
Received January 13, 2021, accepted January 20, 2021, date of publication January 26, 2021, date of current version February 4, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3054725

Parallel Scheduling of Multiple SDF Graphs
Onto Heterogeneous Processors
DOWHAN JEONG 1, JANGRYUL KIM 2, MARI-LIIS OLDJA 2,
AND SOONHOI HA 2, (Fellow, IEEE)
1TmaxA&C, Seongnam 13613, South Korea
2Department of Computer Engineering, Seoul National University, Seoul 08826, South Korea

Corresponding author: Soonhoi Ha (sha@snu.ac.kr)

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea Government [Ministry of
Science and ICT (MSIT)] under Grant NRF-2019R1A2B5B02069406.

ABSTRACT Parallel scheduling of multiple real-time applications onto heterogeneous processors is needed
in the emerging embedded systems such as self-driving cars, smart cameras, and smartphones. Assuming that
an embedded application is specified as a synchronous dataflow (SDF) graph or its extension, we propose
a novel parallel scheduling methodology based on an evolutionary algorithm where the mapping of tasks
onto processors is evolved to optimize a given objective function in an iterative fashion. In each iteration,
we use an existing worst-case response time (WCRT) analysis tool to check if all applications satisfy their
real-time requirements by translating each SDF graph into a directed acyclic graph (DAG) that is assumed
in the WCRT analysis tool. Since the WCRT analysis must be performed in each iteration of evolution,
we propose a clustering technique to reduce drastically the analysis time that depends on the number of
nodes and their dependency. We formally prove that the proposed clustering technique does not change the
estimated WCRT of each application. The effectiveness of the proposed scheduling methodology with the
clustering technique is verified with extensive experiments using real-life benchmarks, randomly generated
graphs, and the comparison with the existing technique.

INDEX TERMS Mapping and scheduling, design space exploration, dataflowmodel, model transformation,
performance analysis, worst-case response time.

I. INTRODUCTION
To copewith the increasing user demand for compute-intensive
deep learning applications, embedded systems tend to equip
heterogeneous processing elements (PEs) that include a
multi-core CPU, a GPU, and/or a deep learning accelerator
called a Neural Processing Unit (NPU). In such a system,
we may need to run multiple applications concurrently shar-
ing the PEs. Since an embedded application usually has
a real-time performance requirement such as throughput
and response time, parallel scheduling of multiple real-time
applications onto shared heterogeneous PEs emerges as an
essential but challenging problem.

We assume that an embedded application is specified as
a synchronous dataflow (SDF) [2] graph or its extension.
The SDF model is popularly used for signal processing or
compute-intensive applications where an application is speci-

The associate editor coordinating the review of this manuscript and

approving it for publication was Muhammad Zakarya .

fied as a task graph: a node represents a computation task, and
a directed edge represents the data dependency between two
end nodes, or tasks, with a FIFO channel. Since the number of
data samples consumed from each input port or produced to
each output port per task execution is fixed in the SDFmodel,
we can construct an execution schedule of tasks statically.
The number of samples consumed or produced is called the
sample rate of the associated port. Fig. 1 (a) shows a simple
SDF graph, annotating the sample rate of each port on the
edges. Since task A produces three samples per execution and
task B consumes one sample per execution, task B should be
executed three times more than task A on average in order
to avoid buffer overflow of the channel between them if the
graph is executed repeatedly. A single execution of an SDF
graph consists of the minimum number of executions of tasks
while satisfying the relative execution rates. The minimum
number is called the repetition count of each task, denoted
as a rep(X) for task X. The repetition counts of four tasks
in Fig. 1 (a) become as follows: rep(A) = rep(D) = 1,

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 20493

https://orcid.org/0000-0001-6310-3697
https://orcid.org/0000-0001-6764-9419
https://orcid.org/0000-0002-6426-7252
https://orcid.org/0000-0001-7472-9142
https://orcid.org/0000-0001-7070-6699

D. Jeong et al.: Parallel Scheduling of Multiple SDF Graphs Onto Heterogeneous Processors

FIGURE 1. An example graph of SDF model.

rep(B) = rep(C) = 3. A single execution of the SDF graph
includes three task instances, or jobs, of tasks B and C each.1

Since the SDF graph describes only the data dependency
between tasks, it can be easily parallelized by mapping task
instances to PEs. While the parallel scheduling of a single
SDF graph onto heterogeneous PEs has been extensively
researched ([3]–[6]), there exist only a few studies that con-
sider the scheduling of multiple SDF graphs on the shared
PEs ([7]–[9]). One approach to schedule multiple SDF graphs
is to merge all SDF graphs into a single SDF graph after
expanding each of them to the hyper-period and schedule
the merged graph at once [7]. This approach is not appli-
cable when the starting offsets of SDF graphs are not fixed.
The authors in [8] proposed a two-step approach. After they
find a set of static schedules onto PEs for each SDF graph,
varying the number of processors, they use a meta-heuristic
to find an optimal combination of per-graph schedules to
minimize the resource requirement by processor sharing.
They assume that the processors are homogeneous. This
approach is extended in [9] for the scheduling methodology
of deep learning applications. They extended the analysis
technique to non-preemptive scheduling onto heterogeneous
processors.

In this work, we propose a novel parallel scheduling
methodology based on an evolutionary algorithm where the
mapping of tasks onto processors is evolved to optimize
a given objective function in an iterative fashion. In each
iteration, it is necessary to check if all applications satisfy
their real-time requirement and to evaluate the objective
function for given mapping and scheduling information of
tasks.When the repetition periods of SDF graphs are different
and the starting offsets are not fixed, it is very challenging
to analyze the real-time performance of each SDF graph
considering all possible interference among applications. One
solution is to decompose each SDF graph into a set of
independent real-time tasks that have unique deadlines and
offsets ([10], [11]). In this approach, the deadline and the
starting offset of each real-time task should be determined
carefully, keeping the dependency between tasks, which is
likely to produce a too pessimistic estimation of the real-time
performance. In the proposed technique, we use a worst-case
response time (WCRT) analysis tool. There exist several
WCRT analysis tools available ([12]–[15]), all assuming that
each application is represented as a directed acyclic task
graph. While the true WCRT cannot be found analytically,

1A task instance and a job are used interchangeably in this paper

they aim to estimate the upper bound as tightly as possi-
ble by considering all possible interference between tasks
conservatively.

To use an existing WCRT analysis tool, we con-
vert each SDF graph into a homogeneous synchronous
dataflow (HSDF) graph that becomes a directed acyclic
graph (DAG) if a cycle is broken by removing the feedback
edge with an initial sample. Fig.1 (b) shows the equivalent
HSDF graph converted from the SDF graph of Fig.1 (a). Note
that a node in the converted DAG corresponds to a job or a
task instance of an associated task: an SDF task generates as
many nodes as its repetition count. Since mapping decision
is assumed to made at the task level, all jobs from a single
SDF task are mapped to the same PE. In case the granularity
of an SDF task is large, the task is likely to have internal
states of being maintained consistently over jobs. If there is
no internal state in an SDF task, the task is explicitly specified
as parallelizable, and we can map the task onto multiple
homogeneous PEs.

Since the WCRT analysis must be performed in each
iteration of evolution, the analysis speed is an important
factor to consider. The time complexity of a WCRT analysis
tool depends on the number of nodes and their dependency.
Table. 1 shows the analysis time of several WCRT analysis
tools, depending on the number of nodes. In this preliminary
experiment, we assume that five applications that have the
same number of nodes are running on four processing ele-
ments, two preemptive and two non-preemptive. The depen-
dency of nodes in each application is randomly constructed
except for MAST (Modeling and Analysis Suite for Real-
Time Applications) [16] that accepts the chained topology
only. The execution time of each node is selected randomly
between [500, 1000]. The period and deadline of applications
are set to a large value so that the analysis tool produces
the WCRT of each application, assuming that interference
from the other applications occurs once from each applica-
tion. We repeat each experiment 1000 times and take the
average value. It is observed that the analysis time increases
drastically as the number of nodes in a DAG increases.

TABLE 1. The average analysis times of three WCRT analysis tools with
varying number of nodes(unit: ms).

To reduce the WCRT analysis time, we propose a novel
node clustering technique for the converted DAG. The key
constraint for node clustering is not to change the real-time
performance by considering all possible interference scenar-
ios between applications for given mapping and schedul-
ing information of applications. This constraint makes the
proposed clustering technique distinguished from existent
SDF clustering techniques ([18], [19]) that do not consider
mapping and scheduling. If those clustering techniques are

20494 VOLUME 9, 2021

D. Jeong et al.: Parallel Scheduling of Multiple SDF Graphs Onto Heterogeneous Processors

applied beforehand at the task level, the design space for map-
pingwill be reduced drastically. On the contrary, the proposed
clustering is performed at the job level. We formally prove
that the proposed technique does not change the real-time
performance that is estimated by a chosen WCRT analysis
tool.

As for applications, we consider three types of
real-time characteristics: periodic, sporadic, and best-effort.
We assume that a periodic application has an implicit deadline
so that the worst-case response time may not be greater than
the period. A sporadic application has a deadline constraint
to be met, while a best-effort application has a lower priority
than the other types of applications with the objective of
throughput maximization. Note that such diverse real-time
characteristics can be examined by WCRT analysis. Since
we are likely to have different types of applications running
concurrently in practice, supporting a heterogeneous combi-
nation of real-time requirements is another benefit of using
the WCRT analysis tool.

