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ABSTRACT Generative Adversarial Networks (GANs) are a powerful subclass of generative models. Yet,
how to effectively train them to reach Nash equilibrium is a challenge. A number of experiments have
indicated that one possible solution is to bound the function space of the discriminator. In practice, when
optimizing the standard loss function without limiting the discriminator’s output, the discriminator may
suffer from lack of convergence. To be able to reach the Nash equilibrium in a faster way during training
and obtain better generative data, we propose constrained generative adversarial networks, GAN-C, where a
constraint on the discriminator’s output is introduced. We theoretically prove that our proposed loss function
shares the sameNash equilibrium as the standard one, and our experiments onmixture of Gaussians, MNIST,
CIFAR-10, STL-10, FFHQ, and CAT datasets show that our loss function can better stabilize training and
yield even better high-quality images.

INDEX TERMS Generative adversarial networks, Nash equilibrium, Lipschitz constraint.

I. INTRODUCTION
GANs (Generative Adversarial Networks [1]) which work
with a minimax game consisting of a discriminative network
D and a generative network G, are a subclass of generative
models with implicit density, and have a variety of successful
applications such as speech synthesis [2], super-resolution
[3], [4], image inpainting [5]–[7] and image-to-image trans-
lation, etc [8]–[13]. The generator network maps a source of
noise to the data space in order to generate samples from the
real data distribution, while the discriminator one estimates
the probability of the input data being real and thus discrimi-
nates between real and fake samples.

The goal of training GANs is to find the Nash equilib-
rium in the game such that the generator is able to recover
the real data distribution exactly. When Nash equilibrium
is reached, the output of the discriminator is supposed to
converge. Typically, the training of GANs is performed by
gradient descent techniques that are not designed to findNash
equilibrium, and may fail to converge [14]. Some techniques
aim at reaching the convergence of discriminator, but most of
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them require very strong assumptions that are hard to satisfy
in practice [14]–[16].

Lipschitz-based methods indirectly restrict the output of
the discriminator, aiming to stabilize the training of GANs,
which do not significantly help the convergence of the dis-
criminator. For instance, WGAN [17] uses weight clipping to
enforce a Lipschitz constraint on the discriminator. WGAN-
GP [18] uses gradient penalty to confine the discriminator
within the space of 1-Lipschitz functions. SNGAN [19] uses
spectral normalization to make sure that the discriminator
satisfies Lipschitz constraint.

Relativistic GANs [20] has introduced the ‘‘relativistic dis-
criminator’’ to guarantee that the output of the discriminator
for real data is decreasing when optimizing the generator,
which is a key property missing from the original loss func-
tion proposed in [1]. If the output of the discriminator is not
effectively limited, optimizing the original loss function can
easily lead to gradient explosion.

Inspired by Nash equilibrium, we argue that a critical
component related to Nash equilibrium is missing to help
GANs better reach Nash equilibrium.

Accordingly, in this paper, we propose Constrained
GenerativeAdversarialNetworks, GAN-C, a unified training
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framework for GANs to reach Nash equilibrium effectively.
Our GAN-C introduces a novel loss function into the standard
GANs and works with a constraint that explicitly controls the
output of the discriminator.

Although the original loss function applied in standard
GANs and the proposed one ideally end up with the same
Nash equilibrium, the latter does show a better convergence
and score higher in our experiments. Our contributions can
be summarized as:

• We propose Constrained Generative Adversarial Net-
works, GAN-C, that introduces a constraint into the loss
function so as to closely reach to the Nash equilibrium
for training and obtaining better generative data.

• Unlike the standard GANs and many of its variants, our
proposed GAN-C explicitly controls the discriminator’s
output.

• We conduct a number of experiments to demonstrate the
effectiveness of our proposed GAN-C 1 and provide an
inspiration for future research on GANs: improving the
training of GANs from the perspective of the discrimi-
nator’s output.

The remainder of the paper is organized as: Section 2 dis-
cusses related work; Section 3 describes the proposed
method; Section 4 describes our experimental setup;
Section 5 is devoted to our experimental results; We conclude
the paper in Section 6.

II. RELATED WORK
A. LOSS FUNCTIONS FOR TRAINING GANs AND
ITS VARIANTS
Generative Adversarial Networks aim at training two net-
works, a generative network and an adversarial network,
that compete against each other. The value function for the
standard GANs [1] is defined as follows:

L(G,D) = Exr∼pdata(xr)[logD(xr)]
+Ez∼pz(z)[log(1− D(G(z)))], (1)

where pdata and pz denote the probability distribution of real
data and the input prior noise z, and xr denotes real data.
We refer to (1) as a saturating version of the standard GANs.

