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ABSTRACT This paper studies the problem of extended dissipativity analysis for Markovian jump neural
networks (MJNNs) with time-varying delay. Combining Wirtinger-based double integral inequality and
S-procedure lemma, a novel double integral-based delay-product-type (DIDPT) Lyapunov functional is
constructed in this paper, which avoids the incomplete components in the existing works. Then, based
on parameter-dependent reciprocally convex inequality (PDRCI) and the novel DIDPT, a new extended
dissipativity condition is obtained for MJNNs. A numerical example is employed to illustrate the advantages
of the proposed method.

INDEX TERMS Markovian jump neural networks, extended dissipativity, time-varying delay, delay-
product-type functional, S-procedure lemma.

I. INTRODUCTION
From the modeling of the biological brain, the concept of
neural networks (NNs) is proposed, which have been suc-
cessfully used in various areas, such as signal processing,
associative memories, and pattern recognition [1]–[8]. As
the prerequisite in many applications, stability is of great
importance [9]–[16]. In the implementation of (large scale)
neural networks, since finite switching speed of amplifiers
and communication speed between neurons, the presence of
time delays is unavoidable, which may cause a stable neural
network oscillated [17]–[20]. Thus, it is a meaningful topic
for the dynamic performance analysis for NNs with time
delay [21]–[23].

On the other hand, Markov jump systems (MJSs),
experience abrupt changes in their parameters and structure
resulting from abrupt environmental disturbances, compo-
nent failures or repairs, modifications of the operating point,
which have been an attractive research topic where a large
amount of theoretical results on MJSs have been reported
to deal with a variety of problems [24]–[27]. Meanwhile,
a large number of NNs may experience abrupt parameter
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changes in their structures caused by sudden environment
changes, component or interconnection failures and so on.
NNs under this situation usually have finite modes which
may switch (or jump) from one to another in a random way.
Such jumping between different modes can be determined by
aMarkov chain, and these kinds of NNs are known asMarko-
vian jump neural networks (MJNNs) [28]. Very recently,
by multiplying time-varying delay-dependent matrices with
some nonintegral terms in [29], a new method named as
delay-product-type (DPT) functional method is proposed to
reduce the conservatism, which has been used for NNs or
MJNNs in [30]–[32]. However, the introduced matrices are
positive definite since the positive definiteness of LKF should
be ensured. In this case, the negative definiteness of the
final conditions is constrained. In order to avoid the issue,
by introducing integral terms connected with the nonintegral
quadratic terms, two novel DPT functionals are constructed
for the extended dissipativity analysis for MJNNs in [33],
respectively. However, in [33], only the single integral-based
DPTLyapunov functional is constructed. As a result, a double
integral-based DPT (DIDPT) functional is proposed in [34],
in which the double integrals are introduced in augmented
forms. It should be pointed out that the lower and upper
bounds of the DIDPT are time-varying so as to more coupling
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system information can be utilized, which is an efficient
way to capture the time-varying information. However, the
time-varying delay-dependent matrices connected with non-
integral terms are incomplete with some zero components
such that the relationships on system information can not
be fully utilized. Thus, solving the insufficiency motivates
current study.

In addition, to estimate −
∫ t
t−h ẋ

T (s)Rẋ(s)ds, the time-
varying delay in the denominators is commonly treated
through the traditional reciprocally convex inequality
(TRCI), which is proposed in [35]. Then, an improved version
of TRCI is proposed in [36], [37], which is named improved
reciprocally convex inequality (IRCI). Further, by intro-
ducing two independent parameters, a parameter-dependent
RCI (PDRCI) is proposed in [38], which covers those [36],
[37] as special cases, which leads to less conservative results
without additional decision variables.

With above analysis, this paper is concerned with
the extended dissipativity analysis for MJNNs with time
delay. By using Wirtinger-based double integral inequal-
ity and S-procedure lemma, a novel double integral-based
DPT (DIDPT) functional is constructed, which avoids the
zero components in [34]. In this case, the coupling infor-
mation among states and time varying can be fully utilized.
Based on PDRCI and the novel DIDPT functional, a new con-
dition is proposed to ensureMJNNs to be stochastically stable
and extended dissipative. A numerical example is illustrated
to demonstrate the proposed method.
Notation: Throughout this paper, Rn represents the n-

dimensional Euclidean space; T and ⊥ denote the super-
scripts of transpose and the right orthogonal complement of
a matrix; ‘*’ in LMIs represents the symmetric term of the
matrix, respectively; col[X ,Y ] denotes [XT ,Y T ]T ; diag{. . .}
represents a block diagonal matrix; He[X ] means X + XT ;
Co{a1, a2, a3, a4} stands for a polytope generated by these
four vertices; The superscripts T and −1 stand for transpose
and inverse of a matrix, respectively; P > 0(≥ 0) means that
P is a positive-definite (semi-positive-definite) matrix; I and
0 denote the identity matrix and zero matrix with compatible
dimensions, respectively. L2[0,∞) refers to the space of
square-integrable vector functions over [0,∞).

