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ABSTRACT Accelerometer of the Microelectromechanical systems (MEMS) based inertial measurement
units (IMUs) is key to inclination measurement in the industry 4.0. However, external vibration negatively
impacts the precision of orientation angles during operation. Many inclinometer companies have demanded
to develop a solution for vibration impact on accelerometer without other sensors’ support because of
economic problems. This article presents a new algorithm Orientation Axes Crossover Processing (OACP)
on vibration optimization for MEMS accelerometer without sensor fusion. The proposed filter works on
a principle based on the characteristics of vibration impact on whether the X-axis or Y-axis to optimally
minimize the noise. A high accurate setup is built-up based on the Pan-Tilt Unit and a TUMAC vibrator
for the verification of new filters, implemented into LSM9DS1 (3D accelerometer, 3D gyroscope). The new
filter is able to work independently, and also fuse with the Low-pass filter or Kalman filter to enhance the
dynamic response, only 0.163 seconds as maximum delay during vibration. The experimental results show
that the proposed algorithm always accomplishes smaller variations than Low-pass filter, about 0.2 degrees
in standard deviation. The compromise between vibration immunity and dynamic response is analyzed in
detail to demonstrate the optimal performances of the concerned filters. The project was carried out at the
‘Sensor System’ in Italy which is an industrial company in the inclinometer field.

INDEX TERMS MEMS, IMUs, accelerometer, gyroscope, low-pass filter, Kalman filter, sensor fusion.

I. INTRODUCTION
Microelectromechanical system (MEMS) accelerometer is a
highly advanced technology for measuring linear accelera-
tion, vibration, especially orientation angles [1]–[7] . This
sensor type has become an indispensable factor in the industry
4.0 as an inclinometer for Rotary Drilling Rig, robotic and
other vehicles [8]–[11].

In reality, the vehicle and machine operation, especially
in heavy industry, produce vibration noise, which affects
the acceleration measurement data of the Inertial Measure-
ment Unit (IMU) sensor [12]–[14]. The vibration [15] causes
considerable variations in the inclinational data that mislead
the whole system’s performance. The accelerometer calibra-
tion [9], [11], [16]–[18] corrects the acceleration to its proper
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value under normal condition, but these calibration methods
cannot solve the vibration issue.

Kalman filter [19], [20], is the popular method that
removes the noise of MEMS by the sensor fusion between
accelerometer, gyroscope, and magnetometer [21]–[23]. The
magnetometer is usually not required for the inclinometer
because the magnetic data is used for heading estimation.
Meanwhile, acceleration and angular rates are necessary
for the tilt calculation [24]. Practically, many inclinome-
ter companies have been demanding an effective filter for
only accelerometer without the support from other sensors
because of economic concern when numerous inclinometers
are in production. The Low-pass (LP) filter is a solution for
the vibration immunity [25], [26], which can work on the
accelerometer independently. The LP filter removes high-
frequency noise based on the adjustable coefficient. The main
problem of this filter is the difficulty of balance between the
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dynamic response and vibration elimination. The LP coeffi-
cient may be selected to linearize the vibration noise abso-
lutely, but its dynamic response is decreased considerably.

In industry, the inclination sensor measures two param-
eters: rotation around the front to-back X-axis, called roll,
rotation around the side-to-side Y-axis, called pitch [28]. This
article presents a filter with a new algorithmOrientation Axes
Crossover Processing (OACP) which works on the vibration
impact’s characteristics, whether X-axis or Y-axis. If vibra-
tion mainly occurs on X-axis, the roll will suffer considerable
variation while pitch gets small change. Therefore, the OACP
filter sets up a suitable threshold based on two consecutive
samples of Y-axis acceleration (Yacc) to whether the X-axis
acceleration (Xacc) is used for roll calculation or not and vice
versa for pitch evaluation. The ‘‘Axes Crossover’’ principle
is processed by using a threshold of acceleration variation on
the X-axis (1Xacc) to optimize the Y angle and threshold of
acceleration variation on the Y-axis (1Yacc) to optimize X
angle. This threshold is updated practically, based on vibra-
tion characteristics.