For a fixed generator G, the optimal discriminator D∗ in
GANs is given by:

D∗(x) =
pdata(x)

pdata(x)+ qG(x)
, (2)

where qG denotes the generator G(z)’s distribution when
z ∼ pz(z). When D is optimal, optimizing G resembles min-
imizing the Jensen-Shannon divergence between the data
and the model distribution: JSD (pdata‖qG). Meanwhile,
the Jensen-Shannon divergence between two distributions
is always non-negative and only equal to zero when two
distributions are equal, i.e. pdata(x) = qG(x).

1The source code of our GAN-C is publicly available from: https://
github.com/cxp504/Constrained_GAN

In practice, the term log (1− D(G(z))) in (1) will saturate
in the early stage of learning when the generator is poor, and
the discriminator can distinguish fake data from real data with
high confidence. To solve this, a non-saturating version of the
standard GANs [1] is given as follows:

LD(G̃,D) = Exr∼pdata(xr)[logD(xr)]
+Ez∼pz(z)[log(1− D(G(z)))], (3)

LG(G, D̃) = −Ez∼pz(z)[log(D(G(z)))]. (4)

This non-saturating loss ends up providing much stronger
gradients early in learning.

Another objective function for training GANs is hinge loss,
which is widely used in a number of the standard GANs’
variants [19], [21]–[25], and is given by:

LD = Exr∼pdata(xr)
[
min

(
0,−1+ f (xr)

)]
+Ez∼pz(z)

[
min

(
0,−1− f (G(z))

)]
, (5)

LG = −Ez∼pz(z)
[
f
(
G(z)

)]
(6)

for the discriminator D and the generator G respectively,
where D(x) = σ (f (x)) = 1

1+e−f (x)
. Optimizing hinge loss is

equivalent to minimizing the reverse Kullback-Leibler(KL)
divergence: KL(qG‖pdata).

B. NASH EQUILIBRIUM
The basic idea behind GANs is to build a game between the
discriminator and the generator for them to compete against
each other. In this game, the discriminator learns to discrim-
inate between real and fake data while the generator learns
to deceive the discriminator. The solution to this game is
calledNash equilibrium [26]. If bothmodels are given enough
capacity, the Nash equilibrium of this game is achieved when
pdata(x) = qG(x), and for all x,D∗(x) = 0.5.
However, in practice, it is often observed that GANs can

be hard to converge. In recent years, a lot of research has
been targeted at solving this problem and one of them has
indicated that if, at the point where equilibrium is achieved,
the eigenvalues of the Jacobian only falls into the negative
real-part, the training of GAN can converge locally with a
small learning rate [27], [28]. It has been proved that the
optimal solution to (1) with pdata(x) = qG(x) and D∗(x) =
0.5 is actually a unique Nash equilibrium of the game [15].
So theoretically, making sure that the discriminator converg-
ing to 0.5 is key to finding the Nash equilibrium in GANs.

III. THE PROPOSED METHOD
A. MODIFIED LOSS FUNCTION WITH CONSTRAINT
To improve the training of GANs, some researchers tend to
use loss functions based on reverse KL divergence because
models trained with this divergence would prefer to generate
samples from certain modes in the training distribution while
ignoring others. However, it may lead to poor performance
due to its asymmetry.

Ideally, when training GANs to find Nash equilibrium
by optimizing (1), D(x) will converge to 0.5. This is only
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achieved when assuming that the discriminator is always
trained to optimality during every step of alternate training
between the discriminator and generator. Let S denote the
training dataset that contains real data. In the k-th iteration,
the discriminator is optimized to:

Dk (x) =
pkdata(x)

pkdata(x)+ q
k
G(x)

.

Thenwe optimize the generator tomake the generator’s distri-
bution further approach the real data distribution. Later in the
(k + 1)-th iteration, the discriminator is further optimized to:

Dk+1(x) =
pk+1data(x)

pk+1data(x)+ q
k+1
G (x)

.