II. SYSTEM DESCRIPTION AND PRELIMINARIES
Consider the following MJNNs with time-varying delay:

ẋ(t) = −A(rt )x(t)+W0(rt )g(W2x(t))
+W1(rt )g(W2x(t − d(t)))+ B1w(t)

y(t) = Cx(t)+ D1x(t − d(t))+ D2g(W2x(t))
+B2w(t)

(1)

where x(t) ∈ Rn is the state vector; w(t) ∈ Rw is the
disturbance input, which belongs to L2[0,+∞); y(t) ∈ Ry

is the output; A(rt ), W0(rt ), W1(rt ), B1, B2, C , D1, D2, and
W2 = col[W21,W22, · · · ,W2n] are the known interconnec-
tion weight matrices. rt (t ≥ 0) is a right continuous Markov
chain having values in a finite space S = {1, 2, . . . ,m} with

TRM 5 , [πij] given by

Pr{rt+δ = j|rt = i} =

{
πijδ + o(δ), j 6= i
1+ πiiδ + o(δ), j = i

(2)

where δ > 0, lim
δ→0

o(δ)/δ = 0, πij ≥ 0, and πii =

−

m∑
j=1,j 6=i

πij(j 6= i).

The time-varying delay d(t) satisfies

0 ≤ d(t) ≤ h, −µ ≤ ḋ(t) ≤ µ (3)

where h and µ are constants. g(W2(x(t))) is the neuron acti-
vation function and satisfies

k−l ≤
gl(a1)− gl(a2)

a1 − a2
≤ k+l , a1 6= a2 (4)

k−l ≤
gl(a)
a
≤ k+l , l = 1, 2, · · · , n (5)

where k−l and k+l are constants.
In this paper, we will propose a sufficient condition with

less conservativeness to ensure the MJNNs (1) to be stochas-
tically stable and extended dissipative. To this end, the pre-
conditions are given as follows.
Assumption 1: [24], [25] Matrices 91, 92, 93, and 94

satisfy the following conditions

91 = 9
T
1 ≤ 0, 93 = 9

T
3 , 94 = 9

T
4 (6)

BT291B2 + He[BT292]+93 > 0 (7)

(||91|| + ||92||) · ||94|| = 0. (8)

Definition 1: [24], [25] For prescribed matrices 91, 92,
93, and 94 satisfying Assumption 1, MJNNs (1) are said to
be extended dissipative, if there exists a scalar % such that the
following inequality holds for all nonzero w(t) ∈ L2[0,+∞)
and any T ≥ t∫ T

0
(yT (t)91y(t)+ 2yT (t)92w(t)+ wT (t)93w(t))dt

≥ yT (t)94y(t)+ %, (9)

Lemma 1: (S-Procedure Lemma) [39] Denote the set Z =
{z} and let F(z), Y1(z), Y2(z),. . . , Yk (z) be some functionals or
functions. Definite domain D as

D = {z ∈ Z : Y1(z) ≥ 0,Y2(z) ≥ 0, . . . ,Yk (z) ≥ 0}

and the two following conditions
(I) F(z) ≥ 0,∀z ∈ D,
(II) ∃σ1 ≥ 0, σ2 ≥ 0, . . . , σk ≥ 0 such that

S(σ, z) = F(z)−
k∑
j=1

σjYj(z) ≥ 0,∀z ∈ Z .

Then (II) implies (I).
Lemma 2: (PDRIC) [38] For real scalars β ∈ (0, 1),

κ1 ≥ 1, κ2 ≥ 1, real symmetric positive definite matrices
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R1, R2 ∈ Rm×m, if there exist real matrices S ∈ Rm×m, then
the following matrix inequality holds[

1
β
R1 0
0 1

1−βR2

]
≥

[
R1 + (1− β)κ1T1 S

∗ R2 + βκ2T2

]
(10)

where T1 = R1 − SR
−1
2 ST ,T2 = R2 − STR

−1
1 S.

For simplicity, the following notations are used:

hd (t) = h− d(t)

v1(t) =
1
d(t)

∫ t

t−d(t)
x(s)ds

v2(t) =
1

hd (t)

∫ t−d(t)

t−h
x(s)ds

v3(t) =
1

d2(t)

∫ 0

−d(t)

∫ t

t+θ
x(s)dsdθ

v4(t) =
1

h2d (t)

∫
−d(t)

−h

∫ t−d(t)

t+θ
x(s)dsdθ

ξ1(t) = col[x(t), g(W2x(t)), ẋ(s)]

ξ2(t) = col[x(t), x(t − d(t)), v1(t)]

ξ3(t) = col[x(t − d(t)), x(t − h), v2(t)]

ξ4(t) = col[x(t), v1(t), v3(t)]

ξ5(t) = col[x(t − d(t)), v2(t), v4(t)]

η1(t) = [x(t), x(t − d(t)), x(t − h)]

η2(t) = [g(W2x(t)), g(W2x(t − d(t))), g(W2x(t − h))]

η3(t) = [v1(t), v2(t), v3(t), v4(t)]

η4(t) = [ẋ(t), ẋ(t − d(t)), ẋ(t − h)]

η(t) = col[η1(t), η2(t), η3(t), η4(t)].

