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ABSTRACT In this paper, we investigate sampled-data stabilization of memristor nonlinearity in Chua’s
circuits. The system stability pertaining to its switching nonlinearity covers two situations of flux thresholds.
Through the stability analysis, the multistability characteristic is proved by its periodic invariant stable
line. Moreover, the dynamical features of the considered system are examined in details by numerical
and corresponding simulated experiments. Several statistical and analytical characteristic methods are used
to confirm the existence of chaotic attractors. With the help of Lyapunov stability theory, new sufficient
conditions are formulated using the linear matrix inequality (LMI) method to ensure robust stability and
stabilization of closed-loop systems. Finally, we present a numerical example to ascertain the validity of the
theoretical results obtained.

INDEX TERMS Chua’s circuits, Lyapunov stability, linear matrix inequality (LMI), memristor,
sampled-data control.

I. INTRODUCTION
A memristor, i.e., a fourth-order basic passive circuit, was
theoretically discovered by Chua in 1972 [1], while its exis-
tence was experimentally proved in 2008 [2]. Today, mem-
ristors have received great attention [3]–[6]. The theory of
memristor has been developed based on electronically con-
figurable simple elements made up of molecular-based logic
gates by a research team in HP company, working together
with the University of California [7]–[9]. Following the HP
team’s experimental proof of memristor elements by using
CMOS nanoscale crossbars of electronic logic (2004), hys-
teric resistor crossbars were developed in 2005 [10]. Fur-
thermore, they developed self-organized computation with
an unreliable, memristive nano device [2], [10], [11]. The
general working principles of a memristor component are like
a simple switch (on/off) where it switches from a low resistive
state to a high resistive state and vice versa. The switching
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principle of the memristor opens a second threshold voltage,
and the device breaks well beyond either of the threshold
voltages [12]. Later, HP merged the nano-ionics with Chua’s
concept [13], [14]. The term memristor was reused (also
memristive system) in the experimental realization. Many
research articles on the topic of memristors and memristive
systems are available in the literature [13].

Many aspects of memristor-based systems and their
dynamics have been studied, e.g. the memory properties,
synaptic behaviours, and pinched v− i characteristics curve,
and the associated influence in many science and engineer-
ing areas have been reported [2], [3], [7]–[15]. In recent
years, researchers have also investigated thememristive prop-
erties in various domains, including neuromorphic studies,
fuzzy logic, artificial intelligence as well as in cellular
neural networks, and others [14], [16]–[20]. In this paper,
a memristive based Chua’s family oscillator is considered
[3]. The piecewise nonlinear element of the Chua diode
can be replaced by the memristive element, allowing the
investigation on the associated dynamics. Real-time analogue
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circuits can also be constructed for prediction. Furthermore,
the chaotic attractor can be characterized by the Lyapunov
exponent using the Rosenstein algorithm [15].

LPV (Linear parameter varying) control techniques have
received attention from researchers in the control community
in the context of both theoretical investigations and practical
applications [21]–[24]. Several systems have been success-
fully modelled by linear systems with certain parameters that
change over time. In addition, some nonlinear systems can
be described in quasi-LPV form by appropriately translat-
ing some nonlinearities of the product of states and varying
the relevant parameters [21], [25], [26]. In both instances,
the LPV controllers can be easily computed using the linear
matrix inequality (LMI) method. The resulting LMIs match
the matrix of the state-space model of the system. This rela-
tionship helps the examination of the considered systems
with uncertain parameters. In [22], [27], [28], the parameter-
dependent conditions for the stability of linear systems with
polytopic uncertainty were studied. The iterative procedure
requires an initial state feedback gain matrix that stabilizes
the system across the uncertainty polytope, and it is not easy
to obtain this gain matrix.