When x ∈ S, pkdata(x) is equal to pk+1data(x), and qkG(x) ≤
qk+1G (x), representing that the generator’s distribution is
approaching the real data distribution. Therefore, we have
Dk (x) ≥ Dk+1(x). Additionally, during training, the gener-
ator is learning to deceive the discriminator and as a result,
D
(
G(z)

)
will gradually increase as the generated samples

become harder to distinguish. Note that here we are referring
to the whole trend, and this may not specifically apply to
every single x or z. To conclude, as training goes on, the dis-
criminator’s output for real data will ideally decrease and on
the other side, increase for generated samples.

Unfortunately, without any stabilization factor, optimiz-
ing (1) directly may prevent the discriminator from conver-
gence and unexpectedly lead to exploding gradient problem if
the non-saturating version is used. This is because in practice,
when optimizing the generator, the discriminator’s output
for generated samples will increase but remain unchanged
for real data, while optimizing the discriminator results in
an increase in its output for real data and correspondingly
a decrease for generated samples. Moreover, the generator
performs relatively poor early in training and if the support
of the generator’s distribution and the support of the real data
distribution are disjoint, there exists a discriminator that can
perfectly distinguish between real and fake samples [17].

In this paper, it is argued that this is due to the lack of
an explicit constraint on the discriminator’s relative output
about real samples and fake samples when optimizing (1).
Given that the discriminator will converge to 0.5 when Nash
equilibrium is achieved, a constraint as follows is adopted to
explicitly help the discriminator converge:

h(G,D) = E{xr∼pdata(xr),z∼pz(z)}
[
logD(xr)

− logD
(
G(z)

)]2
≤ ε, (7)

where ε represents the biggest constant that guarantees stable
training and does not depend on the discriminator’s param-
eter. When D(xr) = D(G(z)), h(G,D) = 0 and when
|D(xr)− D(G(z))| = 1, h(G,D) = +∞. To some extent,
h(G,D) can be regarded as the degree to which the discrimi-
nator’s output diverges.

Combined with (1), the proposed objective function is
given as follows:

LnewD (G̃,D) = LD(G̃,D)− λh(G̃,D)

= Exr∼pdata(xr)
[
logD(xr)

]
+ Ez∼pz(z)

×
[
log

(
1− D(G(z))

)]
− λh(G̃,D) (8)

LnewG (G, D̃) = Exr∼pdata(xr)
[
logD(xr)

]
Ez∼pz(z)

[
log

(
1− D(G(z))

)]
, (9)

where λ ∈ R+, and h(G̃,D) restricts the discriminator’s
output to prevent it from severe divergence and causing insta-
bility in training. Algorithm 1 shows how to train GANs
with our method. Particularly, this objective becomes the
non-saturating standard loss when λ = 0. If the difference
between D(xr) and D(G(z)) becomes too large during train-
ing, maximizing LnewD (G̃,D) will cause the discriminator to
lie in the function space where h(G,D) decreases to make
sure that the training proceeds steadily.

Algorithm 1 GANWith Constraint h. We Use Default Value
of λ = 0.3
Require: The number of discriminator iterations n, the batch

size N .
1: initialize the discriminator parameters θD and initialize

the generator parameters θG.
2: for number of training iterations do
3: for n steps do
4: Sample noise data {zi}Ni=1 ∼ pz

and real data {xi}Ni=1 ∼ pdata;
5: Update the discriminator parameters:

θD← Adam
(
∇θD

1
N

∑N
i=1 L

new
D (G̃,D)

)
.

6: end for
7: Sample noise data {zi}Ni=1 ∼ pz;
8: Update the generator parameters:

θG← Adam
(
∇θG

1
N

∑N
i=1 L

new
D (G, D̃)

)
.

9: end for

In this way, we transfer the minimax optimization problem
that GANs aim to solve from the problem (i), i.e., minGmaxD
L(G,D) to the problem (ii), i.e., maxD LnewD (G,D), minG
LnewG (G,D). Obviously, we can see that pdata(x) = qG(x)
and D∗(x) = 0.5 are the optimal solution to both
problem (i) and (ii).

On the other side, as GANs are highly nonconvex in prac-
tice, there could be many local Nash Equilibria. Furthermore,
when the discriminator and generator have limited capac-
ity, optimal Nash equilibrium does not necessarily exist.
Nevertheless, our experiments still show that our method
yeilds better results with local Nash equilibria. In addition,
it should be noted that our method does not take full advan-
tage of the adversarial training when λ 6= 0. The larger λ
is, the stronger the convergence ability of the discriminator’s
output is. If λ approaches infinity, then the network will not
take the advantage of the adversarial training. λ controls the
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tradeoff between the adversarial training and the discrimina-
tor’s output. Although our method sacrifices a bit of adver-
sarial training, it makes the generator find a better generative
distribution during the training process. Our experiments in
Section V show that our method can generate better quality
data in most cases than the methods that take full advantage
of the adversarial training.

