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ABSTRACT In compressed sensing, a small enough restricted isometry constant (RIC) of the sensing matrix
satisfying the restricted isometry property (RIP) is the powerful guarantee on the precise reconstruction of a
sparse discrete signal. Under a certain condition, the RIC can be improved by weighting the sensingmatrix so
that its all nonzero singular values become the same, i.e., the condition number of the new sensingmatrix is 1.
In this article, by multiplying the linear system ATAx = ATy by a matrix related to ATA and repeating the
process many times, we propose amethod of reweighting the sensingmatrix to improve the condition number
of sensing matrix so as to improve its RIC, prove that the condition number tends to 1 as the weighting times
approaches infinity monotonically, and then obtain an RIC improvement model equivalent to the original
CS model. For the improvement model, we use the algorithms of orthogonal matching pursuit, iterative hard
thresholding and L1/2-regularisation to recover sparse signals, and verify the superiority of the proposed
algorithms by using different existing sensing matrices for CS experiments.

INDEX TERMS Compressed sensing, restricted isometry constant, sensing matrix.

I. INTRODUCTION
Compressed sensing (CS) aims to recover a sparse discrete
signal, x, from an underdetermined sampling observed data,
y, through a basic model

Ax = y (1)

where A ∈ CM×N (M � N ), a known sensing matrix,
models the sensing progress [1]. CS has been exploited
in many practical fields such as radar imaging, cryptogra-
phy, multi-sensor signal processing, signal processing and
communication [2]–[6].

One of the key problems in CS is the design of recovery
algorithm. CSmainly includes three categories of algorithms:
optimization, greedy, and thresholding-based methods. The
existing classical algorithms include the orthogonal matching
pursuit (OMP) [7], the iterative hard thresholding (IHT) [8],
L1/2-regularization algorithm (L1/2R) [9], Lp-Minimization
algorithm [10], and the Quasi-Newton Iterative Projection
Algorithm [11].
Definition 1.1 [12]: The restricted isometry constant (RIC)

δs = δs(A) of the matrix A with restricted isometry
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property (RIP) of order s is defined to be a smallest positive
number such that

Cs(1− δs)||x||22 ≤ ||Ax||
2
2 ≤ Cs(1+ δs)||x||

2
2 (2)

for some positive number Cs and all s sparse vectors x ∈ CN .
The ability of these algorithms to recover accurately is closely
associated with δs, the smaller the δs, the more accurate the
results.

Recently, people devoted to studying the constraints on δs
of A to ensure the valid reconstruction of s sparse signals.
Song et al. [13] established the condition, δ3s < 0.4859,
to ensure the recovery of any s-sparse signals by the sub-
space pursuit method. Wang and Qu [14] presented that OMP
can recover exactly any s sparse signals under the condition
δs+1 < 1/

(√
s+ 1

)
. For the covariance-assisted match-

ing pursuit algorithm, Ge et al. [15] developed a sufficient
condition of exact support recovery of any s sparse signals,

δs+1 < 2/
(√

(
√
s+ 2)2 + 2(1−

√
s+ 1)+

√
s+ 1+ 1

)
.

Wu and Chen [10] indicated that

δ2s <
2

2
p−2

p(2− p)
2
p−1 + 2

2
p−2
−

p(2− p)
2
p−1

4p(2− p)
2
p−1 + 2

2
p
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suffices for the exact sparse recovery of Lp-minimization.
For the multiple orthogonal least squares method allowing
multiple l indices to be chosen per iteration,Wang and Li [16]
demonstrated that any s sparse signals can be successfully
recovered via this method under the condition that the sensing
matrix A has unit `2-norm columns satisfying RIP of order ls
with δls < 1/