The OACP filter is able to fuse with other filters such as
the LP filter and the Kalman filter:

• The filter fusion is the combination of LP filter and
OACP filters

• Kalman_acc filter is named for the implementation of
the OACP technique into the Kalman filter. This method
requires only the accelerometer to enhance its dynamic
response without gyroscope support.

On the other hand, the vibrations impact are taken into
account for both static and dynamic cases. The static case is
analyzed when the sensor on the Earth frame; no dynamic
motion is applied. The dynamic test shows how each kind of
filter handles the fluctuation of the external noise during the
motion and how fast they achieve a stable result when the
dynamic motion ends.

The paper is organized as follows: Initially, it is about the
introduction to the inclination formula, then a brief descrip-
tion of the traditional filters: LP filter and Kalman filter
(sensor fusion between accelerometer and gyroscope). The
next part focuses on the OACP filter with the update algo-
rithm then the combination between multiple filters. Finally,
experimental results and signal characterization with the con-
clusion will be shown at the end of the paper.

A. INCLINATION MEASUREMENT
To measure roll and pitch, various formulas have been
applied [29], [30]. In this work, 2 fundamental formulas are
used for oriental inclination. Both of 2 angles process in the
range of [−90◦ − 90◦].
The Xacc is proportional to the sine of the angle of incli-

nation (Roll). The Yacc is corresponding to the cosine of the
angle of inclination (Pitch). Roll and pitch under vibration
are characterized, based on the acceleration of the X-axis
and Y-axis respectively as shown relationship in Eq. (1)
and Eq. (2). Fig. 1 illustrates the relative curve between

FIGURE 1. Acceleration vs angle.

FIGURE 2. Chart of LP filter.

acceleration and corresponding angle on X-axis and Y-axis.

Roll = arcsin(Xacc) (1)

Pitch = arccosin(Yacc)− 90 (2)

II. TRADITIONAL FILTERS
In this part, the LP filter and Kalman filter, 2 most popular
filters are introduced for noise reduction. Their functions are
described clearly by the mathematical models.

A. LP FILTER
This filter is a useful tool to remove high-frequency noise
by allowing only low-frequency signals to pass through,
as demonstrated in Fig.2. In this system, a simple but effective
LP filter is designed based on the below algorithm.

yt = (α) ∗ (yt−1)+ (1− α) ∗ (yt ) (3)

where: α is the filter coefficient; yt and yt−1 are output
acceleration at the current sample and the previous sample
respectively

The filter coefficient can be evaluated based on the time
period (τ ) of the desired cut-off frequency (fcut) and loop
time (dt) of the accelerometer output data rate

τ =
1
fcut

(4)

α =
τ

τ + dt
(5)

where the acquisition value from accelerometer are Xacc and
Yacc as the inputs of the LP filter and X and Y defined as
outputs acceleration.

B. KALMAN FILTER
The Kalman filter fuses the input data by combing uncer-
tain measurement and uncertain control system models [31].
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FIGURE 3. Kalman operating principle.

Usually, the procedure is carried out by a series of measures
over time from the accelerometer and gyroscope to mini-
mize the noise of the inclination signal. The prediction and
update are two main processes to work in a Kalman filter like
described in Fig.3. Thanks to the OACP filter, the Kalman
algorithm can be applied to an accelerometer independently
with potent function. Here, a traditional but active Kalman
filter is described briefly based on the current and previous
states.

xt+1 = F .xt + Bt .µt + ωt (6)

zt+1 = H .xt+1 + νt+1 (7)

where xt , xt+1 represent the system state vectors at time t and
t + 1 respectively; µt is the input vector at time t , zt+1 is the
observation (or measurement) at time t + 1.
F is the state transition model which relates the current

states to the next states
• Bt is the control input model which is applied to the
control vector µt

• H is the observation model which maps the true state
space into the observed space

• ωt is the state noise, which is attained by covariance
matrix Q[k] where ω ' N (0,Q)

Q[k] =
(
Qacc −1
0 Qbias

)
(8)

This matrix is composed of the estimated state from the
accelerometer variance Qacc and the variance of bias Qbias
multiplied by the time interval 1T .
• Like wt , with R is the variance of the measurements, µt
is the noise measurement µt ' N (0,R).