III. MAIN RESULTS
This section focuses on a sufficient criterion such that the
system (1) is stochastically stable and extended dissipative.

Firstly, recall the double integral-based delay-product-type
(DIDPT) functional V ∗(xt ) in [34], that is

V ∗(xt ) = VG(xt )+ VF (xt ) (11)

where

VG(xt ) =
d(t)
2

∫ 0

−d(t)

∫ t

t+θ
ẋT (s)G1ẋ(s)dsdθ

+
hd (t)
2

∫
−d(t)

−h

∫ t−d(t)

t+θ
ẋT (s)G2ẋ(s)dsdθ

VF (xt ) = −
d(t)
h2
ξT4 (t)F1ξ4(t)−

hd (t)
h2

ξT5 (t)F2ξ5(t)

Fk =


3
2
Gk 0 −3Gk
∗ 3Gk −6Gk
∗ ∗ 18Gk

 , k = 1, 2

andG1,G2 are the positive definite matrices with appropriate
dimensions. Although the DIDPT functional constructed in
[34] can increase the information of time-varying delay, the
coupling information has not been fully considered. Note

that there are some zero components in Fk . In this case, the
coupling information among x(t), x(t−d(t)), v1(t), and v2(t)
lacks. Because of Fk ≥ 0, in the following, for semi-positive

definite matrices Yk =
[
Y11k Y12k
∗ Y22k

]
, based on S-procedure

lemma, if there exist scalars σk ≥ 0, Fk can be deduced by

Zk = Fk − σk

[
Yk 0
0 0

]

=

 3
2Gk − σkY11k −σkY12k −3Gk

∗ 3Gk − σkY22k −6Gk
∗ ∗ 18Gk

 ≥ 0. (12)

Then, we obtain

d(t)
2

∫ 0

−d(t)

∫ t

t+θ
ẋT (s)G1ẋ(s)dsdθ

≥
1
d(t)

ξT4 (t)Z1ξ4(t) ≥
d(t)
h2
ξT4 (t)Z1ξ4(t)

hd (t)
2

∫
−d(t)

−h

∫ t−d(t)

t+θ
ẋT (s)G2ẋ(s)dsdθ

≥
1

hd (t)
ξT5 (t)Z2ξ5(t) ≥

hd (t)
h2

ξT5 (t)Z1ξ5(t).

Further, the following double integral-based DPT (DIDPT)
functional can be constructed.
Proposition 1: For MJNNs (1) subject to (3), given sym-

metric positive matrices G1, G2, symmetric semi-positive
matrices Y1, Y2 and Z1, Z2 satisfying (12), the following
functional is positive definite

V0(xt ) = VG(xt )+ VZ (xt ) (13)

where

VG(xt ) =
d(t)
2

∫ 0

−d(t)

∫ t

t+θ
ẋT (s)G1ẋ(s)dsdθ

+
hd (t)
2

∫
−d(t)

−h

∫ t−d(t)

t+θ
ẋT (s)G2ẋ(s)dsdθ

VZ (xt ) = −
d(t)
h2
ξT4 (t)Z1ξ4(t)−

hd (t)
h2

ξT5 (t)Z2ξ5(t)

Remark 1: In Proposition 1, a new DIDPT Lyapunov func-
tional is constructed, which has the following advantages.
(i) Compared with the SIDPT Lyapunov functionals in [28],
[30], [33], the novel DIDPT functional (13) further strength-
ens the links among the vectors ḋ(t), v3(t), and v4(t). (ii) By
using the Wirtinger-based double integral inequality (WDII)
[18] and S-procedure lemma, VZ (xt ) is connected to VG(xt ),
which can avoid additional matrices (see (13) for details).
Moreover, the nonintegral terms are negative positiveness,
which relax the positive definite requirements of the matrices
to be solved in the functional. Thus, the functional (13) is
not only effective for conservatism reducing but also effective
for calculation complexity reducing. (iii) Compared with the
DIDPT functional in [34], the zero components have been
avoided in case that extra information among x(t), x(t−d(t)),
v1(t) and v2(t) can be fully coupled. As a result, the novel
DIDPT (13) can lead to less conservative results.
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Based on the above-mentioned proposition and Lemma 2,
the sufficient condition is provided in the following theorem,
under which MJNN (1) is stochastically stable and extended
dissipative.
Theorem 1: For given scalars α ∈ (0, 1), h, and µ, σk ≥ 0,