(√
s/l + 2

)
. Li et al. [17] improved the bound

further to δls+1 < 1/
(√

s/l + 2
)
. Liu et al. [18] proven that

alternating projection method can reconstruct any s sparse
signals if δ2s +

(
1−
√
2/4

)
σ 2
m−2s+1 < 1, where σm−2s+1

is the (m− 2s+ 1) th singular value of A with rank(A) = m.
The other of the key problems in CS is the design of the

sensing matrix A. Over the years, there have been many
references on the sensingmatrices in (1). Candes and Tao [19]
proved that Gaussian random matrices satisfy the RIP with
overwhelming probability. Abolghasemi et al. [20] provided
a gradient descent method to optimize the Gaussian random
matrices in CS and the experimental results showed that the
optimized matrices can improve reconstruction quality than
before. Saligrama [21] presented a deterministic construc-
tion of Toeplitz matrices and stated its feasibility in CS.
Li et al. [22] indicated that the matrix with small coherence
cannot be with a large δs. So people usually also design a
sensing matrix by reducing the coherence value. Li et al. [23]
designed a projection matrix with the prior information of
the reconstructed sparse signal and proved that the designed
matrix can reduce local cumulative coherence so that improv-
ing the sparse signal recovery rate. Ebian et al. [24] intro-
duced a modified regular parity check matrix with a small
mutual coherence and showed the matrix has a better recon-
struction performance on the CS in cognitive radio networks
than Gaussian random matrix.

In these literatures, the sensing processes are unfixed
and determined by the designed sensing matrices. However,
sometimes the sensing process is fixed and the sensing matrix
determined by the sensing process is immutable, once the δs
of the sensing matrix is large, it is very hard to implement a
valid s sparse recovery in CS. For the fixed sensing matrix
A in (1), denote its singular value decomposition (SVD) as,

A = Ū
(
S 0
0 0

)
V̄
T
, where S = diag {σ1, σ2, · · · , σr } and

the singular values satisfy σ1 ≥ σ2 ≥ · · · ≥ σr > 0. To
improve the δs, authors [14] presented a weighted method,

in which left multiply (1) by matrix
(
S−1 0
0 I

)
Ū
T
, where

I is a unit matrix and S−1
= diag

{
1
σ1
, 1
σ2
, · · · , 1

σr

}
, and

gave two important conclusions. One conclusion is that the
smaller µsmax

µsmin
(the ratio of the maximum eigenvalues of the

Gram matrices of all the submatrices composed of s columns
of the sensing matrix to the minimum of these eigenvalues),
the smaller is the RIC. The other is that µ

s
max
µsmin

can be improved,
under the condition (6), by weighting the sensing matrix to
equalize all its singular values (i.e., the condition number
becomes 1). The weighted method of [14] had been used
for some sparse signal recoveries in CS with a fixed sensing

matrix and the results obtained by the weighted recovery
algorithms are preferable to those acquired by the direct
recovery algorithms. The weighted method requires the SVD
with a lot of numerical computations and the reciprocals of
all singular values, which will lead to large round-off errors
especially for those appropriately small singular values.

In [25], through multiplying the linear system
ATAx = ATy with the same least square solution as the
equation (1) by a matrix related to ATA and repeating the
process many times, we introduced a reweighted method of
improving the condition number and improved the recon-
structed results of band-limited signals. We also applied
elementarily the reweighted method for the recovery of the
blind multiband signals [26].

In this article, we apply the reweighted method to improve
the RIC of the sensing matrix for general CS. The reweighted
method can improve condition number of ATA [25]. By
using the reweighted method to weight the norm equation of
the original CS model (1), a new CS model (19) equivalent
to (1) is obtained. We prove that the RIC of 9n, i.e., the
new sensing matrix in (19), is improved under the assump-
tion condition of [14]. Meanwhile, we prove that the result
of improving RIC also holds after expanding the weighted
parameter from 1 < an < 2 to an > 1. Compared with
the weighted method of [14], the reweighted method only
needs the maximum eigenvalue of the sensing matrix and its
weightedmatrix has a small condition number, so it is simpler
and more stable. Besides we also establish the reweighted
OMP, IHT and L1/2R recovery algorithms respectively. We
use Gaussian random matrix, Toeplitz matrix and uniform
random matrix as the sensing matrix to carry out the CS
experiments of the general one-dimensional sparse signal
recovery respectively and verify the superiority of the pro-
posed algorithms by comparing with the direct recovery algo-
rithms and the algorithms of [14]. Besides, the reweighted
OMP recovery algorithm is also used for the CS problem of
computed tomography (CT) and gets a valid reconstruction
result.