• For the traditional method, the orientation angles are
calculated from the LP filter data, then fuse with the
angular rate (ωx , ωy) as in Fig.4

• For the case of combination between Kalman and OACP
filter, the OACP data, is directly fused with the inclina-
tion data from the LP filter, as Fig.5, This fusion tech-
nique generates Kalman outputs (Roll_Kalman_acc and
Pitch_Kalman_acc), which require only accelerations as
inputs.

FIGURE 4. Chart of Kalman filter (sensor fusion).

FIGURE 5. Chart of Kalman_acc filter.

III. OACP FILTER
A. OPERATING PRINCIPLE
Practically, the vibration can strongly influence on X-axis
or Y-axis for a specified time. The OACP filter works on the
difference between absolute values of 2 consecutive acceler-
ation samples of each axis 1X , 1Y .

1X = abs(|Xn| − |Xn−1|) (9)

1Y = abs(|Yn| − |Yn−1|) (10)

where n is the index of the current sample; X and Y are
the filtered acceleration from the LP filter. Not only during
vibration but also the dynamic inclination of the X-axis (roll),
1Y has a small variation in mg while 1X has significant
value. Similarly, when vibration occurs on Y-axis or while
pitch rotates,1X has a slight variation, in contrast to the high
value of 1Y .
According to orientation formula in Eq. (1) and Eq. (2),

roll measurement requires good immunity to vibration on the
X-axis for the Xacc. Pitch measurement needs high vibration
immunity for Yacc. A threshold is set as the boundary for
vibration and the axis position of inclination. The OACPfilter
works on the threshold of the axis, which has the lowest vari-
ation value in each vibration case. This function is straight-
forward and highly effective for vibration characteristics.1X
threshold,1Y threshold are selected with narrow but suitable
value.

As illustrated in Fig.6 :
• If the vibration on X-axis and motion occur on the roll,
1Y get the least variation

⇒ OACP filter has the primary role in optimizing the vibra-
tion impact on roll (a strong variety on Xacc) by using 1Y
threshold condition.
• If the vibration on X-axis and motion occur on the roll,
1X get the lowest variation.
⇒ OACP filter has the main role in optimizing the vibra-

tion impact on the pitch (a strong change on Yacc), by using
1X threshold condition.
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FIGURE 6. OACP filter diagram.

• The OACP principle :
Once the energetic vibration occurs on the sensor, both X-axis
and Y-axis suffer the variation. However, the amplitude of
variation is the difference between 1X and 1Y , depends
on whether vibration mainly impacts right-left (X-axis)
or forward-backward (Y-axis).

Vibration mainly befalls on Y-axis:
⇒ Pitch needs to be filtered adequately.
⇒ 1X varies less than 1Y and has a better stability.
⇒ The threshold on X-axis is selected because now, 1Y

has a significant variation⇒ 1Y threshold must be big
and more difficult to collect.

⇒ Since vibrations cause 1X to vary under 1X threshold,
no noise calculation can be accumulated in pitch.

In that way, the same principle is carried out when vibration
onX-axis.1X threshold is collected to prevent noise from the
roll

If 1X < 1X threshold⇒ pitch calculation
If 1Y < 1Y threshold⇒ roll calculation

B. THRESHOLD UPDATE
To be practical, the threshold must be updated which depends
on the vibration characteristic. After numerous tests, the start-
ing threshold is supposed to be 1mg. This value is suitable
since the crossing threshold is chosen, based on the axis
variation when the vibration does not occur directly like
a detailed analysis in the previous part. Here, 1acc is the
absolute variation value between 2 acceleration samples.1th
is the threshold value of 1acc.
During mechanical operation, vibrations happen fast with

high frequency. Two counters set up:
• Counter_up: When stronger vibration causes a more
significant value of 1acc, so 1th increases.

TABLE 1. Threshold update model.

• Counter_down:When weaker vibrations cause less vari-
ation on acceleration, so the threshold decreases.