The need and goodness of the proposed technique are con-
firmedwith extensive experiments using real-life benchmarks
and randomly generated graphs. We first illustrate how the
proposed methodology explores the design space of parallel
scheduling of multiple applications. Next, we demonstrate
that the proposed clustering technique can reduce the graph
size and the WCRT analysis time significantly.

Four main contributions of this work can be summarized
as follows.
• Anovel parallel scheduling technique based on an evolu-
tionary algorithm is proposed to schedule multiple SDF
graphs with diverse real-time characteristics onto het-
erogeneous PEs. For the performance evaluation of each
mapping candidate, it uses an existing WCRT analysis
tool.

• To reduce the execution time of WCRT analy-
sis, a node clustering technique is devised. With
five real-life benchmark applications running concur-
rently, the WCRT analysis time is reduced to 1.15%
(87X speed-up).

• We formally prove that the proposed clustering tech-
nique does not change the real-time performance that is
estimated by the WCRT analysis tool.

• The proposed scheduling technique is extended to sup-
port multi-mode SDF graphs in which each mode of
operation is specified by an SDF graph.

The rest of the paper is organized as follows. In the
next section, we review the related work on mapping and
scheduling of SDF graphs, WCRT estimation, and the
SDF graph reduction. After stating the system model and
the mapping and scheduling model in a formal way in
section III, we present the proposed scheduling technique
based on a genetic algorithm in section IV. Section V
explains the proposed clustering technique with formal proof
that it does not change the performance estimation result.
Section VI explains how the proposed performance estima-
tion technique can be applied to a multi-mode SDF model.

After experimental results are shown and discussed in
section VII, concluding remarks are given in section VIII.

II. RELATED WORK
In this section, we review the related work in the following
three techniques involved in the proposedmethodology: map-
ping and scheduling of SDF graphs, the WCRT estimation,
and SDF graph reduction.

A. SCHEDULING OF SDF GRAPHS
SDF graph scheduling problems can be divided into two
categories: scheduling of a single SDF graph and schedul-
ing of multiple SDF graphs. Since the parallel scheduling
problem of a DAG on multiple processors is known to be
NP-hard [20], numerous techniques have been proposed to
obtain a sub-optimal solution. Since they are applicable for
the scheduling of an SDF graph after the SDF graph is trans-
lated into a DAG, we first review the recent DAG scheduling
techniques onto heterogeneous processor systems. And we
review the scheduling approaches of multiple SDF graphs
next.

1) SCHEDULING OF A SINGLE SDF GRAPH
Earlier work on parallel scheduling of a DAG onto a hetero-
geneous multi-processor system proposed a list scheduling
heuristic [21], called Best-Imaginary-Level (BIL) schedul-
ing, where a task is assigned a set of priorities considering
the different mapping possibilities of the precedent tasks for
each processor candidate. Even though it is a heuristic, it is
proven that it produces an optimal scheduling result if the
graph has a linear topology. A similar list-scheduling heuris-
tic, called Heterogeneous Earliest-Finish-Time (HEFT), was
proposed [22] where HEFT corresponds to BIL [21]. Even
though they are fast and produce sub-optimal solutions for a
given problem setting, it is not extensible to consider design
constraints and architecture characteristics.

To overcome the drawbacks of heuristics, scheduling tech-
niques based on a meta-heuristic algorithm have been pro-
posed. An earlier work [23] uses a genetic algorithm to solve
the scheduling problem ontomultiple processors. The authors
of [24] proposed to use a QEA (quantum-inspired evolu-
tionary algorithm) to schedule an SDF graph considering
pipelining as well as task-level parallelism with the objec-
tive of throughput maximization. Many subsequent studies
used the meta-heuristic-based approaches since there exist
solvers available to the public and the problem formulation
is extensible to consider multiple objectives and various
design constraints. In case the design space of mapping
can be limited, ILP (Integer Linear Programming)-based
approaches can be used to obtain the optimal schedul-
ing solutions as proposed in [25] and [26]. The former
aims to minimize the number of used processors, while the
latter aims to minimize the execution latency while keep-
ing the deadline constraints. The latter is extended to con-
sider heterogeneous processors and shared bus contention
in [27].

VOLUME 9, 2021 20495

D. Jeong et al.: Parallel Scheduling of Multiple SDF Graphs Onto Heterogeneous Processors

2) PARALLEL SCHEDULING OF MULTIPLE SDF GRAPHS
In spite of a long period of research, mapping and scheduling
of multiple task graphs onto heterogeneous PEs remains a
challenging problem.Most of the existent approaches assume
that the task graphs are all DAGs and executed only once
so that the scheduling objective is to minimize the schedule
length of applications. As an example, a scheduling heuristic
is proposed in [28] by extending the HEFT algorithm [22] to
multiple DAGs.

There exist only a few techniques proposed to schedule
periodic multiple SDF graphs onto multiple PEs, to the best
of our knowledge. The difficulty lies in the schedulability
analysis for each mapping candidate. To ease the schedula-
bility analysis, we may decompose an SDF graph into a set
of independent real-time tasks first ([10], [11]), and map
those generated tasks onto PEs using any real-time scheduling
technique of independent tasks. Since this decomposition
may give a loose estimation of the real-time performance,
the authors in [8] proposed a two-step approach. In the first
step, they find a set of static schedules onto PEs for each SDF
graph using a genetic algorithm. In the second step, they apply
a genetic algorithm again to find a sub-optimal combination
of per-graph schedules to minimize the resource requirement.
For checking the schedulability constraints, they introduce
the notion of mobility that indicates how much interference
a schedule can tolerate, and they allow the merging of two
schedules only when the amount of co-mapped tasks from
the other task graph is smaller than the mobility on each
processing element.

On the contrary to this two-stage technique, our proposed
technique applies a meta-heuristic to determine the mapping
of all SDF graphs at once and uses the WCRT analysis tool
for real-time performance analysis. The authors of [9] have
proposed a parallel scheduling technique of deep learning
applications, adopting the worst-case response time analysis
method used in [8]. They extended the analysis technique
to support the non-preemptive scheduling policy and hetero-
geneous processing elements. Their proposed technique is
based on a meta-heuristic to find a near-optimal mapping of
layers in deep learning applications. However, it assumes that
the applications are all HSDF while our proposed technique
supports general SDF graphs.

B. WCRT ESTIMATION
The worst-case response time of an application that is speci-
fied by a directed task graph is defined as the longest time
difference between the completion and the release time of
the application. When multiple applications are running on
a distributed embedded system and task execution times are
varying, finding the WCRT of an application is extremely
difficult so that various approaches have been proposed to
make an estimation as tightly as possible by conservatively
modeling the inter-task interference. They commonly assume
that an application is specified by a DAG.

Since we make an implicit deadline assumption,
the throughput performance of a periodic application is

satisfied if the WCRT of the application is no greater than
the period. The latency constraint is directly confirmed with
the WCRT. The performance of a best-effort application is
maximized when theWCRT is minimized in our model. Thus
the real-time performance of all applications can be analyzed
by WCRT analysis. In the proposed parallel scheduling
methodology, we may use any WCRT analysis tool. Now we
review the WCRT analysis tools available in this section.

Early researches extended the conventional response time
analysis (RTA) to the system level. While RTA assumes inde-
pendent tasks, those extensions model the task dependency
with the starting offsets of tasks. In case the real system fits
for the assumed model, such a holistic approach could make
a tight estimation. A representative work is MAST that is
an open-source set of tools that enables modeling real-time
applications and performing timing analysis of those appli-
cations [16]. On the other hand, a compositional approach
is proposed in [12], where the conventional RTA is carried
out for each processing element (PE). The interface between
PEs is defined by an event stream that is modeled as a
3-tuple (p, j, d) where p, j, and d represent the period, jitter,
and the minimum distance between two events, respectively.
The WCRT of a task graph can be estimated as a sum of
WCRTs on each PE where the task graph is mapped onto.
There is an open-source tool called pyCPA (Python Imple-
mentation of Compositional Performance Analysis) [17],
based on this approach. There exists another compositional
approach based on real-time calculus [29]. In this approach,
an event stream is modeled with a pair of arrival curves that
show how many events, minimum and maximum, may arrive
during a given time window. The computation capability
of a PE is modeled as a service curve. With a given load
model of the input arrival curve and the service model of a
PE, the real-time calculus computes the output arrival curve
and the remaining service curve. While those compositional
approaches are scalable and fast, the estimation accuracy
is relatively poor since inter-PE dependency is not fully
considered.

When the starting offset of each periodic application is
known a priori and fixed, it is showed in [14] that the WCRT
of each application could be tightly estimated by expand-
ing all graphs up to the hyper-period of all applications
(the least common multiple of periods) and analyzing the
scheduling time bounds of each task. This method is called
STBA (Scheduling Time Bound Analysis). Since the sched-
ule pattern is repeated after the hyper-period, the possible
interference between tasks can be narrowed significantly for
conservative estimation. This method can be applied to both
preemptive and non-preemptive scheduling policies. How-
ever, this approach is not generally applicable due to the
assumption of fixed starting offsets. In order to overcome the
limitation of this work, a hybrid analysis method between
the schedule-bound analysis of [14] and the RTA method
was proposed in [15]. They used the RTA method to com-
pute the interference between applications instead of expand-
ing graphs to the hyper-period. The scalability and general

20496 VOLUME 9, 2021

D. Jeong et al.: Parallel Scheduling of Multiple SDF Graphs Onto Heterogeneous Processors

applicability of this technique are claimed to be par with the
compositional approach.