On the other hand, input nonlinearities from real envi-
ronments occur in realistic engineering applications, such
as mechanical connections, piezoelectric transducers, servo
motors, etc. The nonlinearity of the equipment input
decreases the performance of the system; and in some serious
cases, the closed-loop system becomes unstable. For this
reason, input nonlinear control methods have been examined.
To reduce the control cost associated with the memristive
systems, it is essential to embed the system in a micropro-
cessor with limited energy and computing power. This means
that the sampled-data control scheme has to be established
on the digital platform [29]–[34]. Therefore, it is crucial
to formulate a sampled-data control scheme for memristive
systems to reduce the controller update time. In sampled-
data control, the measured closed-loop dynamics plays an
important role during sampling [35]–[39]. However, few
papers on the sampled-data control scheme for LPV sys-
tems are available [40]–[43]. Therefore, it is important to
investigate the dynamic behaviours of uncertain memristive
systems. Recently, state feedback sliding mode control of
memristor-based Chua’s circuits has been reported in [44].
To the best of the authors’ knowledge, the existing published
literature does not provide the results of sampled-data sta-
bilization of LPV memristor-based Chua’s circuits (MCCs),
and this is the motivation of this article. Moreover in this
manuscript, the considered system has peculiar and very
interesting nonlinear characteristics nature i.e., non smooth
boundary switching type [45], [46]. There is another impor-
tant motivation which leads to coin few future works like to
apply the MCCs in the FPAA [47], fractional order [48] and
other memristor emulators based switching type nonlinear
systems studies.

Specifically, a unique methodology is proposed and
applied to MCCs with parameter uncertainties in this study,

serving as a sampled-data technique for analysing the sta-
bilization of Chua’s circuits. Firstly, a linear time-invariant
state-space model is established for MCCs. It indicates
that the model is unstable and multi-layered. As such,
the kinetic aspects of the considered model are studied in
detail with numerical and detailed experimental investiga-
tions. Secondly, a sampled-data control scheme is designed
for such uncertain MCCs. The results indicate that robust
sampled-data stabilization is achieved for the MCCs, and the
simulation results confirm the advantages and benefits of the
proposed method.

II. SYSTEM DESCRIPTION AND DYNAMICAL ANALYSIS
A. SYSTEM DESCRIPTION
The memristor is the fourth fundamental passive component
that directly relates to flux ϕ and charge q [13]. Recently,
the use of memristor emulators in the field of machine learn-
ing and biological networks is emerging [14]. The connection
between charge and flux is

i = W (ϕ)V , or V = M (q)i (1)

where V = dϕ/dt and i = dq/dt . Based on both rela-
tions, amemristor can be categorized asmemristance (voltage
controlledW (ϕ)) or memductance (current controlledM (q)),
respectively. They are defined as

W (ϕ) =
dq(ϕ)
dϕ
≥ 0 and M (q) =

dϕ(q)
dq
≥ 0. (2)

Recently, researchers have noticed that two types of mem-
ristor emulator concepts can be used for nonlinearity analy-
sis by replacing the classical nonlinear elements (piecewise
cubic, tanh, negative impedance converter, etc.) of dynamical
systems. Several articles related to memristor-based nonlin-
ear dynamical systems are available in the literature [1], [3],
[13], [44]. Different forms of the memristor emulator are
available in the literature, for example, floating memristor
emulator [49], memristive neural network [50], etc.

The main benefit of utilising this memristor is that it has
a memory feature. This present study focuses on replacing
the well-known piecewise nonlinearity (i.e., Chua’s diode)
with a memristor emulator, as shown in Fig. 1. The piecewise
nonlinearity form can be written as

q(ϕ) = bϕ +
1
2

(
a− b

)(
|ϕ + 1| − |ϕ − 1|

)
. (3)
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FIGURE 1. (red box): A circuit schematic of the memristor nonlinear
element, which is equivalent to W (φ). The circuit is constructed using the
Xcircuit software.

Initially proposed by Itoh and Chua [3], a mem-
ristive element can be characterized by the following
monotone-increasing and piecewise linear function, and
the equation (3) can be transformed into a memristor
concept, i.e.,

W (ϕ) =
dq(ϕ)
dϕ
=

{
a, |ϕ| ≤ 1

b, |ϕ| > 1
(4)

where the nonlinear slopes a and b are positive constants.
Here the switching ON and OFF action achieved by an output
pulse of a comparator is shown in Fig. 1. It compares the flux
through the memristor between two reference levels, namely
the breakdown points lying within ±1 flux unit. Notice that
the negative impedance is included in the circuit. When the
fluxes exceed the breakdown point, the resultant of the linear
resistance and negative conductance, which are in parallel,
is included in the circuit. Moreover, the flux achieved through
the integrator circuit is shown in Fig. 1. By this action,
the functional relationship between the flux and charge given
in (1) is realized. More detailed description of this memristor
model is given [45], [46], [51].