An update resolution is an input for the model. The 1th
changes by adding or subtracting this value.More significant-
resolution faster updates but it can exceed the proper value.
In contrast, a smaller resolution will update slower but more
precise. This working concept is based on gradient descent
principle [32]. According to the theory of Nyquist frequency,
the input frequency should be less than half of the sampling
rate of the concerned signal. If 1acc of multiple vibrations
continuously differ from 1th, it means that this 1th must be
adjusted to follow the current situation of vibration. The 1th
is updated when vibrations cause 1acc different to 1th with
frequency more than Output Data Rate (ODR)/3 for a second.
The updated model is described as Tab. 1, with an update
resolution is 0.2 mg.

At this point, the threshold is updated in real-time
and enhances the precision of the OACP for inclination
measurement.

C. FUSION FILTER
Like the Kalman_acc filter, the Fusion filter combines
2 filters: OACP filter and LP filter. The inclination measure-
ment from the acceleration of the LP filter contains the fast-
dynamic response, which is fused with the high vibration
immunity data from the OACP filter as an improved version
of the OACP algorithm in Fig.16

Roll_fusion= β×Roll_OACP+(1− β)×Roll_LP (11)

Pitch_fusion= β×Pitch_OACP+(1− β)×Pitch_LP (12)

IV. EXPERIMENTAL SETUP
The involved sensors in experimental data are the
LSM9DS1 from STMicroelectronics. This device is a
system-in-package featuring a tri-axial digital linear accelera-
tion sensor, gyroscope and magnetometer [33]. In the experi-
ment, the accelerometer scale is± 2g and the gyroscope range
is 245 degrees per second. The magnetometer is not included
in this project.

The implementation of the algorithms was made on an
ARM Cortex-M4 based microcontroller STM32F401RE by
STMicroelectronics [34], [35]. The MCU is assembled on
its development board ST NUCLEO-F401RE [36], [37] for
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FIGURE 7. Fusion filter diagram.

easy accessibility to all the required connections. The sensor
is mounted on the STEVAL-MKI159V1 adapter board [38]
then it is connected to the MCU development via an Inter-
Integrated Circuit (I2C) communication line.

A Pan-Tilt Uni Controller (PTU-C46) [39] with resolu-
tion 0.51◦ per position, provides fast and accurate position-
ing of cameras that is manipulated to verify the algorithm
performance. The LSM9DS1 is assembled on PTU-C for
tracking this device orientation. A TUMAC’s Vibrator [40]
is used to generate the vibration with a frequency of 50Hz
(3000 cycles per minute). All the acquisition data are sent to
the host computer for signal analysis via USB cable from the
nucleo-board.

The experiment contains the list of components, as demon-
strated in Fig. 8

1) NUCLEO-F401RE Board
2) LSM9DS1 Sensor mounted on a Printed Circuit Board
3) Vibrator
4) AC/DC Power Supply
5) RS232 cable
6) PTU-C Controller
7) PTU-C46 Pan Tilt Unit
8) Heavy clamps

V. EXPERIMENTAL ANALYSIS
To achieve a stable transferring signal between the sensor
and the computer, the ODR of accelerometer and gyroscope
were set to 119Hz. The gyroscope data were only used in the
traditional Kalman filter.

After multiple tests, the best value of adjustable parame-
ters for each algorithm were chosen to obtain the optimized
performances as follows:
• LP coefficient: α = 0.9
• Kalman uncertainties: Q = 0.1,R = 0.0006
• Fusion Filter coefficient: β = 0.2
• Starting threshold:1X threshold =1Y threshold = 1mg
The LP filter coefficient was chosen to remove the noise

effectively but still guarantees the dynamic response, also
with the concern of Nyquist theory.

The Kalman uncertainties were considered, based on the
sensor datasheet.

FIGURE 8. Fusion filter diagram.

TABLE 2. Reported data: before and after LP filter.

The Fusion Filter coefficient should be in a compromise
between the OACP filter and LP filter. Higher β leads the
signal more like the OACP output (better in noise removal).
Smaller β provides more characteristics of LP filter for the
signal ( faster dynamic response). With β = 0.2, the signal
removes the noise effectively with a better dynamic response.

The starting threshold is significant enough based on
the OACP working principle. Moreover, this value can be
updated automatically during operation.

A. LP FILTER VERIFICATION
To guarantee the efficiency of the LP filter, a quick exper-
iment is carried out. The sensor is horizontally placed on
the vibrator for 1 minute, and then the result is reported in
Tab. 2 to verify the performance of the LP filter. As shown
in Fig 9 the LP filter significantly reduces noise from raw
measurement that confirms the success of LP filter design in
noise removal.