The remaining of this article is organized as follows. In
section II, we introduce several necessary known results.
In section III, we establish a complete theoretical anal-
ysis of improving RIC for the reweighted method. In
section IV, we give several reweighted recovery algo-
rithms and implement experiments. In section V, we give a
conclusion.

II. PRELIMINARIES
In this section, we give some preliminary results.
Definition 2.1: Denote µmax and µmin are the largest sin-

gular value of A and the smallest nonzero singular value
respectively, then the condition number of A is

K(A) =
µmax

µmin
. (3)

Theorem 2.1 [14]: Suppose a matrix, A, satisfies the RIP
of order s, then the left-hand and right-hand side equalities
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in (2) can be attained, respectively, if we let

Cs =
µsmax + µ

s
min

2
, δs(A) = 1−

2
µsmax
µsmin
+ 1

. (4)

Obviously, the smaller value of µ
s
max
µsmin

, the smaller is δs(A).

Algorithm 1 OMP Algorithm
Input: observed data y, Sensing matrix A, sparsity s.
Initialization: T 0

= ∅, x0 = 0;
Iteration: Repeat until a stopping criterion is met at k = k̄
1: T k+1 = T k

⋃
{jk+1},

2: jk+1 = argmax
j∈[1,...,s]

{∣∣∣(AT (y− Axk))j∣∣∣},
3: xkC1 = argmin

z∈Cn

{
‖y− Az‖2

}
, sup(z) ⊆ T k+1.

Output: xk1

Algorithm 2 IHT Algorithm
Input: observed data y, Sensing matrix A, sparsity s.
Initialization: x0 = 0;
Iteration: Repeat until a stopping criterion is met at k = k̄
1: xkC1 = Hs

(
xk + AT

(
y− Axk

))
, where Hs(x) means

setting all but the largest (in magnitude) s elements of
x to zero.

Output: xk1

Algorithm 3 L1/2R Algorithm
Input: observed data y, Sensing matrix A, sparsity s.
Initialization: x0 = 0, λ0 = 0.5 and u = 0.09

‖A‖2 ;

Iteration: Repeat until a stopping criterion is met at k = k̄
1: xk = xk + uAT

(
y− Axk

)
,

2: λk = min
(
λk−1,

√
96
9 ‖A‖

2
∣∣[xk]s+1∣∣ 32); where [xk]s+1

is the (s+ 1)th largest component of xk in magnitude.
3: xkC1 = H

λku, 12

(
xk
)
,

4: if
∣∣xki∣∣ > 3√54

4 (λku)
2
3 then

5: H
λku, 12

(
xki
)
=

2xki
3

[
1+ cos

(
2π
3 −

2
3 arccos

(
λku
8

( ∣∣xki∣∣
3

)− 3
2
))]

;

6: else
7: H

λku, 12

(
xki
)
= 0.

8: end if
Output: xk1

Theorem 2.2 [14]: For s ≤ r , r is the rank of the sensing
matrixA. Denote the weighted sensingmatrix obtained by the

weighted method of [14] by Asvd =

(
I 0
0 0

)
V̄
T
(obviously,

the all nonzero singular values of Asvd are the same), then

µsmax(A)
µsmin(A)

>
µsmax(Asvd)
µsmin(Asvd)

(5)

if

σ1

σs
>

1
‖ωT0‖2

√
µsmax(Asvd)
µsmin(Asvd)

, (6)

where T0 = argmax|T |=s‖ωT‖2, T ⊂ {1, 2, . . . , n} with

|T | = s and ω is the first row of V̄
T
.

In the proof of Theorem 2.2, authors have proved that
µsmax(A) ≥ σ 2

1 ‖ωT0‖
2
2 and µsmin(A) ≤ σ 2

s , then
µsmax(A)
µsmin(A)

≥

σ 21 ‖ωT0‖
2
2

σ 2s
. So for a weightedmethod, if only its weighted sens-

ing matrix, Ā, satisfies
σ 21 ‖ωT0‖

2
2

σ 2s
>

µsmax(Ā)
µsmin(Ā)

, i.e., the assump-

tion (6), the inequality (5) holds and the RIC is improved.
For the original CS model (1), the frameworks of the

existing OMP, IHT and L1/2R algorithms are given in
Algorithms 1, 2 and 3 respectively. The process of L1/2R
algorithm is complex, we do not state it in detail here and
some specific calculation formulas are shown in [9].