A memristive Chua’s oscillator circuit with a monotone-
increasing and piecewise linear memristor is presented
in Fig. 2. Based on the Kirchhoff’s law, the circuit equation
can be written as

C1
dv1(t)
dt
=

1
R
(v2(t)− v1(t))+ Gv1(t)−W (ϕ(t))v1(t)

C2
dv2(t)
dt
=
−v2(t)+ v1(t)

R
− i(t)

L
di(t)
dt
= v2(t)− ri(t)

dϕ(t)
dt
= v1(t).

(5)

A real-time hardware experimental circuit can be com-
posed for validating the numerical predictions. This com-
plete circuit has been constructed through a circuit simulator
(MULTISIM-student free version). The memristive emulator
is constructed by using op-amp (U1 to U4) µA741 ICs,
diodes (1N4007N) and the switching IC (MULTISIM:
voltage-controlled-SPST-animated, Realtime Experiment:

FIGURE 2. A flux-controlled MCC [3].

IC LM5017), as shown in Fig. 1. The switching IC oper-
ates according to the function in (4). The output of the
variables v1, v2 and iL in the circuit are measured via the volt-
age across capacitors C1 and C2 and current via inductor L.
Another state variable (φ(t)) that a memristive component
has measured by voltage across the capacitor C1 in Fig. 1.
The chaotic attractor can be realised using the following
component values of the memristor emulator: R1 = R4 =
10K�, R2 = R3 =100K�, R7 = R8 =2K�, R5 =
1450�, R6 = 1050� and C1 = 2.2nF . The Chua’s circuit
component values are L = 18mH , r = 40�, C1 = 8nF ,
C2 = 100nF , G = 1/R = 1800�. The chaotic attrac-
tor is shown in Fig. 3a. The present circuit is designed to
confirm the presence/existence of the chaotic attractor in a
real-time experiment. For the unavailability of the circuit
component (switching IC), we perform theMULTISIM simu-
lation instead of real-time hardware circuit. Moreover, we can
also construct the same circuit by using field-programmable
analog array (FPAA) platform [47]. It is very easy to imple-
ment, working in low bias voltages and the main advantage
is the possibility of prototyping. The output can be seen in
the oscilloscope. The phase portrait and its corresponding
(Figs. 3b,c) time series of variables v1, v2 confirm the pres-
ence of chaos. Moreover, the period-doubling scenario can
be seen visualizing the phase space (oscilloscope/simulation)
by varying the G = 1/R resistive component in the circuit.
The experimentally observed chaotic attractor is further con-
firmed by using the 0− 1 test analysis.

B. CHAOTIC BEHAVIOR ANALYSIS BY 0-1 TEST
In this section, the time series data are examined to confirm
the chaotic oscillation by the ‘0-1’ test. Gottwald et al [52]
proposed a new method to classify the obtained time series
is chaotic or periodic by simply calculating its asymp-
totic growth rate K . The growth rate K of the time series
confirms its dynamical content (periodic K = 0 and
chaotic K = 1). The phase portrait of the translational
coefficients p, q partially confirms the nature of the time
series (random walk: chaotic, smooth: periodic). In this anal-
ysis, the experimentally observed time series of the chaotic
attractor is investigated.
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FIGURE 3. MultiSim circuit simulator: (a) Phase portrait in the voltages v1
vs v2 plane and (b) time series of the variables v1, v2, iL and φ(t) of the
chaotic attractor of the proposed circuit.

Here, x(j) is a given time series, and the dimensionless
translational displacements are defined by

p(n) =
n∑
j=1

x(j) cos(jc) (6)

q(n) =
n∑
j=1

x(j) sin(jc).

The arbitrarily chosen constant c varies between 0 − π . The
time series considered has 2×104 data length. The calculation
is carried out with 0.01 iterations. According to the concept of
the 0−1 test, the translational components p−q visualizes the
Brownian motion of the time series, which partially confirms
the nature of chaotic motion, as shown in Fig. 4a. The mean
square displacement M (n) calculated from the translational
components to find the diffusive behaviour ( for periodic,
M (n) is bounded; if it is chaotic, it linearly increases with
time) of the given time series is shown in Fig. 4b. The mean
square displacementM (n) is calculated as

M (n) = lim
n→∞

1
n

n∑
j=1

(
[pc(j+ n)− pc(j)]2

+ [qc(j+ n)− qc(j)]2
)
. (7)

The asymptotic growth rate K calculated from the mean
square displacement of the time series is

FIGURE 4. The 0-1 test: (a) phase portraits of translational components
(p − q) plane; (b) displacement M(n); (c) asymptotic growth rate: K of the
given time series of the model.

derived by

K = lim
n→∞

logM (n)
log n

. (8)

The given time series data are evaluated with the above
equation, and we obtain K = 0.9941 (∼ 1). It confirms the
given time series has chaotic motion characteristics, as shown
in Fig. 4c.