κk ≥ 1, matrices 91, 92, 93, 94 satisfying Assumption
1, MJNNs (1) are stochastically stable and extended dis-
sipative if there exist symmetric positive-definite matrices
Pi ∈ R3n×3n, Qk ∈ R3n×3n, Rk , Tk , Mk , Gk , Li ∈ Rn×n,
Ni ∈ Rnw×nw , symmetric semi-positive definite matrices
Y11k , Y22k , positive definite diagonal matrices 3c, 1c, Vk =
diag{vk1, vk2, · · · , vkn} ∈ R3n×3n, and any matrices Y12k
such that the following inequalities hold for all (d(t), ḋ(t)) ∈
Co{(0, 0), (0, µ), (h, 0), (h,−µ)}, i ∈ S, c = 1, 2, 3, and
k = 1, 2:

(1− µ)R1 + hT1 − µM1 > 0 (14)

R2 − µM2 > 0,T −
µ

2
G1 > 0,T −

µ

2
G2 > 0 (15)[

(℘⊥i )
T�(0, 0)℘⊥i

√
κ1(℘⊥i )

T5T
14S

∗ −h<2(0, 0)

]
< 0 (16)[

(℘⊥i )
T�(0, µ)℘⊥i

√
κ1(℘⊥i )

T5T
14S

∗ −h<2(0, µ)

]
< 0 (17)[

(℘⊥i )
T�(h, 0)℘⊥i

√
κ2(℘⊥i )

T5T
15S

T

∗ −h<2(h, 0)

]
< 0 (18)[

(℘⊥i )
T�(h,−µ)℘⊥i

√
κ2(℘⊥i )

T5T
15S

T

∗ −h<2(h,−µ)

]
< 0 (19)

011 012 −CT94D2 −CT94B2
∗ 022 −DT194D2 −DT194B2
∗ ∗ 033 −DT294B2
∗ ∗ ∗ 044

 > 0 (20)

where

�(d, ḋ) =
7∑
l=1

�l, d = d(t), hd = h− d(t)

�1 = 5
T
1

∑
j∈S

πijPj51 + He[5T
1 Pi52]

�2 = 5
T
3Q153−5

T
5Q255− (1− ḋ)5T

4 (Q1− Q2)54

�3 = He[eT4 (V1 − V2)W2e11
+eT1W

T
2 (K2V2 − K1V1)W2e11]

�4 = eT11

(
d(R1 +M1)+

h2

2
T +

dh
2
G1

)
e11

+eT12

(
(1− ḋ)(hdM2 − dM1)

+hd (1− ḋ)R2 + h(1− ḋ)
hd
2
G2)

)
e12

−hdeT13M2e13 −
ḋ
h

(
5T

6U156 −5
T
7U257

)
−
1
h
He[5T

6U158 +5
T
7U259]

−
ḋ
h2

(5T
10Z1510 −5

T
11Z2511)

−
1
h2
He[5T

10Z1512 +5
T
11Z2513]

�5 = −
1
h
5T

16<516 −5
T
17T1(d, ḋ)517

−5T
18T2(d, ḋ)518

�6 =

3∑
l=1

He[(el+3 − K1W2el)T3l(K2W2el − el+3)]

+

2∑
l=1

He
[(

(el+3 − el+4)− K1W2(el − el+1)
)T

×1l

(
K2W2(el − el+1)− (el+3 − el+4)

)]
+He

[(
(e4 − e6)− K1W2(e1 − e3)

)T
×13

(
K1W2(e1 − e3)− (e4 − e6)

)]
�7 = −eT091e0 − He[eT092e14]− eT1493e14

< =

[
(1+ (h−d)κ1

h )<1(d, ḋ) S
∗ (1+ dκ2

h )<2(d, ḋ)

]
<1(d, ḋ) = diag{<01(t), 3<

0
1(t)}

<2(d, ḋ) = diag{<02(t), 3<
0
2(t)}

T1(d, ḋ) = diag{2T0
1, 4T

0
1},T2(d, ḋ) = diag{2T0

2, 4T
0
2}

<
0
1(t) = (1− ḋ)R1 + hdT +

(1− ḋ)d
2

G1 − ḋM1

<
0
2(t) = R2 + ḋM2 +

hd
2
G2

T0
1(t) = T −

ḋ
2
G1,T

0
2(t) = T +

ḋ
2
G2

K1 = diag{k−1 , k
−

2 , · · · , k
−
n }

K2 = diag{k+1 , k
+

2 , · · · , k
+
n }

P1i = [I , 0, 0]Pi[I , 0, 0]T

011 = αP1i − CT94C, 012 = −CT94D1

022 = (1− α)P1i − DT194D1

033 = Li − DT294D2

044 = Ni − BT294B2
51 = col[e1, e2, e3]

52 = col[e11, (1− ḋ)e12, e13]

5l+3 = col[el+1, el+4, el+11], l = 0, 1, 2

56+l = col[el+1, el+2, el+7], l = 0, 1

58 = col[de11, d(1− ḋ)e12, e1 − (1− ḋ)e2 − ḋe7]

59 = col[hd (1− ḋ)e12, hde13, (1− ḋ)e2 − e3 + ḋe8]

5l+10 = col[el+1, el+7, el+9], l = 0, 1

512 = col[de11, e1 − (1− ḋ)e2 − ḋe7, e1
−(1− ḋ)e7 − 2ḋe9]