III. THE REWEIGHTED METHOD OF IMPROVING RIC
In this section, we give a reweighted method and prove
that the RIC is improved under a certain condition. The
reweighted method is as follows,

A0 = ATA, y0 = ATy, ∗ (7a)

V−1
n = anµn−1,1 I − An−1, for an > 1, (7b)

An = V−1
n An−1, yn = V−1

n yn−1, (7c)

where an are weighted parameters and µn,1 are the largest
positive eigenvalues of An, n = 1, 2, . . .. In CS, matrix A0

is symmetric semi-positive definite, so matrices An are all
symmetric semi-positive definite for n = 1, 2, . . ..
Theorem 3.1: For n = 1, 2, . . ., K(An) are the condition

number of the matrix An, if an > 1, then

K(An) < K(An−1), (8)

and

lim
n→∞

K(An) = 1. (9)

Proof: In [25], it has been proven that (8) and (9) hold
for 1 < an < 2. Next, we will only discuss the case of an ≥ 2.
Denote {µn,k}

n1
k=1 with the algebraic multiplicity pk be the

decreasing positive eigenvalue sequence of An, and {uj,k}
n1
k=1

(j = 1, 2, · · · pk ) be the corresponding eigenvectors. Denote
0 is the eigenvalue of An with an algebraic multiplicity q,
and vj be the corresponding eigenvectors for 1 ≤ j ≤ q. Let
U = (U1,U2, · · · ,Un1 ,V ), where V = (V1,V2, · · · ,Vq)
and Uk = (u1,k,u2,k, · · · ,upk,k) for k = 1, 2, · · · n1. Then
by (7c), the matrices An−1 and An can be diagonalized into

UTAn−1U = diag
(
µn−1,1Ip1 , · · · , µn−1,n1Ipn1 ,Oq

)
and

UTAnU = diag ( (anµn−1,1 − µn−1,1)µn−1,1Ip1 , · · · ,

(anµn−1,1 − µn−1,n1 )µn−1,n1Ipn1 ,Oq ) (10)

VOLUME 9, 2021 21427



L. Shi et al.: Method of Reweighting the Sensing Matrix for CS

respectively, where Oq is the q-order null matrix. If we let

µn,k (t) = (anµn−1,1 − t)t

=
a2nµ

2
n−1,1

4
−

(
t −

anµn−1,1
2

)2
, (11)

the positive eigenvalues, µn,k , of the matrix An are
µn,k (µn−1,1), · · · , µn,k (µn−1,n1 ). For an ≥ 2, by (11),
µn,k > 0 and

µn−1,n1 < µn−1,1 <
anµn−1,1

2
.

Then by (11), we have

maxµn,k = (anun−1,1 − µn−1,1)µn−1,1 (12)

and

minµn,k = (anun−1,1 − µn−1,n1 )µn−1,n1 . (13)

So

K(An) =
maxµn,k
minµn,k

=
(anun−1,1 − µn−1,1)µn−1,1
(anun−1,1 − µn−1,n1 )µn−1,n1

=
anun−1,1 − µn−1,1
anun−1,1 − µn−1,n1

K(An−1)

< K(An−1). (14)

Thus the inequality (8) still holds for an ≥ 2.
According to the inequality (8), we know K(An) is mono-

tonically decreasing with respected to weighting times n and
greater than or equal to 1. By the monotone bounded theorem
of the number sequence, the limit of K(An) exists and we
assume

lim
n→∞

K(An) = β ≥ 1. (15)

By (14), for an ≥ 2,

K(An) =
anun−1,1 − µn−1,1
anun−1,1 − µn−1,n1

K(An−1)

=
(an − 1)K(An−1)2

anK(An−1)− 1

=
(an − 1)β2

anβ − 1
. (16)

Combining the (15) and (16), for an ≥ 2, we have

1 ≤ β =
(an − 1)β2

anβ − 1
. (17)