C. SDF GRAPH REDUCTION
For the real-time performance analysis of an SDF graph,
it is necessary to convert it to a DAG. Since the graph size
of the converted graph can be prohibitively large, a few
techniques have been proposed to reduce the SDF graph
size ([18], [19]). Two graph transformation techniques are
introduced in [18] to reduce the complexity of timing analysis
of large SDF graphs. One is to convert a large SDF graph with
a regular structure into a smaller SDF graph by combining
nodes with the same repetition count. The other is to convert
a smaller SDF graph to a reduced HSDF that induces the
same Max-Plus matrix formulation that is used to compute
the throughput performance. Since these techniques aim to
maintain the theoretical performance bound of the original
SDF graph itself, the converted graphs cannot be used for
parallel scheduling onto multiple processors.

The work in [19] is more relevant to the proposed cluster-
ing technique in that it reduces the number of nodes in the
converted DAG by merging. To find the merging candidates,
they consider the slack, which is the difference between the
worst-case execution time of a node and its timing constraint.
They merge nodes with positive slacks iteratively considering
the deadlock possibility. While this approach respects the
throughput and latency constraints of the original application
graph, it is again performed before parallel scheduling, which
affects the design space of mapping. Moreover, it does not
consider the interference from the other SDF graphs.

III. SYSTEM MODEL
In this section, we preset the system model by introducing
some terminologies and notations, as well as the assumptions
made for the proposed methodology.

A. APPLICATION MODEL
We consider a set G of multiple applications (graphs). Each
SDF graph g ∈ G is defined by a tuple 〈Ng,Eg,Tg〉. Ng, Eg,
and Tg represent the set of nodes, the set of edges, and the
period of the graph, respectively. Furthermore, we indicate a
set of jobs as Ṅg and the set of edges between jobs as Ėg. The
size of a set A is represented by |A|, so the number of nodes
and jobs of graph g is denoted as |Ng| and |Ṅg|, respectively.
Also, we express the graph containing node n ∈ Ng as G(n).
Each node has a varying execution time represented by a
tuple [C l(n),Cu(n)], each of which indicates the best and
worst-case execution time (BCET andWCET) of the node on
the mapped processing element. Also, we denote the average
execution time of task τ as C̄(τ). The average execution
time is used for parallel schedule, while the execution time
bound is considered in the WCRT analysis. We assume that
all graphs are assigned distinct priorities, denoted by PRg.
It means that the priority of all nodes in a graph is lower or
higher than all nodes in another graph. i.e., ∀i,jni ∈ gi, nj ∈ gj,
if PRgi > PRgj then PRni > PRnj where PRn means the

priority of node n. Between tasks in the same SDF graph,
priorities are given to the jobs according to the scheduling
order, which will be explained in the next section.

Each application can be run in a periodic, sporadic, or best-
effort manner. The comparison between the three application
types is shown in Table 2. A periodic application is invoked
periodically with the period of Tg. There is no constraint
on the inter-arrival time between applications. An applica-
tion may start anytime during the execution of the other
application: the starting offset is dynamic. Once it is started,
a periodic application has a periodic arrival time, meaning
that a task without any input data dependency has a periodic
arrival time, and subsequent tasks with input dependency
are executed in a data-driven manner: it becomes executable
as soon as its input data are available. Also, we assume
that the deadline is the same as the period of the graph
(implicit deadline). If an application is invoked sporadically,
Tg indicates the minimum distance between two invocations
to consider the worst case interference among applications
in the WCRT analysis. It is treated as a periodic application
with a dynamic starting offset and its period becomes the
minimum inter-arrival time [30]. While a periodic or sporadic
application is assigned a user-defined priority, a best-effort
application has the lowest priority without any deadline con-
straint, meaning that it can be executed only when themapped
PE is idle.

TABLE 2. Comparison of three application types.

B. MAPPING AND SCHEDULING
The hardware platform consists of a set of heterogeneous PEs
PE = {P0,P1, . . . ,Pm−1} = P ∪ NP where m indicates
the total number of PEs and P and NP represent the set of
preemptive and non-preemptive PEs, respectively. Note that
we allow a mixture of preemptive and non-preemptive PEs if
the WCRT analysis tool supports it.

The mapping decision is made for each task, implying that
all jobs of an SDF task within an iteration are mapped to
the same processor. In case the granularity of an SDF task
is as coarse as a thread that is the mapping and schedul-
ing unit of an operating system, the task likely has internal
states that need to be migrated if jobs are mapped onto
different PEs. In order to avoid such state migration com-
plexity, this assumption is made. A parallelizable SDF task
without internal states is explicitly distinguished if jobs can
be concurrently executed on multiple processors. Including
parallelizable tasks, the mapping decision is denoted by a
function M : N → P(PE) − ∅ where N = ∪g∈GNg and
P(PE) is a power set of PE .

We assume that the self-timed scheduling is adopted for the
scheduling of SDF tasks, where the scheduling order among

VOLUME 9, 2021 20497

D. Jeong et al.: Parallel Scheduling of Multiple SDF Graphs Onto Heterogeneous Processors

the tasks of the same SDF graph mapped on each processor
is determined statically at compile time and does not vary at
run time [31].

IV. PARALLEL SCHEDULING METHODOLOGY
The proposed methodology explores the design space of
task mapping by iteratively evolving the mapping decision,
as shown in Fig. 2. It consists of four main steps that are
explained in this section. Fig. 3 (a) shows an example SDF
graph that consists of 5 tasks that are mapped onto three PEs.
In this example, we set the average execution time of tasks
S,A,B, and D to 2 time units (tu), and C to 3 time units. The
time unit tu is a symbolic unit that could be replaced with any
actual unit of time such as Kcycles,ms, us, etc.

FIGURE 2. Proposed parallel scheduling methodology of multiple SDF
applications based on a genetic algorithm.

A. MAPPING SELECTION
We use a genetic algorithm (GA) as a meta-heuristic
for design space exploration of mapping. While any
meta-heuristic can be applied, a GA is chosen since an
acknowledged GA solver [32] is freely available. Mapping
information of nodes is encoded in a chromosome in which
each gene represents where the associated task is mapped to.
In order to support a parallelizable task, a task can be mapped
onto a subset of PE . To notate a subset of PE , we number
each element of the power set of PE , excluding the empty
set. For instance, Fig. 4 shows an example chromosome for
Fig. 3. If there is a node that ismapped onP1 andP2, the value
of the gene will be 5. For multiple applications, the associated
chromosomes will be concatenated to make a single long
chromosome. Nevertheless, GA operations such as crossover
and mutation are applied to each chromosome separately.
Initially, we randomly generate as many chromosomes as a
given parameter.

B. SCHEDULING PER GRAPH
In this step, we determine the execution order of tasks for
each graph with a given mapping of each chromosome. For
instance, we need to determine the execution order of jobs
between tasks B and C on processor P1 when task mapping
is assumed, as displayed in Fig. 3 (a). After executing the

FIGURE 3. (a) An SDF graph example, (b) The schedule diagram for the
SDF graph, (c) The schedule diagram after initial clustering, (d) The
clustered schedule diagram, (e) The converted DAG.

FIGURE 4. An example chromosome structure for Fig. 3.

first instance of task B, the second instance of task B and
the first instance of task C are both executable. We use a
list scheduling heuristic for the converted DAG of an SDF
application, assuming that the priority of a job depends on
the longest path from the job to the completion in order to
minimize the schedule length of the SDF graph. The schedul-
ing result is shown in Fig. 3 (b) with a schedule diagram
where the vertical axis means the processing element, and
the horizontal axis means the elapsed time. The schedule
diagram is supplemented with dependency arcs between jobs.
Note that the dependency arcs correspond to edges in the
DAG, omitting the dependency between jobs of the same
node. In case multiple jobs of the same node depend on a
single source job, we represent only a single dependency arc
from the source job to the first job; For example, dependency
from A1 to B2 is omitted because there is a dependency
arc from A1 to B1.

There are several notes worth mentioning in this step.
First, the proposed methodology does not depend on a spe-
cific scheduling method even though we use a list schedul-
ing heuristic in the current implementation: we can choose

20498 VOLUME 9, 2021

D. Jeong et al.: Parallel Scheduling of Multiple SDF Graphs Onto Heterogeneous Processors

a different execution order from Fig. 3 (b). Second, the pri-
orities are given to the jobs, not tasks. Third, even though a
task may have a varying execution time, we need to use a
single representative value in the scheduling step; We use the
average execution time C̄(τ) of each task τ in the current
implementation. The varying execution time will be con-
sidered in the WCRT estimation. Lastly, we may omit the
scheduling step for an application whose task mapping is
not changed since scheduling is performed on each graph
separately.

C. NODE CLUSTERING PER GRAPH
With the scheduling result, node clustering is performed for
each graph. The objective of node clustering is to reduce
the number of nodes as much as possible without affecting
the WCRT analysis. We propose a novel node clustering
technique that will be explained in the next section in detail.

D. PERFORMANCE EVALUATION
With the clustered DAGs and the mapping and scheduling
information, we evaluate the performance of each applica-
tion. The basic tool for performance evaluation is the WCRT
estimation of each application in the proposed Design-Space
Exploration (DSE) framework. In the current implemen-
tation, the HPA (Hybrid Performance Analysis) [15] tool
is used for WCRT estimation since it is freely available
and easy to use, and its estimation accuracy is claimed to
be better than the other WCRT estimation tools. The HPA
tool supports an arbitrary mixture of preemptive scheduling
and non-preemptive scheduling. Also, it supports dynamic
starting offset of applicatons. The input information to the
HPA tools includes a set of DAGs running concurrently with
a given mapping of nodes onto PEs, priorities of nodes on
each PE, and execution time range, [BCET, WCET], of each
node.