B. RELATION AND DIFFERENCE BETWEEN CONSTRAINT h
AND LIPSCHITZ CONSTRAINT
Enforcing Lipchitz constraint on the discriminator is an
important method to stabilize training and also to indirectly
restrict the discriminator’s output. Furthermore, using this
and our method simultaneously exerts a better constraint on
the discriminator’s output.

The form of K-Lipschitz continuous functions can be
defined as:

Lip =

∥∥∥f (xr)− f (xf )∥∥∥2
2∥∥∥xr − xf ∥∥∥2

2

≤ K , (10)

where xf = G(z) represents the generated sample, and K
is a constant. In practice, the input data of the discriminator
should be normalized so that ‖xr − xf ‖22 is bounded. Then
constraining

∥∥f (xr) − f (xf )
∥∥2
2 is equivalent to constrain-

ing Lip. Also, the relation between
[
logD(xr) − logD(xf )

]2
and

∥∥f (xr)− f (xf )∥∥22 is as follows:[
logD(xr)− logD

(
G(z)

)]2
=

∥∥∥ logD(xr)− logD(xf )
∥∥∥2
2

=

∥∥∥∥log ef (xr)

1+ ef (xr)
− log

ef (xf )

1+ ef (xf )

∥∥∥∥2
2

=

∥∥∥∥f (xr)− f (xf )+ log
1+ ef (xf )

1+ ef (xr)

∥∥∥∥2
2

≤

∥∥∥∥f (xr)− f (xf )+ log
(
1+

ef (xf )

1+ ef (xr)

)∥∥∥∥2
2

≤
∥∥f (xr)− f (xf )∥∥22 + ∥∥∥log (1+ ef (xf )−f (xr)

)∥∥∥2
2

≤
∥∥f (xr)− f (xf )∥∥22 + ∥∥ ∣∣f (xf )− f (xr)∣∣+ log 2

∥∥2
2

≤ 2
∥∥f (xr)− f (xf )∥∥22 + log2 2 , (11)

and [
logD(xr)− logD

(
G(z)

)]2
=

∥∥∥ logD(xr)− logD(xf )
∥∥∥2
2

=

∥∥∥∥log ef (xr)

1+ ef (xr)
− log

ef (xf )

1+ ef (xf )

∥∥∥∥2
2

=

∥∥∥∥f (xr)− f (xf )+ log
1+ ef (xf )

1+ ef (xr)

∥∥∥∥2
2

=
[
f (xr)− f (xf )

]2
+

[
log

1+ ef (xf )

1+ ef (xr)

]2
≥

∥∥∥f (xr)− f (xf )∥∥∥2
2
. (12)

Therefore, combining (10), (11), and (12) we have:

E{xr ∼ pdata(xr), xf ∼ qG(xf )}

×

[∥∥xr − xf ∥∥22 Lip] ≤ h(G,D)
≤ E{xr ∼ pdata(xr), xf ∼ qG(xf )}

×

[∥∥xr − xf ∥∥22(2Lip+ log22)
]

(13)

Obviously, if Lipschitz constraint is enforced on the dis-
criminator, the variation of D(xr) and D(xf ) will be indi-
rectly restricted and likewise, constraining h, to some extent,
restricts the function space that the discriminator lies within.
However, our proposed constraint h and Lipschitz constraint
differ slightly in terms of restricting the discriminator func-
tion. Ours allows part of the combined samples (xr, xf ) not
to satisfy (10) while Lipschitz constraint requires that (10)
is satisfied for any (xr, xf ). Despite being able to stabilize
training, Lipschitz constraint actually shrinks the function
space from which the discriminator can choose.

In theory, combining these two constraints together will
end up giving better performance, with Lipschitz constraint
playing a part in stabilizing and ours pushing the discrimina-
tor to choose those that satisfy D(x) = 0.5. In practice, after
a certain number of iterations, the networks will come to a
state of dynamic balance where follow-up updates may not
significantly boost performance and the discriminator begins
to meander in a small area of the function space. At this time,
our constraint will provide better guidance for the discrimi-
nator to choose the function that gives the best convergence,
thus preventing the discriminator from severe deviation from
Nash equilibrium. In the next section, we validate the efficacy
of our method and show that combining our constraint with
other loss functions rather than the standard one can also
improve the quality of generated samples.