C. SYSTEM STABILITY ANALYSIS
The circuit equation is normalized in [3]. Consider x1(t) =
v1(t), x2(t) = v2(t), x3(t) = −i(t), x4(t) = ϕ(t), and the
model parameters are refined as α = 1/C1, β = 1/L,
ρ = r/L, ε = G, C2 = 1, and R = 1. Therefore, equation (5)
can be transformed into

dx1
dt
= α(x2 − x1 + εx1 −W (x4)x1)+ u(t)

dx2
dt
= x1 − x2 + x3

dx3
dt
= −βx2 − ρx3

dx4
dt
= x1.

(9)

The piecewise linear functionW (x4) is given by

W (x4) =

{
a, |x4| ≤ 1,

b, |x4| > 1.
(10)

The nature of the memristive nonlinearity depends only
on its slope parameters a, b. The slope parameters are taken
as positive values, a, b > 0. The other model parameters,
α = 10, β = 13, ρ = 0.35, ε = 1.5 are fixed to
find the chaotic attractor. Before that, the stability of the
proposed dynamical model is studied. The circuit equation
is transformed into a normalized form. Then, the equilib-
rium state is given by taking the initial conditions as x1, x2,
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x3 = 0, x4 = constant), which corresponds to the x4-axis.
The Jacobian matrix J at this equilibrium is given by

J =


α(−1+ ε −W (x4)) α 0 0

1 −1 1 0
0 −β −ρ 0
1 0 0 0

 .
Clearly, we have four eigenvalues of the matrix J . From

the Jacobian matrix, the model stability depends on the flux
correspondence variable x4. This means that the model is
always stable in the x4 direction. This kind of equilibrium
gives the ‘periodic line invariant’ type of stability of the
model, and the model is always stable on the x4 line [53].
We evaluate the above matrix with two different sides of
variable x4, and obtain the following set of eigenvalues.
• Case-I: For |x4| < 1, we obtain λ1,2 = −1.2115 ±
i2.7534 and λ3 = 3.27, λ4 = 0. The model has a stable
focus equilibrium point.

• Case-II: For |x4| > 1, we obtain λ1,2 = 0.0786±i2.8454
and λ3 = −4.5064, λ4 = 0. Thus, they are characterized
by an unstable saddle-focus except for the zero eigenval-
ues. The model has unstable characteristics at x4 =0.0;
so this is avoided when calculating the eigenvalues.

To fix the circuit equation and the parameter values into
the state-space format x(t) = [x1(t), x2(t), x3(t), x4(t)]T ,
the initial value of the simulation model is selected as x(0) =
[−0.4, 0.8, 0.8, 5]T for obtaining the chaotic attractor.
To produce the model dynamics, the normalized equation is
computed with the Runge Kutta 4th algorithm with a fixed
step size of 0.01. Fig. 5 depicts the phase portrait in (a) x1−x2
plane; (c) the x1, x2, x4 plane, along with the corresponding
time series of (b,d) x1, x4 variables. The 3D plot shows the
trajectories of the chaotic attractor. A number of measures
confirm the nature of the chaotic attractor, as presented in the
subsequent sections. While changing the control parameter
α, we can see the bifurcation by plotting the phase portraits
and time series. The bifurcation of the present system is not
possible because it has switching nonlinearity and nonsmooth
boundaries. Therefore, we could not be able to plot the bifur-
cation by detecting peaks or Poincaré technique and any other
way [45], [46].

The frequency component of the time series data for the
chaotic attractor is numerically computed (x1 variable) and
observed. The calculation of the frequency component is
complex in view of the raw time series data. The procedure
is to convert the given signal data to the frequency domain.
The discrete Fourier transform of the noisy signal (x1) is
formed by taking the N -point fast Fourier transform (FFT).
The power spectrum, a measurement of the power at various
frequencies, is P = x1 × Conj(x1)/N . Then, plot the first
N/2 + 1 points (the other N/2 − 1 points are redundant)
on a meaningful frequency axis: f = 1000(0 : N/2)/N .
If we plot between P− f we can obtain the frequency content
of variable x1. Fig. 6 shows the frequency distribution with
respect to the frequency content of variable x1. The proposed
dynamical model is of a multistability nature. Themodel goes

FIGURE 5. Numerically computed phase portrait in 2D: (a) x1 − x2 plane,
and in 3D: (c) x1, x2, x4 plane and the corresponding time series of (b,d)
x1, x4 variables.