A performance evaluation is performed for each chromo-
some. After the estimatedWCRTof an application is obtained
by HPA, it is compared with the deadline to check if it is
violated. If any deadline violation is found, the fitness value
for the corresponding chromosome (mapping) is set to a large
number. Otherwise, the estimatedWCRT becomes the fitness
value of the chromosome. While the objective function can
be modified, we assume that the objective is to minimize the
WCRT of each selected application.

Among many chromosomes, we select some with smaller
fitness values than the other and perform GA operations such
as mutation and crossover to produce the offspring chromo-
somes. With the same number of chromosomes, we repeat
these three steps until the fitness value for each application is
converged, or the maximum number of iteration is reached.

V. NODE CLUSTERING TECHNIQUE
In this section, we explain the proposed node clustering tech-
nique after the mapping and scheduling of SDF tasks is per-
formed. We denote the clustered task for jobs n1, n2, . . . , nm
as Cluster(n1, nm), where n1 and nm are the first and the last

job of the cluster, respectively. The size of Cluster(n1, nm)
is the number of jobs in the cluster, and the execution
time of Cluster(n1, nm) becomes the sum of the execution
time of the jobs. In order to merge jobs without affecting
the WCRT, clustering is performed to satisfy the following
two conditions.

1) Clustering is performed within a processing element.
It means that jobs n1 to nm are mapped to the same
processor.

2) There should be no dependency between a job in the
cluster and another job outside the cluster except for
the start job, n1, with its predecessor and the last
job, nm, with its successor. For example, in Fig. 3 (c),
job C0 cannot be merged(clustered) with B1 since there
is a dependency from A1 to B1.

In the proposed clustering method, we start with the ini-
tial clusters that merge all consecutive jobs on each pro-
cessor. For instance, three initial clusters (Cluster(S0,A1),
Cluster(B0,C2), Cluster(D0,D0)) are formed for the exam-
ple of Fig. 3 (b). While the initial clusters satisfy the first
condition, theymay violate the second condition.We perform
partitioning of each cluster recursively until all clusters sat-
isfy the second condition. The pseudo-code of such a cluster
partitioning algorithm is shown in Algorithm 1.

Algorithm 1 Cluster Partitioning Algorithm
1: function partition((Cluster(n1, nm)))
2: for i = 1; i ≤ m; i = i+ 1 do
3: if i 6= 1 and ∃nk 6∈ Cluster(n1, nm) s.t.
4: hasDependency(nk , ni) then
5: partition(Cluster(n1, ni−1));
6: partition(Cluster(ni, nm));
7: return;
8: else if i 6= m and ∃nk 6∈ Cluster(n1, nm) s.t.
9: hasDependency(ni, nk) then
10: partition(Cluster(n1, ni));
11: partition(Cluster(ni+1, nm));
12: return;
13: end if
14: end for
15: end function

The function hasDependency(nk , ni) returns whether
dependency exists from job nk to ni. Lines 3-4 and 8-9 check
if an intermediate job ni in the cluster has input or output
dependency relation with a job outside the cluster nk . If such
a dependency is found, the cluster is partitioned into two
clusters based on the intermediate job. Then the cluster par-
titioning algorithm is recursively applied for the partitioned
clusters (line 5-7, line 10-12). The final clustering result
is obtained from this recursive algorithm with six clusters,
as shown in Fig. 3 (c) for the previous example. Note that
additional dependency arcs are added between the clusters
on each PE to enforce the executive order. After cluster-
ing is completed, a reduced DAG can be created, as shown
in Fig. 3 (e) for the previous example.

VOLUME 9, 2021 20499

D. Jeong et al.: Parallel Scheduling of Multiple SDF Graphs Onto Heterogeneous Processors

A. SUPPORTING NON-PREEMPTIVE PROCESSING
ELEMENTS
In case a processing element adopts a non-preemptive
scheduling policy, another condition is required for safe clus-
tering. Under a non-preemptive scheduling policy, a high
priority job τh of another application cannot preempt a low
priority job while running. Suppose the execution time of the
cluster of lower priority jobs is larger than the period of the
high priority job. Then the high priority job may preempt
the cluster at most once even though more than one preemp-
tion is possible if clustering is not performed. It means that
clustering affects the real-time performance, which should
be avoided. Thus we need to limit the size of a cluster on
a non-preemptive PE.

To this end, we compute the maximum possible execution
time (MPET) of each cluster that is mapped on P ∈ NP .
The MPET of a cluster is the sum of the cluster execution
time and all possible interference amount from high priority
applications. The possible interference from a high priority
application can be conservatively estimated by a demand
bound function (DBF) dbfg,p(1) [30] of the application,
which indicates the maximum amount of resource demand
on a processor p in any time interval 1 by graph g.
In case the execution time of a task is varying within the

best-case execution time (BCET) and the worst-case execu-
tion time (WCET), care should be taken in the computation
of the demand bound function of a high priority application.
To conservatively find a maximum demand bound function
on a given PE, BCETs need to be used for the jobs mapped
onto the other PEs, while WCETs are used for the jobs
mapped onto the given PE. Fig. 5 shows an example SDF
graph and the demand bound function of the graph on a
non-preemptive PE, P1. The demand bound function is com-
puted assuming that the execution time of nodes E and G
is 3 tu while that of node F is 2 tu.

FIGURE 5. (a) A DAG hg associated with an SDF graph with the highest
priority, and (b) The demand bound function of DAG hg on processor P1.

The MPET of a cluster mapped on processor p can be
determined as follows:

MPET =
m∑
i=1

Cu(ni)+
∑
hp∈hG

(dbfhp,p(MPET)) (1)

where hG is a set of task graphs that have higher priority than
the cluster, and m is the number of jobs inside the cluster.
The calculation is repeated until the MPET value converges.

Then the following inequality should be satisfied:

MPET ≤ min
hp∈hG

(Thp) (2)

In case inequality (2) is not satisfied, we partition the cluster
further until all partitioned clusters satisfy the inequality.
Example: Suppose that two SDF graphs of Fig. 3 (a) and

Fig. 5 (a) share the resource, and the former has a lower
priority than the latter. The left column of Table. 3 indi-
cates the MPET calculation on processor P1 for the graph
of Fig. 3 (a). Through iterative computation, the MPET of
Cluster(B1,B2) becomes 13 tu, but it violates the inequal-
ity (2) since the period of the graph hg is 12 tu. There-
fore, the cluster should be partitioned. We split the last
job of the cluster until the inequality satisfies. In this
example, the Cluster(B1,B2) is partitioned to two clusters,
Cluster(B1,C1) and Cluster(B2,B2). After partitioning,
we calculate the MPET of the Cluster(B1,C1), as displayed
in the right column of Table 3. Inequality (2) is satis-
fied for Cluster(B1,C1) and obviously for Cluster(B2,B2).
In summary, if the processor is non-preemptive, we need to
check if the cluster execution time is no larger than the period
of any higher priority application. It may incur additional
partitioning.

TABLE 3. MPET computation on processor P1 for a cluster in Fig. 3 (c),
considering the higher priority graph hg of Fig. 5 (unit: tu).

B. PROOF OF CORRECTNESS
We define a clustering algorithm as correct if it does not
change the worst-case response time. We can prove that
the proposed clustering algorithm is correct. Table 4 defines
several notations to be used in the proof.

TABLE 4. Notations for proof.

Let jobs n1 and nm be the start and the end job of a cluster
N , and τ be a job mapped to the same processor such that
G(τ) 6= G(N). The release time and the finish time of cluster
N can be defined as follows: RT (N) = RT (n1) and FT (N) =
FT (nm). Clustering does not affect the worst-case response
time if equations 3 and 4 are satisfied, meaning that it does

20500 VOLUME 9, 2021

D. Jeong et al.: Parallel Scheduling of Multiple SDF Graphs Onto Heterogeneous Processors

not change the worst-case interference amount from/to other
tasks, respectively.

m∑
i=1

Delayτ (ni) = Delayτ (N) (3)

m∑
i=1

Delayni (τ) = DelayN (τ) (4)

Note that there is no intra-graph interference since the task
execution order is fixed.

Proof: Equation (3) holds.
Case 1: PRτ > PRni
Interference by τ will occur when it is released during

the time interval, as described in eq.(5) for non-preemptive
scheduling and eq.(6) for preemptive scheduling.

RT (n1)− C(τ) < RT (τ) ≤ FT (nm−1) (5)

RT (n1)− C(τ) < RT (τ) ≤ FT (nm) (6)

The left sides of both equations indicate the blocking delay
caused by the earlier release of job τ . Since the last job nm
cannot be preempted once started in case of non-preemptive
scheduling, the right sides of the two equations are differ-
ent. Then, the delay caused by τ before clustering can be
described as eq.(7).

m∑
i=1

Delayτ (ni) = r × C(τ) (7)

where r is the number of times τ occurs between the time
interval. Since RT (n1) = RT (N), FT (nm) = FT (N) and
FT (nm−1) = FT (N) − C(nm), the intervals described in
eq.(5) and eq.(6) are not changed after clustering. Since the
worst-case interference by τ depends only on the interval size
where r is not greater than one for non-preemptive schedul-
ing because of MPET constraint at section V-A, eq.(3) is
satisfied for both preemptive and non-preemptive scheduling
cases.
Case 2: PRτ < PRni
In the case of preemptive scheduling, the blocking delay

caused by a lower priority job τ is zero so that eq.(3) holds
trivially. Under a non-preemptive scheduling policy, τ may
block at most once before clustering since all jobs in a cluster
are consecutively scheduled. After clustering, the worst-case
blocking delay by τ is also C(τ). Thus eq.(3) holds.