The (17) holds only for β = 1 and the equality holds,
otherwise if β = 1+ ε > 1, then

(an − 1)β2

anβ − 1
=

(an − 1)(1+ ε)2

an(1+ ε)− 1

<
(an − 1)(1+ ε)2

an(1+ ε)− 1− ε

=
(an − 1)(1+ ε)2

(an − 1)(1+ ε)
= 1+ ε = β, (18)

and this is contradictory with (17). So β = 1 and (9) holds
for an ≥ 2. Then the Theorem 3.1 is complete.
Let D0 = AAT and Dn = (an−1ϕn−1I − Dn−1)Dn−1,

where ϕn−1 be themaximum eigenvalue ofDn−1. By the (7c)
and the theorem of SVD, a new sensing matrix, 9n, and
the new observed data, bn, can be obtained. Obviously, 9n
satisfies 9T

n 9n = An and 9n9
T
n = Dn. Then the sensing

process (1) can be written equivalently as

9nx = bn, (19)

where 9n can be regarded as the equivalent sensing matrix,
obviously, 90 = A. We need to recover x from (19).
Theorem 3.2: For the new sensing matrices 9n in (19),

s ≤ r and n ≥ 1, if

µn−1,1

µn−1,s
>

µsmax(9n)

‖ωT0‖
2
2µ

s
min(9n)

, (20)

then

δs(9n−1) > δs(9n). (21)

Proof: For n = 1, 2, · · · , denote the SVD of 9n as

9n = Ūn

(
Sn 0
0 0

)
V̄
T
n , (22)

where Sn = diag
{
σn,1, σn,2, · · · , σn,r

}
and the positive

singular values satisfy σn,1 ≥ σn,2 ≥ · · · ≥ σn,r > 0. By
Theorem 2.2, we have

µsmax(9n−1)
µsmin(9n−1)

>
µsmax(9n)
µsmin(9n)

(23)

if

σn−1,1

σn−1,s
>

1
‖ωn−1,T0‖2

√
µsmax(9n)
µsmin(9n)

, (24)

where T0 = argmax|T |=s
{
‖ωn−1,T‖2

}
and ωn−1 is the

first row of V̄
T
n−1. By the (7c) and the theorem of SVD, we

have V̄
T
n−1 = V̄

T
n−2 = · · · = V̄

T
0 = V̄

T
and ωn−1,T0 =

ωn−2,T0 = · · · = ω0,T0 = ωT0 . In addition, σ 2
n−1,1 =

µn−1,1 and σ 2
n−1,s = µn−1,s, so (24) can be transform

into (20). Thus, under the condition (20), then (23) holds, and
then by the Theorem 2.1, δs(9n−1) > δs(9n).
Obviously, 9n and An have the same condition number,

then by Theorem 3.1, the condition number of 9n also
decreases strictly monotonically to 1 as n → +∞. Besides,
by Theorem 3.2, the RIC is improved under the condi-
tion (20). Note that the weighting times n may be increased
appropriately according to the actual recovery requirement,
but it cannot be very large to trade off between the improve-
ment of RIC and the errors generated by discretization and
accumulated with the increase of the weighting times n.
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FIGURE 1. The reconstruction results of OMP (blue), SVD-WOMP (purple) and RE-WOMP (black: the weighting
times n = 9, red: the weighting times n = 32 in left and n = 33 in middle and right). Left: Gaussian random
matrix. Middle: Toeplitz matrix. Right: uniform random matrix.

IV. EXPERIMENT
In this section, to compare the reconstruction effects
of the different recovery algorithms, we implement
the CS experiments of one-dimensional s sparse sig-
nal recovery and two-dimensional CT reconstruction in
subsection (IV-A) and (IV-B) respectively.

For the sake of illustration, the SVD-based weighted OMP,
IHT and L1/2R recovery algorithms of [14] are denoted by
SVD-WOMP, SVD-WIHT and SVD-WL1/2R respectively.
The reweighted OMP, IHT and L1/2R recovery algorithms
of this article are denoted by RE-WOMP, RE-WIHT and
RE-WL1/2R respectively. In the above frameworks, if replac-
ing the sensing matrix A by Asvd and the observed data

y by
(
S−1 0
0 I

)
Ū
T
y, the SVD-WOMP, SVD-WIHT and

SVD-WL1/2R algorithms can be obtained. If replacing the
sensing matrixA by9n and the observed data y by bn, we can
get the RE-WOMP, RE-WIHT and RE-WL1/2R algorithms.