FIGURE 6. Numerically computed frequency distribution with respect to
the frequency content of variable x1. The broadband nature of the
spectrum confirms the chaotic behaviour.

to infinity with respect to certain parameter sets. Therefore,
the calculation of the bifurcation and its corresponding Lya-
punov exponent is challenging. However, the confirmation of
chaos can be achieved by calculating the Lyapunov exponent
via its corresponding time series.

D. LYAPUNOV EXPONENT
Rosenstein [15] developed a concept to find the max-
imal Lyapunov exponent (LE) in a time series, espe-
cially in a small data set. This method is robust, fast and
easy to perform. It gives reliable results for detecting the
dimension estimates of the time series. According to the
Rosenstein approach, the phase portrait is (re)constructed
n-dimensionally with the given time series x(t) with its
corresponding arbitrarily chosen delay (τ ) co-ordinates
by x(t), x(t + τ ), · · · , x(t + [n− 1]τ ). The initial differ-
ence between the original and its reconstructed trajectories

25652 VOLUME 9, 2021



N. Gunasekaran et al.: Dynamical Analysis and Sampled-Data Stabilization of MCCs

(nearest neighbours) is located at the initial point of the orig-
inal trajectory as (x(t0), x(t0+ τ ), · · · , x(t0+ [n− 1]τ )). The
difference of the two trajectories is denoted as L(t0) and that
of the next iteration is denoted as L ′(t1), which is evolved in
length. The length element is propagated through the attractor
for a time short enough so that only small-scale attractor
structure is likely to be examined. For the next iteration of the
trajectories (new points), the LE should satisfy the following
two conditions: (i) the separation between the original and
constructed trajectories (the nearest neighbour L ′(t1)) is small
from its evolved fiducial point; (ii) the angular separation
between the evolved replacement points (elements) is also
small. If there are no adequate points, then retain the points
that are being used. This calculation of this procedure is
repeated until the fiducial trajectory has traversed the entire
data set. The Lyapunov exponent is

λ =
1

tn − t0

n∑
k=1

log2
L ′(tk )

L(tk − 1)
. (11)

Here n represents the number of replacement steps. If there
is a fixed evolution between the replacement and time step,
1 = tk+1 − tk is constant. The key advantage of this method
to obtain LE λ pertaining to a noise-free large amount of
data set is that the procedure always provides replacement
vectors of infinitesimal magnitude with no orientation error.
Through this method, the obtained time series of x2 is taken
into account. The calculated LE is shown in Fig. 7. The
top panel is considered time series, while the phase space
reconstructed by the delay value of τ =770 is shown in the
bottom left graph. The average divergence and convergence
plot of the time series with various delay values is shown in
the bottom right graph. The average of these values is LE, and
the LE of this example is λ =0.2580, which represents the

FIGURE 7. Numerically computed maximum Lyapunov exponent for the
given time series.(a) The original time series, (b) phase space
reconstruction, (c) average divergence.

nature of chaos. The periodicity and chaotic characteristics
are confirmed via the maximal LE of its negative and positive
values. Limitation of the study: For a very low number of data
set, it is very hard to find the average divergence because the
reconstructed attractor is not possible to visualize. Moreover,
when we have different physical situations, a time series like
periodic, chaotic, and quasiperiodic differentiation is possible
when finding the mean of the average divergence instead of
plotting the slope value. It also very sensitive to the initial
conditions and optimized parameters [54].

III. SAMPLED-DATA STABILIZATION
In this section, we consider the following MCC model with
switching modes,

ẋ(t) = Aσ (t)x(t)+ Bσ (t)u(t), (12)

where

Aσ (t) =


α(−1+ ε −W (w)) α 0 0

1 −1 1 0
0 −β −ρ 0
1 0 0 0

 ,
Bσ (t) =

[
1 0 0 0

]T
.