513 = col[hde12, (1− ḋ)e2 − e3 + ḋe8, (1− ḋ)

× e2 − e8 + 2ḋe10]

514 = col[e1 − e2, e1 + e2 − 2e7]
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515 = col[e2 − e3, e2 + e3 − 2e8]

516 = col[514,515]

517 = col[e1 − e7,−
1
2
e1 − e7 + 3e9]

518 = col[e2 − e8,−
1
2
e2 − e8 + 3e10]

℘i = −Aie1 +W0ie4 +W1ie5 + B1e14 − e11
e0 = Ce1 + D1e2 + D2e4 + B2e14
el = [0n×(l−1)n, In, 0n×(14−l)n], l = 1, 2, · · · , 14.

Proof: Choose the following LKF candidate:

V (xt ) =
6∑
l=0

Vl(xt ) (21)

where
V1(xt ) = ηT1 (t)Piη1(t)

V2(xt ) =
∫ t

t−d(t)
ξT1 (s)Q1ξ1(s)ds+

∫ t−d(t)

t−h
ξT1 (s)Q2ξ1(s)ds

V3(xt ) = 2
n∑
l=1

∫ W2lxl (t)

0
[v1l(gl(s)− k

−

l s)

+v2l(k
+

l s− gl(s))]ds

V4(xt ) =
∫ 0

−d(t)

∫ t

t+θ
ẋT (s)R1ẋ(s)dsdθ

+

∫
−d(t)

−h

∫ t−d(t)

t+θ
ẋT (s)R2ẋ(s)dsdθ

V5(xt ) =
∫ 0

−h

∫ 0

θ

∫ t

t+u
ẋT (s)T ẋ(s)dsdudθ

V6(xt ) = d(t)
∫ t

t−d(t)
ẋT (s)M1ẋ(s)ds

+hd (t)
∫ t−d(t)

t−h
ẋT (s)M2ẋ(s)ds

−
d(t)
h
ξT2 (t)U1ξ2(t)−

hd (t)
h
ξT3 (t)U2ξ3(t).

Three steps will be given as follows.
Step 1: Positive definiteness of V (xt ).
From [33], it follows that V6(xt ) is positive definite. From

Proposition 1, V0(xt ) is positive definite. Thus, the positive
definiteness of (21) can be ensured.
Step 2: Stability analysis. Let L be the infinitesimal oper-

ator along system (1). It yields
3∑

c=1

LVc(xt ) = ηT (t)(�1 +�2 +�3)η(t) (22)

5∑
l=4

LVl(xt ) = ẋT (t)(d(t)R1 +
h2

2
T )ẋ(t)

+hd (t)(1− ḋ(t))ẋT (t − d(t))

×R2ẋ(t − d(t))

−(1− ḋ(t))
∫ t

t−d(t)
ẋT (s)R1ẋ(s)ds

−

∫ t−d(t)

t−h
ẋT (s)R2ẋ(s)ds

−

∫ 0

−h

∫ t

t+θ
ẋT (s)T ẋ(s)dsdθ. (23)

LV6(xt ) = ḋ(t)
∫ t

t−d(t)
ẋT (s)M1ẋ(s)ds

−ḋ(t)
∫ t−d(t)

t−h
ẋT (s)M2ẋ(s)ds

+d(t)ẋT (t)M1ẋ(t)− hd (t)ẋT (t − h)

×M2ẋ(t − h)− (1− ḋ(t))ẋT (t − d(t))

×(d(t)M1 − hd (t)M2)ẋ(t − d(t))

−
ḋ(t)
h
ξT2 (t)U1ξ2(t)−

2d(t)
h

ξT2 (t)U1ξ̇2(t)

+
ḋ(t)
h
ξT3 (t)U2ξ3(t)−

2hd (t)
h

ξT3 (t)U2ξ̇3(t).

(24)

LV0(xt ) ≤ ẋT (t)
d(t)h
2

G1ẋ(t)

+(1− ḋ(t))ẋT (t − d(t))
hd (t)h

2
G2ẋ(t − d(t))

−
ḋ(t)
h2
ξT4 (t)Z1ξ4(t)−

2d(t)
h2

ξT4 (t)Z1ξ̇4(t)

+
ḋ(t)
h2
ξT5 (t)Z2ξ5(t)−

2hd (t)
h2

ξT5 (t)Z2ξ̇5(t)

−
(1− ḋ(t))d(t)

2

∫ t

t−d(t)
ẋT (s)G1ẋ(s)ds

−
hd (t)
2

∫ t−d(t)

t−h
ẋT (s)G2ẋ(s)ds

+
ḋ(t)
2

∫ 0

−d(t)

∫ t

t+θ
ẋT (s)G1ẋ(s)dsdθ

−
ḋ(t)
2

∫
−d(t)

−h

∫ t−d(t)

t+θ
ẋT (s)G2ẋ(s)dsdθ.