A. ONE-DIMENSIONAL SPARSE SIGNAL RECOVERY
In the following CS experiments, we set the number of the
observed data y, M = 120, and the length of the sparse
signal x, N = 512. For the initial sensing matrix A in (1), we
choose Gaussian randommatrix, Toeplitz matrix and uniform
random matrix differently. Note that the selected uniform
random matrix may not be with a small δs. For the recovery
algorithm, we use OMP [7], IHT [8] and L1/2R algorithm [9]
to recover the one-dimensional s sparse signal. We take
sparsity s = 1, 3, 5 · · · , 65 in Fig. 1, Fig. 2 and Fig. 3.
For every sparsity s, we compute the frequency of exact
reconstruction by reconstructing repeatedly the 100 different
random s sparse signals satisfying Gaussian distribution. We

define the relative error between the original signals x and the
reconstruction results x̄ by

Relative Error :=
‖ x− x̄ ‖2
‖ x ‖2

. (25)

The frequency of exact reconstruction and the relative error
are two important indexes to evaluate the reconstruction
effect, and the results are shown in Figs. 1-3 respectively.

From Figs. 1-3, obviously, the direct reconstruction effects
of the OMP (IHT and L1/2R) are worst. For the RE-WOMP
(RE-WIHT and RE-WL1/2R) with the weighting times n =
9, its reconstruction effects be near to that of the SVD-WOMP
(SVD-WIHT and SVD-WL1/2R). Besides, the frequency
of the exact reconstruction and the relative error can be
improved significantly by the RE-WOMP (RE-WIHT and
RE-WL1/2R) with the weighting times n = 31, 32 and 33
compared to the OMP (IHT and L1/2R) and the SVD-WOMP
(SVD-WIHT and SVD-WL1/2R).

In the left and right columns of Fig. 1 with the sparsity
50 < s < 65 (the left and right columns of Fig. 2 with the
sparsity 40 < s < 45, the middle and right columns of Fig. 3
with the sparsity 45 < s < 55 and 40 < s < 50), it is almost
impossible for the OMP (IHT, L1/2R) and the SVD-WOMP
(SVD-WIHT, SVD-WL1/2R) to reconstruct efficiently an
one-dimensional s sparse signal, but it is possible for the
RE-WOMP (RE-WIHT, RE-WL1/2R).

B. APPLICATION TO CT RECONSTRUCTION
Next, we will conduct the CS experiments in CT. CT
reconstruction is to invert an image function X(u, v),
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FIGURE 2. The reconstruction results of IHT (blue), SVD-WIHT (purple) and RE-WIHT (black: the weighting
times n = 9, red: the weighting times n = 31 in left and n = 32 in middle and right). Left: Gaussian random
matrix. Middle: Toeplitz matrix. Right: uniform random matrix.

FIGURE 3. The reconstruction results of L1/2R (blue), SVD-WL1/2R (purple) and RE-WL1/2R (black: the
weighting times n = 9, red: the weighting times n = 31 in left, n = 33 in middle and n = 32 in right). Left:
Gaussian random matrix. Middle: Toeplitz matrix. Right: uniform random matrix.

supp(X) ∈ [0, 1]× [0, 1], from the Radon transform [27],

Y (p, θ) =
∫
`:p=u cos θ+v sin θ

Xd`, (26)

where p is the distance the X−ray ` from the origin, θ is the
angle between the u-axis and the normal of ` and Y (p, θ) is
the known projection data. By Partitioning [0, 1]× [0, 1] into
N = N1 × N1 square cells on an average, the continuous
image X(u, v) can be discretized approximately as X(uι, vt )

where ι, t = 1, 2, · · · ,N1. Let j = (t − 1)N1 + ι, 1 ≤ j ≤ N ,
X(uι, vt ) can be rearranged as {xj}Nj=1. Let aij be the secant
length of the ray i within the jth cell, where i = 1, · · ·M and
j = 1, · · ·N , and denote A = [aij]M×N be the projection
matrix, then the projection process of CT is