Proof: Equation (4) holds.
Case 1: PRτ > PRni
Since the priority of job τ is higher than all jobs {ni} in

the cluster, there is no preemption delay caused by ni to τ for
both non-preemptive and preemptive scheduling cases. Thus,
we only need to consider the blocking delay that may occur
when there is a job ni executing at the release time of τ under
a non-preemptive scheduling policy. Since only one job in a
cluster can block the execution of τ , the worst-case blocking
delay can be computed as follows:

m∑
i=1

Delayni (τ) = max(C(ni)) (8)

when jobs are clustered, however, the blocking delay caused
by N will be the sum of all execution times of jobs. So,
we need to redefine DelayN (τ) as eq.(9) and apply it for the
performance estimation tool.2

DelayN (τ) := max(C(ni)) (9)

Then,
∑m

i=1 Delayni (τ) = DelayN (τ) holds.
Case 2: PRτ < PRni
In the case of non-preemptive scheduling, job τ may expe-

rience only blocking delay. On the other hand, τ can be
either delayed by blocking or preemption under a preemp-
tive scheduling policy. Consider the blocking delay for both
scheduling policies. If τ starts after ST (n1), the blocking lasts
until FT (nm) since successive tasks continuously delay the
task τ before clustering. This is the same after clustering
because cluster N will also delay τ up to FT (N) = FT (nm).
When a preemption occurs during the execution of job τ
under a preemptive scheduling policy, τ will be resumed
after FT (nm), which is the same after clustering.

C. TIME COMPLEXITY
The time complexity of Algorithm 1 depends on the maxi-
mum number of recursive calls and the time complexity of
the function hasDependency. For a given partition of size m,
the complexity of function hasDependency is O(|Ėg|) where
g is the graph the cluster belongs to since it can be done
by examining all edges of the DAG. Since a cluster can be
partitioned into two clusters with size m − l and l(1 ≤ l ≤
m−1), the time complexity of partitioning a cluster with size
m, am, can be expressed by the following recursive formula:

am = am−l + al + |Ėg| (10)

The worst-case scenario of partitioning occurs when a cluster
of size m is eventually divided into m clusters that have a
single job. Then the time complexity of eq.(10) will satisfy
the following inequality:

am ≤
m∑
k=1

a1 + m · |Ėg| ≤ m+ m · |Ėg| (11)

Therefore the time complexity for partitioning a cluster of
size m becomes O(m · |Ėg|).

Let the number of jobs assigned to k-th processor be |Ṅg|k
(1 ≤ k ≤ |PE |). i.e.,

∑|PE |
k=1 |Ṅg|k = Ṅg. The partitioning

time for the k-th processor is bounded by |Ṅg|k · |Ėg| from
eq.(11) withm = |Ṅg|k . Thus the maximum partitioning time
is bounded by the following eq.(12):

|PE |∑
k=1

(|Ṅg|k) · |Ėg| = |Ṅg| · |Ėg| (12)

Therefore, the time complexity of Algorithm 1 is O(|Ṅg| ·
|Ėg|). In the case of non-preemptive scheduling, we need
to perform extra partitioning to satisfy inequality (2). Once

2The HPA tool allows us to change this definition. If such change is
not supported, the correctness of clustering will not be guaranteed for
non-preemptive PEs. Then we apply the proposed clustering technique to
preemptive PEs only

VOLUME 9, 2021 20501

D. Jeong et al.: Parallel Scheduling of Multiple SDF Graphs Onto Heterogeneous Processors

the demand bound function is computed for each processing
element, the complexity of this extra partitioning is O(|Ṅg|).

D. DEPENDENCY RELAXATION OPTIMIZATION
Since dependency between jobs is the main factor in clus-
tering decisions, the fewer the dependencies, the more the
clustering opportunities. Therefore we remove the inessen-
tial dependencies considering the priority of jobs and job
execution times on each processor. Suppose that the graph
in Fig. 3 (b) has the highest priority among all application
graphs that are mapped on P0, then job A1 will be executed
immediately after A0 without any delay. IfC l(B0)+C l(C0) ≥
Cu(A1), the dependency between A1 and B1 can be safely
removed since B1 is guaranteed to start after A1 finishes. If we
apply the clustering algorithm without this dependency arc,
Cluster(B0,C0) and Cluster(B1,B2) will not be partitioned
since there is no dependency between A1 and B1.
Suppose that there exists dependency from job X to job Y

where job X belongs to the highest priority graph among all
application graphs that are mapped onM (X), and there exists
another job {τk} such that M (X) = M (τk), G(X) = G(Y) 6=
G(τk) where PRG(X) > PRG(τk). If the following condition is
satisfied, the dependency from X to Y can be safely removed.

ST l(Y) ≥ FT u(X)+ I (M (X)) (13)

I (P) =

{
max(Cu(τk)) if P ∈ NP and M (X) 6= M (Y)
0 otherwise

(14)

where ST l(Y) and FT u(X) denotes the minimum start time of
job Y and the maximum finish time of job X in the schedule,
and I (M (X)) denotes the maximum blocking delay by lower
priority jobs mapped onto the same PEwith X , i.e., maximum
blocking delay by τk . Note that if M (X) = M (Y), then no
blocking delay is needed to be considered since Y becomes
executable after X completes its execution.

E. COMPARISON WITH EXISTING TECHNIQUES
In section II, two relevant techniques to SDF graph transfor-
mation are reviewed. To clarify the difference between those
techniques and the proposed technique, we apply them to a
simple SDF graph shown in Fig. 6 (a).

FIGURE 6. (a) An example SDF graph, (b) The best possible transformed
graph by [19], (c) The transformed intermediate graph by [18].

Fig. 6 (b) and (c) show the reduced graphs obtained by
applying the slack-based merging technique proposed in [19]
and the two-stage method proposed in [18], respectively.
Since graph reduction is performed before mapping and
scheduling is performed, those techniques reduce the design

space of mapping. In the former technique, two jobs of taskC
are merged, and the merged jobs will be mapped to the
same PE. In addition, since no interference from other appli-
cations between the merged two jobs is allowed, the WCRT
estimation is affected after merging. In the latter technique,
tasks A and B are abstracted to task D whose execution
time is set to the larger execution time between A and B
for conservative real-time analysis. Similar to the former
case, it reduces the design space of mapping, and the WCRT
estimation is changed. On the other hand, in the proposed
technique, the design space of mapping is unaffected since
clustering is performed after a mapping decision is made.

VI. SUPPORTING MULTI-MODE SDF MODEL
Since the pure SDF model is not able to express dynamic
behavior, several extensions have been proposed to expand
the expression capability. One approach is to support mul-
tiple modes of operation in which each mode of operation
is specified by an SDF graph. Finite State Machine (FSM)-
based scenario-aware dataflow (SADF) [33], Mode Transi-
tion Machine (MTM) SADF [34], and mode-aware dataflow
(MADF) [35] are some examples of this approach. As a
common subset of those approaches, we assume an extended
SDF model, denoted as multi-mode SDF (MMSDF), and
explain how the proposed clustering technique can be applied.

Figure 7 (a) shows a simple MMSDF graph that has
two modes of operation. Note that each port is annotated
with two sample rates separated by a dash, meaning the
sample rate may vary depending on the operation mode.
In Fig. 7 (b) and (c), a separate SDF graph is drawn in each
mode of operation. To distinguish two different modes of
operation, we use uppercase letters in mode 1 and lowercase
letters in mode 2 for the same node in the original MMSDF
graph that uses Greek alphabets to denote tasks. For example,
task A in Fig. 7 (b) and task a in Fig. 7 (c) indicate task α
in Fig. 7 (a).

We assume that the task mapping is fixed while a task may
have different execution times and dependency arcs in two
modes. The execution times of nodes are all assumed to be
10 time units for mode 1, and 20 time units for mode 2. The
iteration period of the application is the same in all modes.
We assume that the mode change may occur dynamically at
run-time at the iteration boundary.

How can we support a multi-mode SDF graph in the pro-
posed parallel scheduling methodology? A naive but ineffi-
cient solution is to assume that all modes of operation are
executed simultaneously, even though only a single operating
mode is executed per iteration in real. While it over-estimates
the WCRT of all applications significantly, it will give us
a conservative estimation. To reduce the over-estimation
amount, we propose to merge modes of operation after apply-
ing the proposed clustering algorithm of section V to each
mode, naming the technique as mode clustering. For the
example of Fig. 7, Fig. 7 (d) and (e) display the schedule
diagrams after the node clustering algorithm is applied. Based
on the node clustered schedule diagrams, an MMSDF graph

20502 VOLUME 9, 2021

D. Jeong et al.: Parallel Scheduling of Multiple SDF Graphs Onto Heterogeneous Processors

FIGURE 7. (a) An example MMSDF graph, (b) SDF graph for mode 1, (c) SDF graph for mode 2, (d) Schedule diagram of (b) After node clustering,
(e) Schedule diagram of (c) After node clustering, (f) Interleaved schedule diagram of (d) And (e), (g) Interleaved schedule diagram after initial clustering,
(h) Schedule diagram after mode clustering, and (i) The converted DAG after mode clustering.

consisting of multiple SDF graphs is converted into a single
DAG after themode clustering technique is applied.We prove
the correctness of our mode merging technique by showing
that the converted graph is a superset graph of all modes at
the end of this section.