(25)

Recalling (23), in order to capture more information of time
delay, dividing [0, h] into [0, d(t)] ∪ [d(t), h], it yields

−

∫ 0

−h

∫ t

t+θ
ẋT (s)T ẋ(s)dsdθ

= −

∫ 0

−d(t)

∫ t

t+θ
ẋT (s)T ẋ(s)dsdθ

−hd (t)
∫ t

t−d(t)
ẋT (s)T ẋ(s)ds

−

∫
−d(t)

−h

∫ t−d(t)

t+θ
ẋT (s)T ẋ(s)dsdθ. (26)

Summing up (23)-(26), it follows that
6∑

c=4

LVc(xt )+ LV ∗(xt ) ≤ ηT (t)�4η(t)

−

∫ t

t−d(t)
ẋT (s)R0

1(t)ẋ(s)ds

−

∫ t−d(t)

t−h
ẋT (s)R0

2(t)ẋ(s)ds
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−

∫ 0

−d(t)

∫ t

t+θ
ẋT (s)T0

1(t)ẋ(s)dsdθ

−

∫
−d(t)

−h

∫ t−d(t)

t+θ
ẋT (s)T0

2(t)ẋ(s)dsdθ. (27)

Considering (3), (14), (15), positive definite matrices Rk ,Mk ,
Gk , and Tk (k = 1, 2), it yields

R0
1(t) > 0,R0

2(t) > 0,T0
1(t) > 0,T0

2(t) > 0.

By usingWirtinger-based single integral inequalities (WSIIs)
[17], the R-,M -,G-, and T -dependent single integral terms in
(27) can be respectively estimated as

−

∫ t

t−d(t)
ẋT (s)R0

1(t)ẋ(s)ds

≤ −
1
d(t)

ηT (t)5T
14<1(d(t), ḋ(t))514η(t) (28)

and

−

∫ t−d(t)

t−h
ẋT (s)R0

2(t)ẋ(s)ds

≤ −
1

hd (t)
ηT (t)5T

15<2(d(t), ḋ(t))515η(t). (29)

Then, by using Lemma 2, we can obtain

−
1
d(t)

5T
14<1(d(t), ḋ(t))514 −

1
hd (t)

5T
15

×<2(d(t), ḋ(t))515 ≤ −
1
h
5T

16(<− =)516 (30)

where

= = diag{
v1hd (t)
h

S<−12 (d(t), ḋ(t))ST ,

v2d(t)
h

ST<−11 (d(t), ḋ(t))S}.

By using WDII [18], the T - and G-dependent double integral
terms in (27) can be respectively estimated as

−

∫ 0

−d(t)

∫ t

t+θ
ẋT (s)T0

1(t)ẋ(s)dsdθ

≤ −ηT (t)517T1(d(t), ḋ(t))517η(t) (31)

−

∫
−d(t)

−h

∫ t−d(t)

t+θ
ẋT (s)T0

2(t)ẋ(s)dsdθ

≤ −ηT (t)518T2(d(t), ḋ(t))518η(t). (32)

Recalling (27) and summing up (30)-(32), we have

6∑
c=4

LVc(xt )+ LV0(xt )

≤ ηT (t)(�4 +�5 +
1
h
5T

16=516)η(t). (33)

Taking consideration of (4) and (5), the following inequalities
can be obtained for c = 1, 2, 3

λc(s) = 2[g(W2x(s))− K1W2x(s)]T

×3c[K2W2x(s)− g(W2x(s))] ≥ 0

δc(s1, s2) = 2[g(W2x(s1))− g(W2x(s2))

−K1W2(x(s1)− x(s2))]T

×1c[K2W2(x(s1)− x(s2))

−g(W2x(s1))+ g(W2x(s2))] ≥ 0.

Thus, the following inequalities hold
λ1(t)+ λ2(t − d(t))+ λ3(t − h) ≥ 0δ(t, t − d(t))

+δ(t − d(t), t − h)+ δ(t, t − h) ≥ 0. (34)

In addition, we introduce the cost function as follows

JT =
∫ T

0
(yT (t)91y(t)+ 2yT (t)92w(t)+ wT (t)93w(t))dt.

(35)

Recalling (22), (33), (34), and (35), we can obtain∫ T

0
LV (xt )dt − JT ≤

∫ T

0
ηT (t)ϒ(d(t), ḋ(t))η(t)dt (36)

where

ϒ(d(t), ḋ(t)) =
7∑
l=1

�l +
1
h
5T

16=516.