Ax = y. (27)

Since in CT, x is usually not sparse, in order to apply CS to
CT, we first calculate the sparse representation of x by using
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FIGURE 4. Reconstruction results. The first is the original image, the second is the sparse image after wavelet transform, the third
is the image reconstructed by the OMP (PSNR=20.5912db, SSIM=0.6147), the fourth is the image reconstructed by the SVD-WOMP
(PSNR=23.6668db, SSIM=0.6852), the last is the image reconstructed by the RE-WOMP with the weighting times n = 27
(PSNR=262.5134db, SSIM=1).

the following Haar wavelet with the mother wavelet8(z) and
the scaling function φ(z), where z ∈ C,

8(z) =


1 0 ≤ z < 1

2
−1 1

2 ≤ z < 1
0 else

, φ(z) =

{
1 0 ≤ z < 1
0 else

.(28)

Their translation and dilation are defined by

8
j
i(z) := 2j/28(2jz− i) and φji (z) := 2j/2φ(2jz− i)

differently, where j ≥ 1, 0 ≤ i ≤ 2j − 1.
Setting uι = 2ι−1

2N1
and vt = 2t−1

2N1
for ι, t = 1, 2, · · · ,N1,

then by per wavelet theory, xj can be decomposed into [14]

xj =
1∑
i=0

c1i φ
1
i

(
2t − 1

2N 2
1

)
+

j∑
k=1

2k−1∑
i=0

dki 8
k
i

(
2t − 1

2N 2
1

)
= ωtsT ,

where

ωt =

[
φ10

(
2t − 1

2N 2
1

)
, φ11

(
2t − 1

2N 2
1

)
,81

0

(
2t − 1

2N 2
1

)
,

×81
1

(
2t − 1

2N 2
1

)
, · · · ,8

j
0

(
2t − 1

2N 2
1

)
, · · · ,

× 8
j
2j−1

(
2t − 1

2N 2
1

)]
and sT = [c10, c

1
1, d

1
0 , d

1
1 , · · · , d

j
0, · · · , d

j
1]. LetH be discrete

Haar wavelet transform matrix and ωt be its tth row, then

x = Hx̄, (29)

where x̄ is the sparse representation of x. Thus, the sensing
process (1) can be rewritten as

AHx̄ = y. (30)

Now, AH is the sensing matrix, we reconstruct x̄ by (30), and
then get x through (29).

In the following experiments, the original image is the
Shepp-Logan phantom with the size of 64×64. We use a par-
allel beam scan projection of 20 different angles with 95 rays
per projection. Hence, the sensing matrix A is the size of
1900 × 4096. We obtain A by using the method of [28], and
then reconstruct x by the OMP, the SVD-WOMP of [14], and
the RE-WOMP of this article differently.

TABLE 1. The PSNR and SSIM of the results reconstructed by the
RE-WOMP with the weighting times n = 27.

The reconstruction results are shown in Fig. 4, where the
last reconstructed image is very close to the original image
and the third and fourth reconstructed images have very high
levels of artifacts.

In order to investigate the sensitivity of the RE-WOMP of
this article to noise, we add the White Gaussian noises of
different levels to the observed data (simulation projection
data), y, and implement reconstruction. We use the signal-
to-noise ratio (SNR) to measure the noise level in y, and the
quantitative evaluation results are given in Table. 1.

V. CONCLUSION
In this article, we have established a complete theoretical
analysis of improving RIC for the reweighted method and got
an RIC improvement CS model (19). We have also imple-
mented the CS experiments of the general one-dimensional
sparse signal recovery and the two-dimensional CT recon-
struction, and verified the superiority of our algorithms by
comparing with the direct recovery algorithms and the algo-
rithms of [14]. In some fields, such as the general imaging
problem, the application of CS is restricted from their fixed
sensing matrix with a large RIC. The reweighted method
proposed in this article can improve the RIC to ensure the
exact recovery of sparse signals, so it expands the application
field of CS.
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