Based on the relation of memristor in (4), x4(t) is designed
to carry out the switching between the following two modes

ẋ(t) =

{
A1x(t)+ B1u(t), |x4(t)| ≤ 1,

A2x(t)+ B2u(t), |x4(t)| > 1,
(13)

where

A1 =


−α + αε − αa α 0 0

1 −1 1 0
0 −β −ρ 0
1 0 0 0

 ,

A2 =


−α + αε − αb α 0 0

1 −1 1 0
0 −β −ρ 0
1 0 0 0

 ,
B1 = B2 =

[
1 0 0 0

]T
,

and the parameters a, b are all positive constant values. The
model can be further represented as a linear uncertain system

ẋ(t) = A(θ )x(t)+ B(θ )u(t), (14)

with the following rule

θ1 =

{
1, |x4(t)| ≤ 1,

0, |x4(t)| > 1,
θ2 = 1− θ1.

The state space matrices A(θ ) and B(θ ) are subject to real
parameter uncertainty θi, and obey the real convex polytopic
model, i.e. [A(θ ) B(θ )] ∈ �, where

� =

{
[A(θ ) B(θ )] :=

2∑
i=1

θi[Ai Bi], θi ≥ 0,
2∑
i=1

θi = 1
}
.

(15)

VOLUME 9, 2021 25653



N. Gunasekaran et al.: Dynamical Analysis and Sampled-Data Stabilization of MCCs

A. FORMULATION FOR SAMPLED-DATA CONTROL
Model (14) is designed as a continuous-time system. Its
control input consists of a series of delays. The LMI-based
sufficient conditions with respect to the model are derived
using a descriptive method, which is a feedback confirmation
time delay system. If the distance between successive sam-
pling times is not greater than the preselected h > 0, the LMIs
can be performed. The necessary and sufficient condition
with respect to continuous-time state feedback stabilization is
yielded when h→ 0. Consider the piecewise constant control
function u(t) = u(tk ), tk ≤ t < tk+1, where limk→∞ tk = ∞
and a series of sampling times 0 = t0 < t1 < · · · < tk < · · · ,
and assume that h ∈ R (h > 0) and tk+1 − tk ≤ h, ∀k ≥ 0.
Corresponding to the sampled-data control principle, with

the definition of h(t) = t − tk for t ∈ [tk , tk+1), the
controller (14) becomes

u(t) = Kx(t − h(t)), t ∈ [tk , tk+1), (16)

whereK is the control gain to be determined. The closed-loop
model under the above sampled-data control principle (16)
becomes

ẋ(t) =
2∑
i=1

θi[Aix(t)+ BiKx(t − h(t))]. (17)

Definition 1: Model (14) with u(t) = 0 is said to be
robustly stable if the equilibrium solution x(t) = 0 is globally
asymptotically stable for all [A(θ ) B(θ )] ∈ �. Model (14)
is said to be robustly stabilizable via sampled-data con-
troller if there exists a linear state feedback (16) such that
the closed-loop model (17) is robustly stabilizable for all
[A(θ ) B(θ )] ∈ �.
To derive the main results, we state the following lemmas.
Lemma 1 [55]: For positive definite matrix M ∈ Rn×n,

scalar ε > 0, vector function x : [0, ε] → Rn such that the
integrations concerned are well-defined,[∫ ε

0
x(s)ds

]T
M
[∫ ε

0
x(s)ds

]
≤ ε

∫ ε

0
xT (s)Mx(s)ds.

Lemma 2 [55]: Let f1 > 0, f2 > 0, . . . , fN > 0 : Rm
7→

R have positive values in an open subset D ∈ Rm. Then,
the reciprocally convex combination of fi over set D satisfies

min
{αi|αi>0,

∑
i αi=1}

∑
i

1
αi
fi(t) =

∑
i

fi(t)+max
gij(t)

∑
i6=j

gij(t)

subject to{
gij : Rm

7→ R, gji(t) = gij(t),
[
fi(t) gij(t)
gij(t) fj(t)

]
≥ 0

}
.