Note that ϒ(d, ḋ) is a linear matrix-value based on d(t) ∈
[0, h] and ḋ(t) ∈ [−µ,µ], respectively. It can be written as

ϒ(d(t), ḋ(t)) = ḋ(t)(d(t)`1 + `2)+ d(t)`3 + `4 (37)

where `l(l = 1, 2, . . . , 4) are some real matrix combina-
tions irrespective of d(t) and ḋ(t). Thus, two allowable delay
sets H1 = Co{(0,−µ), (0, µ), (h,−µ), (h, µ)} and H2 =

Co{(0, 0), (0, µ), (h, 0), (h,−µ)} can be used to solve the
condition (37). It is pointed out [41] that (0,−µ) and (h, µ)
in H1 are inappropriate due to the fact that it is impossible
for the time delay d(t) to achieve the maximum h at the time
when ḋ(t) = µ > 0 and the minimum 0 at time when
ḋ(t) = −µ < 0. Thus, for any (d(t), ḋ(t)) ∈ H2, for any
(d(t), ḋ(t)), if (16)-(19) are satisfied, we have

ϒ(0, 0) < 0
ϒ(0, µ) < 0
ϒ(h, 0) < 0
ϒ(h,−µ) < 0

⇒ ϒ(d(t), ḋ(t)) < 0. (38)

Considering ℘iη(t) = 0, by using Finsler’s Lemma [12],
it follows

(℘⊥i )
Tϒ(d(t), ḋ(t))℘⊥i < 0⇒ ηT (t)ϒ(d(t), ḋ(t))η(t) < 0.

For91 ≤ 0, there exists a scalar ν ≥ 0 such that the following
inequality holds under w(t) = 0

LV (xt ) < −ν|η(t)|2

which means that MJNNs (1) are stochastically stable.
Step 3: Extended dissipativity analysis. From (36), one has

JT ≥
∫ T

0
LV (xt )dt = V (xT )− V (x0)

≥ xT (T )P1ix(T )− V (x0). (39)

In view of (20), we have 033 = Li − DT294D2 > 0 and
044 = Ni − BT294B2 > 0. Since Li and Ni are symmetric
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positive definite matrices, 94 ≥ 0 is guaranteed. Obviously,
94 < 0 holds for any positive definite matrices Li and Ni. For
unconstrained parameter 94, two cases will be considered as
follows.

a:94 = 0, setting % ≤ −V (x0), from (9) and (39), we have

JT ≥ %. (40)

b: 94 6= 0, from Assumption 1, we have 91 = 92 = 0,
93 > 0. Together with (39), we obtain

JT =
∫ T

0
wT (t)93w(t)dt ≥ 0. (41)

Considering 0 ≤ t ≤ T and 0 ≤ t − d(t) ≤ T , for symmetric
positive definite matrices Li, Ni, and93, it yields for all i ∈ S

JT ≥ Jt ≥ xT (t)P1ix(t)− V (x0)

≥ xT (t)P1ix(t)− V (x0)

−gT (W2x(t))Lig(W2x(t))− wT (t)Niw(t) (42)

JT ≥ Jt−d(t)
≥ xT (t − d(t))P1ix(t − d(t))− V (x0)

−gT (W2x(t))Lig(W2x(t))− wT (t)Niw(t). (43)

Thus, for a positive scalar α ∈ (0, 1), we can get
JT ≥ (1− α)xT (t − d(t))P1ix(t − d(t))

+αxT (t)P1ix(t)− V (x0)

−gT (W2x(t))Lig(W2x(t))− wT (t)Niw(t). (44)

Then, it yields
yT (t)94y(t) = (1− α)xT (t − d(t))P1ix(t − d(t))

+αxT (t)P1ix(t)+ wT (t)Niw(t)

+gT (W2x(t))Lig(W2x(t))− χT (t)2χ (t)

(45)

where

χ (t) = col[x(t), x(t − d(t)), g(W2x(t)),w(t)]

2 =


011 012 −CT94D2 −CT94B2
∗ 022 −DT194D2 −DT194B2
∗ ∗ 033 −DT294B2
∗ ∗ ∗ 044

 .
Combining 2 > 0, (44) and (45), we have

JT ≥ yT (t)94y(t)− 2gT (W2x(t))Lig(W2x(t))

−2wT (t)Niw(t)− V (x0). (46)

Recalling (5), we have |g(W2x(t))| ≤ ||K2W2|| · |x(t)|. Then,
two cases for 94 6= 0 will be given as follows.
b(1): For 94 > 0, recalling w(t) ∈ L2[0,∞), there exists

a scalar % ≤ 0 such that the following relationship holds for
κ ≤ %−2max

i
||K2W2||

2
·||Li||·|x(t)|2−2max

i
||Ni||·|w(t)|2−

V (x0)

yT (t)94y(t) ≥ sup
0≤t≤T

yT (t)94y(t)+ κ. (47)

Together with (46), we have

JT ≥ sup
0≤t≤T

yT (t)94y(t)+ %. (48)

b(2): For 94 < 0, we obtain

sup
0≤t≤T

yT (t)94y(t) ≤ 0. (49)

Combining (41) and (49), we have

JT =
∫ T

0
wT (t)93w(t)dt ≥ sup

0≤t≤T
yT (t)94y(t)+ %. (50)

Recalling (48) and (50), it yields

JT =
∫ T

0
wT (t)93w(t)dt ≥ sup

0≤t≤T
yT (t)94y(t)+ %. (51)