To merge two modes, we combine two schedule diagrams
in an interleaved fashion, as illustrated in Fig. 7 (f), trying to
make two adjacent clusters (jobs) belong to different modes
on each processing element as much as possible.3 The depen-
dency arcs are preserved in the interleaved schedule.

Based on the interleaved schedule, we first construct initial
mode clusters that merge consecutive jobs that belong to dif-
ferent modes, as shown in Fig. 7 (g); There should be at most
one job for each mode in an initial cluster. Here, we denote
the mode cluster of n1, n2, . . . , nm as Cluster(n1, n2, . . . , nm)
where m is the total number of modes. An empty job φ
represents a non-existing job in a certain mode. The best
and worst execution time of a mode cluster is set to the
minimum and maximum execution time of jobs in all modes,
respectively. The minimum execution time is set to zero if
the mode cluster has no job in a certain mode; in Fig. 7 (g),
the best execution times of a Cluster(DD,φ) and Cluster(φ,e)
are set to zero.

After initial mode clustering, we examine the mode clus-
ters which does not contain φ one by one in the topological
order and partition the cluster if necessary.We check the input
dependencywith a preceding cluster that is already examined.
In case there is no input dependency or a preceding cluster
has dependency in all modes, the cluster is not partitioned.
Otherwise, the cluster is partitioned since unnecessary depen-
dencies are added for a certain mode by mode clustering.
When partitioned, the mode cluster is divided into original

3In this section, to avoid confusion, we call the cluster which is the result of
the previous clustering technique as a job, and the cluster of jobs in different
modes as a mode cluster, or simply cluster.

jobs, one per mode. In Fig. 7 (g) and (h), for example,
Cluster(B,b) is not partitioned since its predecessor cluster
Cluster(A,a) has a dependency path from job A to job B via
jobD, and direct dependency from job a to job b. On the other
hand, Cluster(C,c) is partitioned, since job b in the precedent
cluster Cluster(B,b) does not have dependency to job c while
there exists a dependency from job B to job C.

Note that no dependencies are newly created during mode
clustering. After partitioning is completed for all mode clus-
ters, they can be converted into a DAG in a similar way to
Section V. Fig. 7 (i) shows the converted DAG for the given
example.

The correctness of the proposed mode clustering technique
can be proved by showing that the schedule diagram of
the converted DAG subsumes the schedule diagram of all
modes. Let f (τ) be a mode cluster containing job τ . Since
the maximum execution time of f (τ) is no smaller than Cu(τ)
and the minimum execution time of f (τ) is no greater than
C l(τ), the mode cluster covers job τ . Also, there always
exists a dependency from cluster f (α) to cluster f (β) when
there is a dependency between jobs α and β in a certain
mode since the dependency arcs are preserved. Therefore,
the schedule diagram after mode clustering subsumes the
schedule diagram of each mode.

VII. EXPERIMENTS
A. BENCHMARKS AND SET-UP
For experiments, we select five real-life applications speci-
fied with an SDF graph or a multi-mode SDF graph, as dis-
played in Table 5. The hardware platform is Jetson TX2 [36],
which is a heterogeneous system consisting of two Denver
CPUs, four ARM A57 CPUs, and one NVIDIA Pascal GPU:
the total number of PEs is seven. The LaneDet application
consists of a set of filters to detect the lane from an input
image. ResNet is an image classification application known

VOLUME 9, 2021 20503

D. Jeong et al.: Parallel Scheduling of Multiple SDF Graphs Onto Heterogeneous Processors

TABLE 5. The benchmark applications.

as ResNet-152. We assume that the mapping of ResNet is
given a priori: four tasks for I/O interface are mapped on
CPU while the other tasks are all mapped on GPU. The
Kmeans application performs K-means clustering algorithm.
It contains a parallelizable task that can be mapped onto
multiple processors, except GPU.H264Dec has twomodes of
operation for video decoding. Crpyto represents a cryptogra-
phy algorithm based on RSA. The last three applications can
be run only on CPU cores.

Table 5 shows the real-time requirement of applications
as well as the priority and the number of nodes in the
SDF graph representation. Note that the Crypto application
is a best-effort application without any deadline constraint.
We measured the minimum, average, and maximum execu-
tion time of each node by running each application multiple
times on each processing element. In case the execution
time varies too much, we set the maximum time to 75%
of the profiled maximum to make all applications schedula-
ble on Jetson TX2. Since all benchmarks are soft real-time
applications, such trimming will be acceptable, we believe.
In case a task cannot run on a GPU, the execution time is
set to infinite on the GPU. In addition, we measured the
communication overhead between the CPU and GPU as a
function of the size of the data being transmitted. Refer to [37]
for detailed information on the benchmarks, including SDF
specifications and the profiled execution time. In addition,
extensive experiments are conducted with synthesized SDF
graphs by using SDF3 (SDF For Free) [38]. All experiments
have been performed on a system with Ubuntu 18.04.2 LTS,
Intel Core i9-9900KFCPU@3.60GHz, and 64GBRAM.All
proposed techniques are written in Java.

B. EXPERIMENT: SDF MODEL TRANSFORMATION
1) BENCHMARK APPLICATIONS
The first set of experiments is conducted to examine the
effectiveness of the proposed node clustering technique for
real-life benchmark applications. By randomly changing the
mapping, the proposed technique is applied 10,000 times
in total to obtain the average reduction of the number of
nodes and the execution time. The reduction rate of nodes
and the execution time of conversion and analysis are shown
in Table 6.

The ResNet and Kmeans applications get the most benefit
from the proposed clustering technique since they have some
tasks that have many jobs to be scheduled sequentially on the
mapped PE. Since the LaneDet and Crypto applications are
specified by HSDF graphs, a little gain is achieved by cluster-
ing. H264Dec is a multi-mode SDF graph that is composed

TABLE 6. The number of nodes and the WCRT analysis time before and
after node clustering.

of two HSDF graphs. The node reduction ratio is slightly less
than a half, which indicates that the proposed mode clustering
reduces the number of nodes effectively.

Note that the WCRT analysis time by HPA is reduced
down to 1.15% (87X speed-up) when the proposed node
clustering is applied. Since the WCRT analysis is performed
for all candidate mapping, such improvement is significant
for exploring the design space of mapping. The table reveals
that the clustering overhead in time is negligible, compared
to the gain of reduced analysis time.

2) RANDOMLY GENERATED SDF GRAPHS
The second set of experiments is conducted with randomly
generated SDF graphs with the SDF3 random graph gen-
erator that allows the user to change the number of nodes,
the average repetition count of nodes, and the range of the
node execution time. Table 7 shows how we vary the number
of nodes and the average repetition counts. Note that the total
number of nodes in the DAG is the product of the number of
nodes and the average repetition count of nodes. We also vary
the number of PEs onto which nodes are randomly mapped.
We assume 20% of nodes are parallelizable.

TABLE 7. Node reduction ratio(%) for random SDF graphs.

We make the execution time statistics of the randomly
generated graph be similar to that of real-life benchmarks.
We make 50% of the nodes have fixed execution times,
and the rest have variable execution times. To model het-
erogeneous PEs, a node has different execution times on
each PE. Since the performance difference between PEs is
large in Jetson TX2, the execution time of nodes has a large
variation from 1us to 1s, similarly to the case of real-life
benchmarks. Since the minimum and maximum execution
times of the nodes are 0.57 times and 2.1 times, respectively,
of the average execution time in real-life benchmarks, we set

20504 VOLUME 9, 2021

D. Jeong et al.: Parallel Scheduling of Multiple SDF Graphs Onto Heterogeneous Processors

the minimum and maximum execution time of a node to be
0.5 and 3 times the average execution time if it has a variable
execution time.

For each setting, we generate 60 random graphs and con-
duct each experiment 100 times to get the average impact
of the proposed technique. The result is shown in Table 7 in
terms of the node reduction ratio by clustering. As expected,
the reduction ratio increases as the average repetition count
increases. When the repetition count is 1, all SDF graphs
are HSDF graphs so that only a little chance of clustering
exists. Nonetheless, up to about 30% of reduction could be
achieved on a two-processor system. While the difference
is not significant, the reduction ratio decreases as the num-
ber of PEs increases since more jobs tend to be sequen-
tially scheduled on a PE in case the number of PE is
small.

Next, we compare the WCRT analysis time before and
after the proposed SDF model transformation technique is
applied when multiple applications are running concurrently.
As shown in the first column of Table 8, we consider three
different numbers of randomly generated graphs: 2, 5, and 7.
The number of nodes, the number of PEs, and the average
repetition count for each graph are set to 10, 4, and 10,
respectively. We consider two types of systems in which
all PEs are preemptible (P) or non-preemptible (NP), even
though mixed scheduling systems can be supported. The
period of each graph is set as the product of the number
of graphs and the sum of each job’s maximum execution
time, which makes all applications schedulable for some
mappings.

TABLE 8. Comparison of the reduction ratio and execution times for
multiple graphs.

For each experiment, we use 60 randomly generated graphs
with random mapping and repeat the experiment 100 times
to obtain the average result. The experimental result is sum-
marized in Table 8. Similarly to Table 7, the number of
nodes is decreased significantly by the clustering technique,
and the WCRT analysis time is reduced drastically when the
clustering technique is applied. Also, as the number of graphs
is increased, the overall execution time is increased. It con-
firms the necessity and benefit of the proposed technique for
fast design space exploration of multiple SDF graphs. Note
that the node reduction ratio for non-preemptive systems is
slightly lower than that for preemptive systems. It is because
there exist some clusters that are further partitioned to satisfy
theMPET constraint of inequality (2). Since the difference is
not significant, the WCRT analysis times show no noticeable
difference.