C. RELATION TO RELATIVISTIC GANs
The non-saturating loss function of Relativistic standard
GANs (RGAN) is given as:

LD = −E{xr∼pdata(xr),z∼pz(z)}
×
[
log(sigmoid(f

(
xr)− f

(
G(z)

)
))
]
, (14)

LG = −E{xr∼pdata(xr),z∼pz(z)}
×
[
log(sigmoid(f

(
G(z)

)
− f

(
xr)))

]
. (15)

When optimizing the generator, RGAN guarantees that f (xr)
decreases as f (G(z)) increases, and thus helps the discrimi-
nator to converge. However, our method focuses on helping
the discriminator to converge in a more direct way while
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FIGURE 1. Comparison of generation performance over iterations between the 2-dimensional data generated
by the standard generative adversarial network, i.e., Standard GAN, and our proposed model, Constrained GAN.
The training data are the 2-dimensional mixture data from nine Gaussians, which are distributed in circles.
We did the generation experiments four times, resulting in the comparison shown in (a), (b), (c) and (d), with
the figures at the top line and the bottom line showing the 2-dimensional distributions of the generated data
from the Standard GAN and our Constrained GAN, respectively. The parameters α for the corresponding
discriminators D and the generators G are provided in the captions of the figures.

optimizing the discriminator. In the later experiments, we val-
idate that our method achieves better FID scores compared to
RGAN and is able to generate images with higher quality.

IV. EXPERIMENTAL SETUP
To demonstrate our method, we conduct several unsuper-
vised image generation experiments on mixture of 9 Gaus-
sians [29], MNIST [30], CIFAR-10 [31], STL-10 [32],
FFHQ [33], and CAT [34]. In this section, we first detail
the dataset used throughout our experiments, and then we
train GAN to generate a 2D mixture of 9 Gaussians and
MNIST images. Next, we evaluate the performance of the
network model on CIFAR-10 and STL-10 using different
loss functions, and more complex FFHQ and CAT datasets
with higher resolution. It is worth noting that our proposed
method is inspired by Nash equilibrium and is aimed at
preventing the discriminator’s output from deviating from
Nash equilibrium. From the perspective of the discriminator’s

output, our method is more reasonable. We argue that this
deviation affects the quality of generated samples and also
show through experiments that our method can improve such
deviation. Meanwhile, given that experiments done in previ-
ous research are all based on the non-saturating version of (1),
our experiments are also based on the non-saturating version
for the sake of fairness.

A. DATASETS
We use several public datasets, and the datasets are described
as follows:

• MNIST: This dataset [30] contains a training set
with 60, 000 images of digits and a test set with
10, 000 images. Each image is a 28×28 greyscale image.

• CIFAR-10: This dataset [31] contains 60, 000 32 × 32
color images in 10 classes, each of which consists of
6, 000 images. There are 50, 000 training images and
10, 000 training images.
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• STL-10: This dataset [32] is a dataset containing
13, 000 labeled images and 100, 000 unlabeled images
in 10 classes. Each is a 96 × 96 color image. In our
experiments, we choose 100000 unlabeled images as our
training set with each image scaled to a 48 × 48 color
image.

• FFHQ: This dataset [33] consists of 70, 000 in-the-wild
face images at 128×128 and 1, 024×1, 024 resolutions.
Due to computational constraints, we select the first
10, 000 images as the training set at the 128 × 128
resolution.

• CAT: This dataset [34] contains ∼ 10, 000 images with
annotations. We preprocess the dataset the same way as
what we did for RGAN, including cropping the images
to the faces of the cats and removing some inappro-
priate images. As a result, our training set contains
9,071 images and each of them is scaled to 64 × 64,
128× 128, and 256× 256, respectively.

V. EXPERIMENTAL RESULTS AND ANALYSIS
In this section, we report and analyze our experimental results
on Gaussian datasets and the image datasets.

A. GAUSSIAN DATA GENERATION
In this section, we aim at generating 2-dimensional data by
training the 2-dimensional Gaussian data (data distributed
in circles) obtained from nine 2-dimensional Gaussians, and
make the generation performance comparisons between our
proposed model, i.e., Constrained GAN, and the baseline
model, i.e., the standard GAN [29].