It follows from Definition 1 that system (1) is extended dis-
sipative. Summarizing the above three steps, this completes
the proof.
Remark 2. Based on Proposition 1 and PDRCI, a novel

condition is proposed in Theorem 1 to ensure MJNNs (1)
to be stochastically stable and extended dissipative. Several
merits of Theorem 1 can be concluded as follows. (i) More
information of time delay can be captured since its derivative
is associated with d(t), h, ḋ(t), v1(t), v2(t), v3(t), and v4(t).
Moreover, the double integrals are considered and zero com-
ponents are avoided in this paper, which can lead to more less
conservative results than those in [33], [34]. (ii) The PDRCI
instead of those in [33], [34] is presented to handle the integral
term−

∫ t
t−h ẋ

T (s)Rẋ(s)ds. In this case, two parameters κ1 and
κ2 can be chosen freely and independently in Theorem 1.
Then, a better solution can be gotten by adjusting the two
parameters.
Remark 3. Note that in [34], by introducing symmetric

positive definite matrices Li and Ni, the constraints D2 = 0,
||B2||·||94|| = 0 on the structure ofMJNNs (1) are overcome
and 94 ≥ 0 is ensured. As seen in (20) of present paper.
If 94 ≥ 0, Li ≤ 0, and Ni ≤ 0, we can obtain 033 ≤ 0
and 044 ≤ 0. In this case, condition (20) is invalid. In order
to overcome the issue, setting D2 = B2 = 0 is the common
way in previous works such as in [33], which obviously leads
to some limitations in practical engineering. As a result, with
two positive definite matrices Li andNi, the obtained result of
present paper is more general and practical than that in [33].
Remark 4. It is worth pointing out that the conservative-

ness of a stability criterion of system (1) is dependent on
the choice of LKF and the bound on its derivative. In this
paper, the main contribution focuses on the construction of
DIDPT functional. Actually, Lyapunov method is a fruitful
field in the stability analysis of time-delay systems [42], [43].
Note that the authors in [23] show that the conservatism of
a stability criterion can be reduced by increasing the ply
of integral terms in LKF. Thus, a suitable multiple integral
delay-product-type LKF can further reduce the conservatism
of the stability criterion.

IV. EXAMPLES
Consider MJNNs (1) with parameters from [33]

A1 =
[
2 0
0 2

]
,
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TABLE 1. Extended dissipative performance.

A2 =
[
2.2 0
0 1.8

]
,K1 = D2 = 0

W01 =

[
1 1
−1 −1

]
,W02 =

[
−1 −1
0.5 −1

]
W11 =

[
0.88 1
1 1

]
,W12 =

[
−0.5 0.6
0.7 0.8

]
W2 =

[
1 0
0 1

]
,B1 =

[
0.0403
0.6771

]
,K2 = diag{0.4, 0.8}

C =
[
−0.3775 −0.2959

]
,D1 =

[
0.2532 −0.1684

]
.

Choose 5 =
[
−4 4
5 −5

]
and 9l(l = 1, 2, 3, 4) in Table

1. For simplicity, setting σ = σ1 = σ2 and κ = κ1 = κ2,
the following two cases will be considered in this example as
special cases of extended dissipativity.

1)H∞ performance: Choosing B2 = 0.1184, the minimum
H∞ performance of γ and NDVs calculated by different
methods are illustrated in Table 2.
TABLE 2. Minimum H∞ performance γ for h = 3.

2) L2 − L∞ performance: (1) Choosing B2 = 0, the
minimum L2−L∞ performance of γ and NDVs calculated by
different criteria are illustrated in Table 3. From Cases 1)-2),
summaries are given as follows. (i) From Tables 2-3, it can be
seen that the utilization of coupling information of the DIDPT
(13) can be adjusted by choosing different σ . (ii) The PDRCI
plays a key role in reducing conservatism. (iii) The proposed
result of present paper for MJNNs (1) is less conservative
than that in [33], [34]. In addition, setting µ = 0.8, κ1 = 3,
and κ2 = 5, the minimum H∞ and L2 − L∞ performance
indices are 0.6934 and 0.4872, which show the effectiveness
of PDRCI in [38].

TABLE 3. Minimum L2 − L∞ performance γ for h = 3.

V. CONCLUSION
In this paper, the problem of the extended dissipative analy-
sis of Markovian jump neural networks (MJNNs) has been

investigated by using delay-product-type (DPT) functional
method. By using Wirtinger-based double integral inequal-
ity and S-procedure lemma, a novel double integral-based
DPT (DIDPT) functional is constructed. The incomplete
components in [34] have been avoided in case that extra infor-
mation of system information can be coupled. Together with
the parameter-dependent reciprocally convex inequality and
theWirtinger-based integral inequality to estimate the deriva-
tive of the constructed LKF, a delay-dependent extended
dissipativity condition is derived for the delayed MJNNs.
A numerical example is employed to illustrate the advantages
of the proposedmethod. Extending DIDPT functional to mul-
tiple integral delay-product-type functional deserves further
investigation.
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