C. EXPERIMENT: PARALLEL SCHEDULING
The proposed parallel scheduling methodology is applied to
find optimal mappings of real-life benchmarks onto seven
PEs in Jetson TX2. As explained above, the mapping of
ResNet is assumed to be given and fixed. We aim to minimize
the number of used PEs and the WCRT of ResNet, Crypto,
and Kmeans. The LaneDet and H264Dec applications have
throughput constraints that are equal to their periods. We set
the number of chromosomes to 100 and generate 25 off-
spring per iteration. We perform uniform crossover and 5%
mutation with a rate of 95% and 70%, respectively, based
on NSGA2 [39] selector algorithm. The genetic algorithm
terminates after 15, 000 generations. For fast convergence,
all tasks that can be performed on the GPU are mapped to
the GPU, and the remaining tasks are randomized in the initial
chromosomes.

Fig. 8 shows three Pareto-optimal solutions found: min-
imum WCRT for Kmeans (Kmeans_best) and Crypto
(Crypto_best), and the minimum number of used PEs. All the
solutions satisfy the throughput constraints of applications.
The RelativeWCRT is computed as the ratio of the obtained
WCRT over the best WCRT for each application. Since the
ResNet is compute-intensive, the mapping freedom of the
ResNet while satisfying timing constraints is limited, which
explains why the relative WCRT of ResNet does not vary in
three different Pareto-optimal solutions. On the other hand,
the WCRT of Crypto varies most with a maximum 8.6 times
larger WCRT between Kmeans_best and Crypto_best. This
is because Crypto is a best-effort application with the lowest
priority among all. The best-effort application is likely to
have a very large WCRT value because of the lowest priority
and no deadline constraint. On the contrary, the variation of
the WCRT value of Kmeans is smaller since it has a higher
priority than the Crypto, and theWCRT value does not exceed
the given deadline (i.e., the WCRT variation of a periodic or
sporadic application is relatively small since it should satisfy
the throughput constraint). Also, through this experiment,
we confirm that the number of used PEs can be reduced while
satisfying the constraints. It is possible to run the benchmark
applications simultaneously onto only four PEs without the
constraint violation. Since a single generation of evolution
takes about 250ms, the total evolution time is about 1 hour.
Without clustering, it would take two orders of magnitude
longer time.

FIGURE 8. Three Pareto-optimal solutions with four objectives.

VOLUME 9, 2021 20505

D. Jeong et al.: Parallel Scheduling of Multiple SDF Graphs Onto Heterogeneous Processors

D. COMPARISON WITH THE SOTA PARALLEL
SCHEDULING TECHNIQUE
In this section, we compare our proposed technique with
the state-of-the-art (SOTA) parallel scheduling technique [9]
for multiple graphs. Based on the schedulability analysis
used in [8], it produces the sub-optimal scheduling results of
multiple deep learning applications in terms of the response
time of each application under the given response time con-
straints with a genetic algorithm, similar to our proposed
technique. Since it assumes that deep learning applications
are represented as DAGs, we used multiple DAGs as input
even though our proposed technique can accept general SDF
graphs. We used the same benchmark applications as inputs,
Squeezenet [40] and MobileNet v2 [41], with the profiled
task and communication overhead used in [9]. For a fair
comparison, we set the iteration number of genetic algorithms
of each methodology equally to 5, 000 generations.
Figure 9 shows the Pareto-optimal solutions for two appli-

cations, in which the x and y axes represent theWCRT values
of Squeezenet and MobileNet v2, respectively. In the figure,
each dotted line represents a set of Pareto-optimal solutions
obtained by the proposed and the reference technique. Since
a lower WCRT value means a less pessimistic result, it is
better when a solution is placed in the lower left than the
other one. As can be seen from the figure, the solutions
from the proposed methodology dominate the solutions from
the reference technique. For the same Squeezenet WCRT
value, our solution gets 10% to 32% smaller WCRT value
for MobileNet v2 than the reference technique. Similarly, for
the same MobileNet v2 WCRT value, our solution obtains
55% to 58% smaller WCRT value for Squeezenet than the
reference technique. It is notable that our proposed method-
ology can be applied to SDF and multi-mode SDF graphs by
node clustering technique described above in addition to the
better performance, compared with the SOTA technique that
assumes DAGs for application specification.

FIGURE 9. Pareto-optimal graphs of the proposed and reference
technique.

VIII. CONCLUSION AND FUTURE WORK
In this paper, a novel parallel scheduling methodology is pro-
posed to schedule multiple SDF graphs with diverse real-time
constraints onto heterogeneous processors. It explores the
design space of task mapping with a genetic algorithm. For
eachmapping candidate, scheduling of jobs is conductedwith

a list scheduling heuristic. For a given mapping and schedul-
ing result, the worst-case performance of each application is
analyzed with an existing WCRT analysis tool. To reduce the
WCRT analysis time, we propose a node clustering technique
that does not affect the design space and the estimatedWCRT.
The correctness of the proposed clustering technique is for-
mally proved. The node clustering technique is extended to
support the multi-mode SDF model by mode clustering. The
effectiveness of the proposed method is verified with exten-
sive experiments. Our clustering technique achieves faster the
WCRT analysis time by 87 times for a given set of real-life
benchmark applications and at least 3.8% to 92.6% node
reduction ratio for randomly generated graphs with various
configurations. Our proposed methodology could find better
solutions compared to the SOTA methodology up to 58%
smaller WCRT value of an application.

To overcome the limitation of the SDFmodel in the expres-
sion capability, several extensions of the SDF model have
been proposed besides the MMSDF model. For example,
a library task model [42] is introduced to support resource
sharing, and the SDF/L model [43] is proposed to express
loop structures explicitly. It remains a future work to extend
the clustering technique to support these extended models.
It is likely that there are other tasks that are running concur-
rently with SDF applications on the mapped processors. It is
necessary to consider the interference between those tasks
with the SDF applications in the WCRT analysis, which is
left as another future work.

ACKNOWLEDGMENT
This paper is a revised version of the first author’s master
dissertation [1].

REFERENCES
[1] D. Jeong, ‘‘Parallel scheduling of multiple SDF graphs onto heterogeneous

processors,’’ M.S. thesis, Seoul Nat. Univ., Seoul, South Korea, 2020.
[2] E. A. Lee and D. G.Messerschmitt, ‘‘Synchronous data flow,’’ Proc. IEEE,

vol. 75, no. 9, pp. 1235–1245, Sep. 1987.
[3] A. H. Ghamarian, S. Stuijk, T. Basten, M. C.W. Geilen, and B. D. Theelen,

‘‘Latency minimization for synchronous data flow graphs,’’ in Proc. 10th
Euromicro Conf. Digit. Syst. Design Architectures, Methods Tools (DSD),
Aug. 2007, pp. 189–196.

[4] J. Choi, H. Oh, S. Kim, and S. Ha, ‘‘Executing synchronous dataflow
graphs on a SPM-based multicore architecture,’’ in Proc. 49th Annu.
Design Autom. Conf. (DAC), 2012, pp. 664–671.

[5] W. Che and K. S. Chatha, ‘‘Unrolling and retiming of stream applications
onto embedded multicore processors,’’ in Proc. 49th Annu. Design Autom.
Conf. (DAC), 2012, pp. 1272–1277.

[6] H. Jung, H. Oh, and S. Ha, ‘‘Multiprocessor scheduling of an SDF graph
with library tasks considering the worst case contention delay,’’ in Proc.
14th ACM/IEEE Symp. Embedded Syst. Real-Time Multimedia, Oct. 2016,
pp. 1–10.

[7] O. Kermia and Y. Sorel, ‘‘A rapid heuristic for scheduling non-preemptive
dependent periodic tasks onto multiprocessor,’’ in Proc. ISCA 20th Int.
Conf. Parallel Distrib. Comput. Syst. (PDCS), 2007.

[8] S.-H. Kang, D. Kang, H. Yang, and S. Ha, ‘‘Real-time co-scheduling of
multiple dataflow graphs onmulti-processor systems,’’ in Proc. 53rd Annu.
Design Autom. Conf., Jun. 2016, pp. 1–6.

[9] D. Kang, J. Oh, J. Choi, Y. Yi, and S. Ha, ‘‘Scheduling of deep learning
applications onto heterogeneous processors in an embedded device,’’ IEEE
Access, vol. 8, pp. 43980–43991, 2020.

[10] H. I. Ali, B. Akesson, and L. M. Pinho, ‘‘Generalized extraction of
real-time parameters for homogeneous synchronous dataflow graphs,’’ in
Proc. 23rd Euromicro Int. Conf. Parallel, Distrib., Netw.-Based Process.,
Mar. 2015, pp. 701–710.

20506 VOLUME 9, 2021

D. Jeong et al.: Parallel Scheduling of Multiple SDF Graphs Onto Heterogeneous Processors

[11] S. Niknam, P. Wang, and T. Stefanov, ‘‘Hard real-time scheduling of
streaming applications modeled as cyclic CSDF graphs,’’ in Proc. Design,
Autom. Test Eur. Conf. Exhib. (DATE), Mar. 2019, pp. 1549–1554.