• No filter vs LP filter

The maximum spike decreases from more than 10◦ to less
than 1.8◦ for both roll and pitch. Mean and standard deviation
(std) values are minimized noticeably.
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FIGURE 9. Noise deduction by LP filter.

FIGURE 10. LP and OACP on slope of 30◦.

B. INCLINATION TEST
A robust setup was set up as shown in Fig. 8. Different from
the previous test, the sensor is mounted on the PTU-C con-
troller, so the vibration is more robust due to the interaction
between the vibrator and mechanical parts of the device.
All the algorithms are processed based on this system to see
the difference in each filter To analyze the behavior of the
OACP filter on inclination, roll, and pitch were controlled
to tilt alternately at 15◦, 30◦, and 45◦ for 30 s. This test
characterized how the LP filter change after OACP optimiza-
tion on inclination. Fig. 10 shows the signal of the LP filter
before and after the OACP process on a slope of 30◦. The
LP performance is improved thanks to the optimization of
the OACP technique significantly. The spikes are restrained
clearly, and the acquired signal becomesmore stable with less
variation.

As reported in Tab. 3, vibration conducts in roll more
seriously than pitch so roll data suffers considerable variation.
On the other hand, the OACP adapts well with various incli-
nations where the spikes as well as vibrated behavior, always
minor apparently. Besides, themean value of oriental position
is maintained closer to the reference by the OACP technique.

C. FILTER COMPARISON
• For the static test, the sensor is kept on the Earth frame,
which does not incline for 60 seconds to observe how
the vibration impact on each filter.

TABLE 3. Vibration impact on the inclinations.

FIGURE 11. LP filter and OACP filter on earth frame.

• For the dynamic test, the pitch is rotated from 10◦ to
60◦ then the roll is rotated from −10◦ to 30◦ about ten
cycles for each test. There are short periods of static
position between peak to peak and cycle to cycle. A large
quantity of data is acquired. The characteristics of the
filter behavior are inspected via the way each algorithm
reacts to vibration and also time response to dynamic
motion

1) STATIC TEST
• LP filter vs. OACP filter

Like the previous test, the OACP filter is applied to the
LP filter to observe the optimization of the proposed method.
As shown in Fig.11, the OACP filter restrains the strange
spikes of inclination measurement. This improvement is
advantageous to keep the right result from sudden change
caused by vibration.

• OACP vs. Fusion filter characteristic

In this part, the processing behaviors of the OACP filter
and Fusion filter are analyzed to observe the pros and cons
of each type of filter. The acquisition value of the Fusion
filter varies back and forth more closely to 0 than the OACP
filter, as shown in Fig.12 and Fig.13. The OACP filter is
less vulnerable to the vibratory influence. However, once
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FIGURE 12. Fusion filter and OACP filter on earth frame.

FIGURE 13. Behavior of fusion filter and OACP filter.

TABLE 4. The vibration impact on filters (degree).

it is affected, the signal remains at the fluctuated value for
longer than what happened with the fusion filter. Therefore,
the mean value of the OACP filter is higher than the Fusion
filter, as reported in Tab. 4.
• Filter fusion vs. Kalman filter vs. Kalman_acc filter
The Fusion filter behaves quite similarly to the Kalman

filter. Meanwhile, the Kalman filter and Kalman_acc filter
are nearly the same with a minimal variation, like Fig.14 and
Fig.15.

Tab. 4 reports data of all algorithms during vibration impact
for 60 s. The LP filter has an enormous variation caused by
vibration. The OACP filter and Fusion filter achieve the best
performance in the term of vibration immunity. Meanwhile,
2 Kalman filters are competitive with each other, with a slight
difference only.

2) DYNAMIC TEST
In the dynamic experiment, the dynamic behavior and time
response of each filter is evaluated appropriately. Each time,

FIGURE 14. Pitch of filter fusion vs. Kalman filter vs. Kalman_acc filter on
earth frame.

