tion strategy is adopted to determine the optimal solution of
parameter c. Specifically, it is to solve the following quadratic
minimization problem

argmin
c

cHTH (r̂x)
[
R (cn−1)RH (cn−1)

]−1
T (r̂x) c

s.t., c1 = 1. (27)

The Lagrangian function corresponding to the above
quadratic minimization problem is

L (c, µ) =
1
2
cHTH (r̂x)

[
R (cn−1)RH (cn−1)

]−1
T (r̂x) c

+µ (c1 − 1) , (28)

where µ ∈ R is Lagrangian multiplier.
Similarly, according to the first derivative of the

Lagrangian function corresponding to the optimal solution
of the quadratic optimization problem is zero, we can obtain{
TH (r̂x)

[
R (cn−1)RH (cn−1)

]−1 T (r̂x) c+ µe = 0,
c1 = 1,

(29)

where e ∈ RK+1 is an unit column vector where the first
element is 1 and the remaining elements are 0.

The above results can be rewritten into
TH (r̂x) η + µe = 0,
T (r̂x) c− R (cn−1)RH (cn−1) η = 0,
c1 = 1,

(30)

where η =
[
R (cn−1)RH (cn−1)

]−1 T (r̂x) c is an auxil-
iary variable. Similarly, formula (30) can also be written in

matrix form, that is, the first linear system of equations in
formula (16).
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