1) IMPLEMENTATION DETAILS
To illustrate the generation effectiveness of our proposed
method, we make the generation performance comparison
between the 2-dimensional data generated by our proposed
Constrained GAN, and those generated by the standard gen-
erative adversarial model, Standard GAN. We implement
both our model and the baseline model by fully connected
networks proposed in [29], and train both of the models by
the same data obtained from nine 2-dimensional Gaussians.
ADAM [35] optimizer is used throughout all experiments
with the momentum parameters β1 = 0.5, β2 = 0.999 and
different learning rates α [36]. In addition, the number of
iterations for updating the generator is set to 50k. For conve-
nient discussion, we refer the standard generative adversarial
network proposed in [1] as Standard GAN and the network
proposed in this paper as ConstrainedGAN.Hyper-parameter
λ is set to 0.3 unless specially noted.

2) GENERATION PERFORMANCE
The distributions of the 2-dimensional data generated by our
Constrained GAN, and the Standard GAN, over iterations
are shown in Figure 1. The figures at the top line and the
bottom in Figure 1 (a), (b), (c) and (d) show the distribu-
tions of the generated data from the Standard GAN and our
model, Constrained GAN, respectively.We have two findings
according to Figure 1: (1) Our Constrained GAN model

FIGURE 2. Convergence performance of the discriminator’s output of
(a) the Standard GAN and (b) the Constrained GAN, and samples
generated by the generators trained by different methods:
(c) the Standard GAN and (d) the Constrained GAN.

is able to generate the 2-dimensional Gaussian data dis-
tributed as shown in a circle faster than Standard GANmodel;
(2) In the figures, our Constrained GAN model is always
able to generate 2-dimensional Gaussian data with iterations
evolve, while Standard GAN fails to generate such data in
some cases such as those shown in Figure 1 (b) and (d). These
findings confirms the merits of our Constrained GAN model
that it is robust to generate data needed.

B. MNIST IMAGE GENERATION
In this section, we detail the implementation of our model and
the baselines on MNIST dataset, and report the experimental
results.

1) IMPLEMENTATION DETAILS AND RESULTS
We test on MNIST dataset using the Convolutional Neu-
ral Network architecture proposed in [37]. ADAM opti-
mizer [35] is used throughout all experiments with the
momentum parameters β1 = 0.5, β2 = 0.999 and the
learning rate α = 0.0002 [36]. In addition, the update ratio
of discriminator to generator is set to 1 : 1, and the number
of updates for the generator is set to 5 k. We conduct a com-
parative experiment between our Constrained GAN and the
standard GAN with batch norm [38] applied to the generator
and spectral normalization applied to the discriminator.

The curves of the discriminator’s output and samples
generated by the generators trained with different meth-
ods are shown in order in Figure 2. As shown in the
figure, our Constrained GAN converges faster than the
Standard GAN for the output of the corresponding discrimi-
nators, and both methods can generate high-quality samples
though.
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FIGURE 3. Inception scores and FIDs with respect to different loss functions on ResNet.

FIGURE 4. The curves of IS and FID based on ResNet with different λ (0,0.1,0.2,0.3,0.5).

C. CIFAR-10 AND STL-10 IMAGE GENERATION
In this section, we detail the evaluation metrics used to
evaluate the performance of our model and the baselines on
CIFAR-10 and STL-10 datasets, the implementation, and the
comparison analysis.

1) EVALUATION METRICS
In our experiments, two metrics: Inception Score (IS) [14]
and Fréchet inception distance (FID) [16], are adopted
to serve as quantitative measures. Inception Score (IS) is
defined as:

I ({xi}Ni=1) := exp(E
[
DKL[p(y|x) ‖ p(y)]

]
),

where p(y) is approximated by 1
N

∑N
i=1 p(y|xi) and p(y|x)

is estimated by a pretrained Inception Net [40]. The Incep-
tion score computes the KL divergence between distributions
p(y|x) and p(y). Higher IS means better generative quality.
Fréchet inception distance (FID) uses the 2nd order infor-
mation of the final layer of the inception model applied
to the examples. Initially, Fréchet distance (FD) [41] is
2-Wasserstein distance between two Gaussian distribution p1
and p2:

FD := ‖µp1 − µp2‖
2
2 + tr(

∑
p1 +

∑
p2 −2(

∑
p1

∑
p2 )

1/2),

where {µp1 ,
∑

p1}, {µp2 ,
∑

p2} denotes the mean and covari-
ance of p1 and p2 respectively. So FID between two image
distribution p1 and p2 is the FD between fincept (p1) and
fincept (p2), i.e. the distribution after the inception net transfor-
mation. Lower FID means better generative quality as well as
diversity.