FIGURE 15. Roll of filter fusion vs. Kalman filter vs. Kalman_acc filter on
earth frame.

the PTU-C finishes its motion, it rests at a static position for
a short time to observe the inclination.
• Pitch dynamic rotation
Here, the LP filter is red line, OACP filter is blue line, and

Fusion filter is green line.
LP, OACP, and Fusion filter - as seen in the dynamic behav-

ior of pitch in Fig.16 and Fig.17, the OACP filter reaches the
static value by step movement. Unlike LP and Fusion filter,
the OACP filter has the trend to calculate the value directly
when the sensor ends its rotation. Although the OACP filter
has more stable at static situation, sometimes it gets a small
delay compared with the LP filter. This feature is improved
in the Fusion filter with better dynamic behavior with the
combination of the noise removal of the OACP filter and the
fast-dynamic response of the LP filter.
• Roll dynamic rotation
The roll is controlled to rotate from −10◦ to 30◦. As men-

tioned above, the OACP filter can generate delays occa-
sionally. However, it is more stable for the static parameter,
as shown in Fig.18. The Fusion filter does not have strange
spikes like the LP filter and accomplishes the last value nearly
at the same time with the LP filter.

LP filter and 2 Kalman filters - as shown in Fig.19 and
Fig.20, the behavior of the Kalman filter and Kalman_acc
filter are close to each other. They have a good dynamic
response and make the signal smoother, with respect to the
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FIGURE 16. LP, OACP, fusion filter dynamic motion.

FIGURE 17. Pitch of LP, OACP and fusion filter behavior.

FIGURE 18. Roll of LP, OACC and fusion filter behavior.

LP filter. Related to the static parameters, the Kalman fil-
ters remove the noise effectively for both dynamic cases
of roll and pitch. Despite the corresponding performance,

FIGURE 19. Pitch of LP and 2 Kalman filters behavior.

FIGURE 20. Roll of LP and 2 Kalman filters behavior.

a significant advantage of Kalman_acc filter is the processing
operation with the absence of gyroscope.
• Pitch dynamic rotation

• Roll dynamic rotation

3) DYNAMIC TIME RESPONSE
Practically, the user wants to receive the inclination measure-
ment as fast as possible when the sensor is stopped its motion.
Therefore, two important parameters should be considered:
• Time_rise: from the starting time of motion from low to
high until staying at a maximum stable value.

• Time_down: from the starting time of motion from high
to low until staying at a minimum stable value.

The rotating speed of PTU-C is 50◦/second. To make the
comparison in terms of dynamic time, the mean time value
of 10 cycles is calculated from the above dynamic motion:
pitch (10◦ to 60◦), roll (−10◦ to 30◦), as shown in Tab. 5 and
Tab. 6. All the units are reported in second, and the dynamic
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TABLE 5. Dynamic mean time of pitch (10 cycles).

TABLE 6. Dynamic mean time of roll (10 cycles).

motion always suffers the vibration impact. The reference
time of the dynamic pitch, dynamic roll are 1 second and
0.8 second respectively for each Time_rise or Time_down.

Generally, all the filters performed a good dynamic
response, compared with time reference. The small delay
values can be understood by the vibration impact and serial
transmission time. During the dynamic rotation, Time_rise is
faster than Time_down.

The reported data from Tab. 5 and Tab. 6 indicate that
the dynamic time of the LP filter and 2 Kalman filters are
close to each other. The sensor fusion Kalman is slower than
Kalman_acc filter only in Time_rise of the pitch.

The dynamic time of the OACP filter is improved in the
Fusion filter but still requires a longer time to attain the stable
value, respected to Kalman filters.

VI. CONCLUSION
This work has introduced a new algorithm with the prac-
tical principle to optimize the vibration impact based on
the MEMS accelerometer with the absence of other sensors.
The inclinational measurements were analyzed in detail for
static and dynamic cases. The OACP filter can work indepen-
dently and remove the considerable spikes from the LP filter.
Furthermore, its dynamic performance in terms of time is
apparently improved by fusing with the LP filter and Kalman
algorithm. The Kalman_acc filter shows a highly competitive
accomplishment with the traditional Kalman filter, which
requires gyroscope support. This research relief the burden
on the LP filter and also solves the economic problem in
the industrial inclinometer in dealing with the external noise
without sensor fusion.
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