IV. DESIGN CONDITIONS
The main purpose of this section is to derive new criteria for
robustly stable analysis of model (17) with sampling time
subject to uncertainties on the parameters.
Theorem 1: For a given gain K and scalars 0 < δ < 1

and h > 0, model (17) is robustly stable if there exist

positive-definite matrices P, Q, X , Y ∈ Rn×n, appropriate
dimensional matrices N and G such that the LMIs

9i < 0, i = 1, 2, (18)

hold, where

9i =


9i(1, 1) 9i(1, 2) 0 9i(1, 4) N
− 9(2, 2) 0 GBiK 0
− − 9(3, 3) 0 0
− − − 9(4, 4) 9(4, 5)
− − − − 9(5, 5)

 ,
9i(1, 1) = Q+ X − Y + GAi+(GAi)

T ,

9i(1, 2) = P − G + (GAi)
T , 9i(1, 4) = Y −N T

+ GBiK,
9(2, 2) = h2Y − G − GT , 9(3, 3) = −(1− δ)X ,
9(4, 4) = −2Y +N +N T , 9(4, 5) = YT

−N T ,

9(5, 5) = −Q− Y.

Proof: Construct the following LKF candidate for
model (17)

V (t) = xT (t)Px(t)+
∫ t

t−h
xT (s)Qx(s)ds

+

∫ t

t−δh(t)
xT (s)X x(s)ds

+h
∫ 0

h

∫ t

t+θ
ẋT (s)Y ẋ(s)dsdθ, (19)

where δ is a constant satisfying 0 < δ < 1. Taking derivative
of LKF in (19), we have

V̇ (t) = 2xT (t)P ẋ(t)+ xT (t)Qx(t)− xT (t − h)Qx(t − h)
+xT (t)X x(t)− (1− δ)xT (t − δh(t))X x(t − δh(t))

+h2ẋT (t)Y ẋ(t)− h
∫ t

t−h
ẋT (s)Y ẋ(s)ds. (20)

Applying Lemmas 1 and 2 to handle the integral term
−h

∫ t
t−h ẋ

T (s)Y ẋ(s)ds, it results in

−h
∫ t

t−h
ẋT (s)Y ẋ(s)ds

= −h
∫ t−h(t)

t−h
ẋT (s)Y ẋ(s)ds− h

∫ t

t−h(t)
ẋT (s)Y ẋ(s)ds

≤ −
h

h− h(t)

(∫ t−h(t)

t−h
ẋ(s)ds

)T
Y
(∫ t−h(t)

t−h
ẋ(s)ds

)
−

h
h(t)

(∫ t

t−h(t)
ẋ(s)ds

)T
Y
(∫ t

t−h(t)
ẋ(s)ds

)
≤ −[x(t − h(t))− x(t − h)]TY[x(t − h(t))− x(t − h)]

−[x(t)− x(t − h(t))]TY[x(t)− x(t − h(t))]

−2[x(t)− x(t − h(t))]TN [x(t − h(t))− x(t − h)]

=

 x(t)
x(t − h)
x(t − h(t))

T −Y N Y −N T

− −Y Y −N
− − −2Y +N +N T


×

 x(t)
x(t − h)
x(t − h(t))

 . (21)
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On the other hand, for any matrix G with suitable dimen-
sions, we have

0 = 2[xT (t)G + ẋT (t)G]× [−ẋ(t)+ ẋ(t)]

= 2[xT (t)G + ẋT (t)G]×
[
− ẋ(t)+Aix(t)

+BiKx(t − h(t))
]

= −2xT (t)Gẋ(t)+ 2xT (t)GAix(t)

+2xT (t)GBiKx(t − h(t))− 2ẋT (t)Gẋ(t)
+2ẋT (t)GAix(t)+ 2ẋT (t)GBiKx(t − h(t)). (22)

Combining (20)–(22), we obtain

V̇ (t) ≤ 2xT (t)P ẋ(t)+ xT (t)Qx(t)− xT (t − h)Qx(t − h)
+xT (t)X x(t)− (1− δ)xT (t − δh(t))X x(t − δh(t))

+

 x(t)
x(t − h)
x(t − h(t))

T −Y N Y −N T

− −Y Y −N
− − −2Y +N +N T


×

 x(t)
x(t − h)
x(t − h(t))

+ h2ẋT (t)Y ẋ(t)− 2xT (t)Gẋ(t)

+2xT (t)GAix(t)+ 2xT (t)GBiKx(t − h(t))
−2ẋT (t)Gẋ(t)+ 2ẋT (t)GAix(t)

+2ẋT (t)GBiKx(t − h(t))

≤

2∑
i=1

θi

[
6T (t)9i6(t)

]
, (23)

where6(t) =
[
xT (t) ẋT (t) xT (t−δh(t)) xT (t−h(t)) xT (t−h)