2) IMPLEMENTATION DETAILS
To further validate the efficacy of our method, the com-
pared experiment are conducted on CIFAR-10 and STL-10.
All experiments are based on Chainer framework and built
with either CNN architecture or ResNet architecture as
described in [19]. As for optimizer, ADAM [35] is used
for all experiments but the setting of hyper-parameter dif-
fers with different objective functions. For (1) or our novel
standard loss, the hyper-parameters are set as follows: α =
0.0002, β1 = 0.5, β2 = 0.999 [36]. For hinge loss, we have
α = 0.0002, β1 = 0., β2 = 0.9 [19] on ResNet. The update
ratio of discriminator to generator is set to 1 : 1 if CNN is
used and 5 : 1 if ResNet is used. Also, spectral normalization
is applied to the discriminator to stabilize training. At every
1000 iterations, 5000 samples generated by the generator will
be used for evaluation. Table 1 shows the results with the
number of iterations at 100k and all experiments are repeated
10 times with random initialization on CIFAR-10. We use
the same ResNet architecture as described in [19]. Table 2
shows the results with the number of iterations at 300 k and all
experiments are repeated 3 times with random initialization.
Note that in the table, GAN represents optimizing (3)(4),
GAN-Hinge represents optimizing (5)(6), GAN-C represents
optimizing our proposed loss function and GAN-C-Hinge
represents optimizing (5)(6) with our proposed constraint.

3) RESULTS ON CIFAR-10 AND STL-10
In Table 1, we can see that, compared to other methods,
our GAN-C performs better with ResNet on CIFAR-10.
We also increase the number of iterations to 300 k and as
the results shown in Table 2, we can see that compared with
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TABLE 1. Inception scores on CIFAR-10 using different methods without
label conditioning(UNSUPERVISED) and with label
conditioning(SUPERVISED).

TABLE 2. Inception scores and FIDs on CIFAR-10 and STL-10 at 300k
iterations using different loss functions without label conditioning.

GAN, GAN-C achieves better scores on datasets. GAN-C-
Hinge does not seem to overperform GAN-Hinge when using
CNN. One possible reason is that the network architecture
is not complicated enough to have sufficient capacity given
that our proposed method does perform obviously better than
any others when using ResNet. This also indicates that given
sufficient capacity, optimizing our proposed loss function
will score higher. In fact, even at 200Kth iteration, ourmethod
has already shown a great advantage over the others on
ResNet. Meanwhile, it is also shown that our method boosts
the performance of hinge loss and yeilds samples with high-
quality.

4) COMPARISON
We also record the Inception scores and FIDs of different loss
functions based on ResNet (see Figure 3). We can see that
the scores of GAN and GAN-Hinge tend to plateau around
20K-th iterations, while GAN-C keeps improving even after-
ward. Moreover, to study the influence of the hyperparameter
λ to the quality of the generated samples, we also show
the curves of Inception scores and FIDs with different λ on
ResNet. As shown in Figure 4, our method is robust with
respect to the change of λ. In Figure 5, we plot the curves
of the discriminator’s output based on ResNet, from which
we can see that the constraint we adopt actually affects the
discriminator’s output. When the output plateaus and the
network cannot find the Nash equilibrium, GAN-C can find

FIGURE 5. The discriminator’s output based on ResNet.

FIGURE 6. The discriminator’s output based on different datasets.

a better generation distribution to generate higher quality
images.

D. FFHQ AND CAT IMAGE GENERATION
In this section, we validate the efficacy of our method on
FFHQ and CAT. These two datasets are more complex and
higher resolution datasets, bringing more challenges to the
generation of images.

1) IMPLEMENTATION DETAILS
We train with different loss functions on CAT with different
resolutions and FFHQ. All experiments are conducted on
Tensorflow framework and use the DCGAN [36] architec-
ture. ForWGAN-GP [18], the settings of its hyper-parameters
are as: α = 0.0001, β1 = 0., β2 = 0.9, n = 5. For
RGAN, the settings of its hyper-parameters are as: α =
0.0002, β1 = 0.5, β2 = 0.999, n = 1. Also, we use batch
norm [38] in both the corresponding discriminator and the
generator. For Hinge, GAN, and GAN-C (Ours), we set α =
0.0002, β1 = 0.5, β2 = 0.999, n = 1 and use spectral norm
in the discriminator and batch norm in the generator.