[12] R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, and R. Ernst, ‘‘Sys-
tem level performance analysis—The SymTA/S approach,’’ IEE Proc.-
Comput. Digit. Techn., vol. 152, no. 2, pp. 148–166, 2005.

[13] P. S. Kurtin, J. P. H. M. Hausmans, and M. J. G. Bekooij, ‘‘Combining
offsets with precedence constraints to improve temporal analysis of cyclic
real-time streaming applications,’’ in Proc. IEEE Real-Time Embedded
Technol. Appl. Symp. (RTAS), Apr. 2016, pp. 1–12.

[14] J. Kim, H. Oh, J. Choi, H. Ha, and S. Ha, ‘‘A novel analytical method for
worst case response time estimation of distributed embedded systems,’’ in
Proc. 50th Annu. Design Autom. Conf. (DAC), 2013, pp. 1–10.

[15] J. Choi, H. Oh, and S. Ha, ‘‘A hybrid performance analysis technique for
distributed real-time embedded systems,’’ Real-Time Syst., vol. 54, no. 3,
pp. 562–604, Jul. 2018.

[16] M. Gonzalez Harbour, J. G. García, J. P. Gutiérrez, and J. M. D. Moyano,
‘‘MAST: Modeling and analysis suite for real time applications,’’ in Proc.
13th Euromicro Conf. Real-Time Syst., 2001, pp. 125–134.

[17] J. Diemer, P. Axer, and R. Ernst, ‘‘Compositional performance analysis in
python with pycpa,’’ in Proc. 3rd Int. Workshop Anal. Tools Methodologies
Embedded Real-Time Syst. (WATERS), 2012, p. 178.

[18] M. Geilen, ‘‘Reduction techniques for synchronous dataflow graphs,’’ in
Proc. DAC, 2009, pp. 911–916.

[19] H. I. Ali, S. Stuijk, B. Akesson, and L. M. Pinho, ‘‘Reducing the complex-
ity of dataflow graphs using slack-based merging,’’ ACM Trans. Design
Autom. Electron. Syst., vol. 22, no. 2, pp. 1–22, Mar. 2017.

[20] M. R. Garey and D. S. Johnson, Computers and Intractability; A Guide to
the Theory of NP-Completeness. San Francisco, CA, USA: Freeman, 1990.

[21] H. Oh and S. Ha, ‘‘A static scheduling heuristic for heterogeneous proces-
sors,’’ in Proc. Eur. Conf. Parallel Process. Springer, 1996, pp. 573–577.

[22] H. Topcuoglu, S. Hariri, and M.-Y. Wu, ‘‘Performance-effective and low-
complexity task scheduling for heterogeneous computing,’’ IEEE Trans.
Parallel Distrib. Syst., vol. 13, no. 3, pp. 260–274, Mar. 2002.

[23] E. S. Hou, N. Ansari, and H. Ren, ‘‘A genetic algorithm for multiprocessor
scheduling,’’ IEEE Trans. Parallel Distrib. Syst., vol. 5, no. 2, pp. 113–120,
Feb. 1994.

[24] H. Yang and S. Ha, ‘‘Pipelined data parallel task mapping/scheduling
technique for MPSOC,’’ in Proc. DATE, 2009, pp. 69–74.

[25] H. Yang and S. Ha, ‘‘ILP based data parallel multi-task
mapping/scheduling technique for MPSOC,’’ in Proc. ISOCC, 2008,
pp. I-134–I-137.

[26] S. K. Roy, R. Devaraj, and A. Sarkar, ‘‘Optimal scheduling of PTGs with
multiple service levels on heterogeneous distributed systems,’’ in Proc.
Amer. Control Conf. (ACC), Jul. 2019, pp. 157–162.

[27] S. K. Roy, R. Devaraj, A. Sarkar, K. Maji, and S. Sinha, ‘‘Contention-
aware optimal scheduling of real-time precedence-constrained
task graphs on heterogeneous distributed systems,’’ J. Syst.
Archit., vol. 105, May 2020, Art. no. 101706. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1383762119305132

[28] X. Liu, R. Xu, Y. Cheng, and P. Zhang, ‘‘A novel hefts-l algorithm for
scheduling large number of DAG tasks,’’ in Proc. 3rd Workshop Adv.
Res. Technol. Ind. (WARTIA). Amsterdam The Netherlands: Atlantis Press,
2017.

[29] S. Chakraborty, S. Künzli, and L. Thiele, ‘‘A general framework for
analysing system properties in platform-based embedded system designs,’’
in Proc. DATE, vol. 3, 2003, p. 10190.

[30] S. K. Baruah, A. K.Mok, and L. E. Rosier, ‘‘Preemptively scheduling hard-
real-time sporadic tasks on one processor,’’ in Proc. 11th Real-Time Syst.
Symp., 1990, pp. 182–190.

[31] E. A. Lee and S. Ha, ‘‘Scheduling strategies for multiprocessor real-time
DSP,’’ in Proc. IEEE Global Telecommun. Conf. Exhib. Commun. Technol.
1990s Beyond, Nov. 1989, pp. 1279–1283.

[32] M. Lukasiewycz, M. Glaß, F. Reimann, and J. Teich, ‘‘Opt4J: A modular
framework for meta-heuristic optimization,’’ in Proc. 13th Annu. Conf.
Genetic Evol. Comput., 2011, pp. 1723–1730.

[33] S. Stuijk, M. Geilen, B. Theelen, and T. Basten, ‘‘Scenario-aware dataflow:
Modeling, analysis and implementation of dynamic applications,’’ in
Proc. Int. Conf. Embedded Comput. Syst. Archit., Modeling Simulation,
Jul. 2011, pp. 404–411.

[34] H. Jung, C. Lee, S.-H. Kang, S. Kim, H. Oh, and S. Ha, ‘‘Dynamic behav-
ior specification and dynamic mapping for real-time embedded systems:
Hopes approach,’’ ACM Trans. Embedded Comput. Syst., vol. 13, no. 4s,
pp. 1–26, 2014.

[35] J. T. Zhai, ‘‘Adaptive streaming applications: Analysis and implementation
models,’’ Ph.D. dissertation, Dept. Sci., Leiden Inst. Adv. Comput. Sci.
(LIACS), Leiden Univ., Leiden, The Netherlands, 2015.

[36] Nvidia. Jetson TX2. Accessed: Jan. 20, 2021. [Online]. Available:
https://www.nvidia.com/en-us/autonomous-machines/embedded-
systems/jetson-tx2/

[37] SDF Benchmarks. Accessed: Jan. 20, 2021. [Online]. Available:
https://github.com/Dukejung/sdfBenchmarks

[38] S. Stuijk, M. Geilen, and T. Basten, ‘‘SDF3: SDF for free,’’ in Proc. 6th
Int. Conf. Appl. Concurrency Syst. Design (ACSD), 2006, pp. 276–278.

[39] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, ‘‘A fast and elitist
multiobjective genetic algorithm: NSGA-II,’’ IEEE Trans. Evol. Comput.,
vol. 6, no. 2, pp. 182–197, Apr. 2002.

[40] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and
K. Keutzer, ‘‘SqueezeNet: AlexNet-level accuracy with 50x fewer param-
eters and<0.5 MBmodel size,’’ 2016, arXiv:1602.07360. [Online]. Avail-
able: http://arxiv.org/abs/1602.07360

[41] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
‘‘MobileNetV2: Inverted residuals and linear bottlenecks,’’ in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 4510–4520.

[42] H.-w. Park, H. Jung, H. Oh, and S. Ha, ‘‘Library support in an actor-based
parallel programming platform,’’ IEEE Trans. Ind. Informat., vol. 7, no. 2,
pp. 340–353, May 2011.

[43] H. Hong, H. Oh, and S. Ha, ‘‘Hierarchical dataflow modeling of itera-
tive applications,’’ in Proc. 54th Annu. Design Autom. Conf., Jun. 2017,
pp. 1–6.

DOWHAN JEONG received the B.S. and M.S.
degrees in computer science and engineering
from Seoul National University, Seoul, South
Korea, in 2018 and 2020, respectively. His current
research interests include HW/SW codesign of
embedded systems, design automation, and system
performance estimation.

JANGRYUL KIM received the B.S. degree in
computer science and engineering from Sogang
University, Seoul, South Korea, in 2017. He is cur-
rently pursuing the Ph.D. degree with the Depart-
ment of Computer Science and Engineering, Seoul
National University, Seoul. His current research
interests include system performance estima-
tion and design space exploration of embedded
systems.

MARI-LIIS OLDJA received the B.S. degree in
computer science from the University of Tartu,
Estonia, in 2014. She is currently pursuing the
M.S. degree in computer science and engineer-
ing with Seoul National University, Seoul, South
Korea. Her current research interests include
design automation, data parallel scheduling, and
performance estimation of embedded systems.

SOONHOI HA (Fellow, IEEE) received the B.S.
and M.S. degrees in electronics engineering from
Seoul National University, Seoul, South Korea,
in 1985 and 1987, respectively, and the Ph.D.
degree in electrical engineering and computer sci-
ence from the University of California at Berkeley,
Berkeley, CA, USA, in 1992.

He is currently a Professor with Seoul National
University. His current research interests include
HW/SW codesign of embedded systems, embed-

dedmachine learning, and the Internet of Things. He has actively participated
in the premier international conferences in the EDA area, for instance serving
CODES+ISSS, in 2006, ASPDAC, in 2008, as the Program Co-Chair, and
ESWEEK, in 2018, as the General Chair. He is a member of ACM.

VOLUME 9, 2021 20507