]T
and 9i is defined in (18). Obviously, if matrix inequal-
ities 9i < 0 hold, we have V̇ (t) ≤ 0, indicating
that the closed-loop model (17) is robustly stable for all
[A(θ ) B(θ )] ∈ �. This completes the proof.
Next, the controller design criteria are introduced based

on the stability conditions described above. If the controller
is unknown, Theorem 1 is no longer an LMI-based condi-
tion due to the product of GBiK. To solve this problem,
we present the following theorem for obtaining the controller
parameters.
Theorem 2: For given scalars 0 < δ < 1 and h > 0,

model (17) is robustly stabilizable if there exist symmetric
positive-definite matrices P, Q, X , Y ∈ Rn×n, nonsingu-
lar matrix G and appropriate dimensioned matrices N and
H such that the LMIs

9 i < 0, i = 1, 2, (24)

hold, where

9 i =


9 i(1, 1) 9 i(1, 2) 0 9 i(1, 4) N
− 9(2, 2) 0 BiH 0
− − 9(3, 3) 0 0
− − − 9(4, 4) 9(4, 5)
− − − − 9(5, 5)

 ,
9 i(1, 1) = Q+ X − Y +AiG + GT A

T

i ,

9 i(1, 2) = P − G + GT A
T

i , 9 i(1, 4) = Y −N T
+ BiH,

9(2, 2) = h2Y − G − GT
, 9(3, 3) = −(1− δ)X ,

9(4, 4) = −2Y +N +N T
, 9(4, 5) = YT

−N T
,

9(5, 5) = −Q− Y.

When the condition is satisfied, the control gain matrix is
calculated by K = HG−1.

Proof: Define KG = H, G = G−1, 3 =

diag{

5 times︷ ︸︸ ︷
G, · · · ,G}, and moreover,

P = GPG, Q = GQG, X = GXG,

Y = GYG, N = GNG.

Then, pre- and post-multiplying (18) by 3 and its transpose,
respectively, we obtain the LMI (24). This completes the
proof.

V. SIMULATIONS
An example is presented to demonstrate the effectiveness
of the proposed MCC model. Consider the following linear
uncertain system:

ẋ(t) =
2∑
i=1

θi[Aix(t)+ Biu(t)], (25)

where

A1 =


−α + αε − αa α 0 0

1 −1 1 0
0 −β −ρ 0
1 0 0 0

 ,

A2 =


−α + αε − αb α 0 0

1 −1 1 0
0 −β −ρ 0
1 0 0 0

 ,
B1 = B2 =

[
1 0 0 0

]T
.

Using the parameters defined in Section II-C, we have

A1 =


4.00 10.00 0 0
1.00 −1.00 −1.00 0
0 −13.00 −0.35 0

1.00 0 0 0

 ,

A2 =


−3.00 10.00 0 0
1.00 −1.00 −1.00 0
0 −13.00 −0.35 0

1.00 0 0 0

 .
The sampled-data controller is formed as

u(t) = Kx(tk ), t ∈ [tk , tk+1).

According to LMI (24), when a = 0.3, b = 0.8, δ = 0.02
and h = 0.01, the control gain obtained via the LMI Control
Toolbox of MATLAB is

K =
[
−24.8999 −122.0342 33.8704 0.1689

]
.

With the help of the gain matrix K, the simulation
result of the closed-loop system is displayed in Figs. 8-9.
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FIGURE 8. State response of the closed-loop MCC model.

FIGURE 9. Control response of the MCC model.

It is observed from these figures that the state responses of
the system are well stabilized via the proposed sampled-data
control. This indicates that the closed-loop system (17)
is asymptotically stable under the same initial states as
x(0) = [−0.4, 0.8, 0.8, 5]T .

VI. CONCLUSION
Based on a sampled-data control method, the MCC models
with parameter uncertainties have been studied in this paper.
Initially, an uncertain MCC model is described as a linear
uncertainty system based on the function of the memristor.
The existence of a minimum execution time has been derived
for the execution of the sampled-data control signals. The
proposed scheme can be used to handle real-time applications
of MCC models. Finally, robust sampled-data stabilization
has also been achieved throughout the circuits, and the simu-
lation results confirm the corresponding benefits.

One disadvantage of the present work is the existence of
possible bifurcation plot because the considered system equa-
tion has switching nonlinearities which create multistability.
It is noted that we can see the bifurcation by visualizing the
phase space plot which is shown in Fig. 5. In the future,
we plan to extend this work by using a fractional-order plat-
form [48].
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