We randomly select 8,000 real images from the training
set and 4,000 samples generated by the generator for FID
evaluation on 64 × 64 and 128 × 128. Moreover, due to the
computational resource limit, we randomly select 2,000 real
images from the training set and 2,000 samples generated
by the generator in 256 × 256 resolution. Table 3 shows
the results with the number of iterations at 50k. Table 4
shows the results with the number of iterations at 25k and all
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FIGURE 7. 128× 128 cats with different methods: (a) with WGAN-GP;
(b) with Hinge; (c) with RGAN; (d) with GAN; and (e) with GAN-C.

TABLE 3. Minimum (MIN), Mean, and standard deviation (SD) of the FID
on FFHQ using different methods. Lower FID indicates better generative
quality. GAN-C(BN) denotes the GAN model using batch norm in the
discriminator and the generator.

experiments are repeated 3 times with random initialization.
Note that in the table, a missing number indicates the method
do not converge in our experiments.

2) RESULTS ON FFHQ AND CAT
From Table 3, we can see that our method obtain low-
est mean value and standard deviation of FID on FFHQ,
which demonstrates that our method can generate more sta-
ble images. From Table 4, we can see that our GAN-C
outperforms all other methods on CAT, achieving the low-
est FID scores. Compared to both RGAN and Hinge, our
method shows significant improvements, indicating that the
constraint we introduce does help improve generative quality

FIGURE 8. 256× 256 cats with different methods: (a) with WGAN-GP;
(b) with Hinge; (c) with RGAN; (d) with GAN; and (e) with GAN-C.

TABLE 4. Minimum (min), mean, and standard deviation (SD) of the FID
on CAT using different methods. Lower FID indicates better generative
quality. GAN-C(BN) denotes the GAN model using batch norm in the
discriminator and the generator.

TABLE 5. The FID performance on the CAT dataset using the different
settings and batch norms in the discriminators and the generators.
Setting A: α = 0.0001 β1 = 0.5, β2 = 0.999 on 128× 128 [42]. Setting B:
α = 0.0001 β1 = 0.5, β2 = 0.9 on 128× 128 [18]. Setting C: α = 0.0002
β1 = 0.5, β2 = 0.9 on 128× 128. Setting D: α = 0.0001
β1 = 0.5, β2 = 0.999 on 256× 256.

on 64× 64 and 128×128. In 256×256 resolution, bothHinge
and GAN-C have close mean of FID, but GAN-C actually
achieves lower minimum FID. In Table 5, we change the
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experimental settings, i.e., using different hyper-parameters
and batch norms in discriminators and the generators, and
make the FID performance comparisons. We observe that
WGAN-GP has higher FID scores than our method. Also,
GAN-C performs better than GAN and RGAN. The FID
score of GAN-C is close to that of Hinge, albeit sightly worse
with setting B. In addition to this, our method has the lowest
FID scores. Overall, these results show that our method has
lower FID scores with most settings than the methods that
take full advantage of the adversarial training.

In Figure 6, we plot the curves of the discriminator’s output
on FFHQ and CAT, from which we can see that our method
have the potential to help the discriminator converge slightly.
Figure 7 and 8 show the samples generated by different
methods on CAT.

VI. CONCLUSION
In this paper, we study the problem of closely and effectively
reaching the Nash equilibrium during the training for the
standard generative adversarial networks and their variants.
To tackle this problem, we propose Constrained Generative
Adversarial Networks, GAN-C, that introduces a constraint
into the loss function. Our GAN-C is able to explicitly con-
trol the discriminator’s output and obtain better generative
data after training. In our experiments, we demonstrate that
optimizing either our improved loss or the standard one will
ideally give us the same solution while our proposed loss
can help to stabilize the training process and obtain better
generative data. Also, we validate the efficiency and potential
of our method through experiments, and the experimental
results show that ourmethod performs better than the baseline
models. As to future work, the constraint proposed in this
paper may be of great value to investigate better mathe-
matical expressions and other constraints may be proposed
for training the standard generative adversarial networks and
their variants. Moreover, the proposed method can take full
advantage of the adversarial training on the premise that the
generator can still generate high-quality data.
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